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associates with insulin resistance, metabolic traits and altered fat
distribution in Danish children and adolescents who are overweight
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Abstract
Aims/hypothesis A genetic risk score (GRS) consisting of 53 insulin resistance variants (GRS53) was recently demonstrated to
associate with insulin resistance in adults. We speculated that the GRS53 might already associate with insulin resistance during
childhood, and we therefore aimed to investigate this in populations of Danish children and adolescents. Furthermore, we aimed
to address whether the GRS associates with components of the metabolic syndrome and altered body composition in children and
adolescents.
Methods We examined a total of 689 children and adolescents who were overweight or obese and 675 children and adolescents
from a population-based study. Anthropometric data, dual-energy x-ray absorptiometry scans, BP, fasting plasma glucose, fasting
serum insulin and fasting plasma lipid measurements were obtained, and HOMA-IR was calculated. The GRS53 was examined
for association with metabolic traits in children by linear regressions using an additive genetic model.
Results In overweight/obese children and adolescents, the GRS53 associated with higher HOMA-IR (β = 0.109 ± 0.050 (SE);
p = 2.73 × 10−2), fasting plasma glucose (β = 0.010 ± 0.005 mmol/l; p = 2.51 × 10−2) and systolic BP SD score (β = 0.026 ±
0.012; p = 3.32 × 10−2) as well as lower HDL-cholesterol (β = −0.008 ± 0.003 mmol/l; p = 1.23 × 10−3), total fat-mass percentage
(β = −0.143 ± 0.054%; p = 9.15 × 10−3) and fat-mass percentage in the legs (β = −0.197 ± 0.055%; p = 4.09 × 10−4). In the
population-based sample of children, the GRS53 only associated with lower HDL-cholesterol concentrations (β = −0.007 ±
0.003 mmol/l; p = 1.79 × 10−2).
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Conclusions/interpretation An adult-based GRS comprising 53 insulin resistance susceptibility SNPs associates with insulin
resistance, markers of the metabolic syndrome and altered fat distribution in a sample of Danish children and adolescents who
were overweight or obese.
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Abbreviations
DXA Dual-energy x-ray absorptiometry
FDR False discovery rate
GRS Genetic risk score
GRS53 Genetic risk score comprising 53 SNPs known to

associate with insulin resistance-related pheno-
types in adults

IR Insulin resistance
SDS SD score
TCOCT The Children’s Obesity Clinic’s Treatment

Protocol
TDCOB The Danish Childhood Obesity Biobank

Introduction

Individuals diagnosed with the metabolic syndrome have an
increased risk of developing cardiometabolic diseases such as
cardiovascular disease and type 2 diabetes [1]. Insulin resis-
tance (IR), a complex metabolic condition with both genetics
and the environment as contributing factors, has been sug-
gested to be the primary mediator of the metabolic syndrome
[1]. Obesity, especially visceral obesity [2], is a crucial factor in
the development of IR, and the prevalence of obesity is rapidly
increasing in both children and adults. In paediatric

populations, obesity strongly associates with alterations in
glucose metabolism, and impaired glucose metabolism and
IR are observed not only in adults, but also in a large fraction
of children with obesity [3, 4]. Furthermore, as increased BMI
during childhood strongly correlates with increased risk of
developing type 2 diabetes in adulthood [5], it is of great
importance to identify risk factors potentially influencing or
even mediating the link between childhood obesity and adult
type 2 diabetes. Examination of factors predisposing to IR in
clinical subsets of children who are overweight or obese is thus
particularly relevant. If individuals predisposed to IR are
identified early in life, targeted measures could potentially
delay the development of IR, and thereby potentially the
development of cardiovascular disease and type 2 diabetes
later in life.

A genetic component of the development of IR is evident
from genome-wide association studies in adults [6–8].
Recently, 53 genetic loci associated with IR-related pheno-
types, i.e. fasting insulin adjusted for BMI, and circulating
concentrations of triacylglycerol and HDL-cholesterol, were
identified through an integrative genomic approach [9]. A ge-
netic risk score (GRS) comprising the 53 lead SNPs from the
identified loci associated with IR (GRS53) [9], as based on
measures from a euglycaemic–hyperinsulinaemic clamp, an
insulin suppression test and an insulin sensitivity index from

1770 Diabetologia (2018) 61:1769–1779



a frequently sampled OGTT [10, 11]. Furthermore, the GRS53
associated with lower BMI, body fat percentage and leg, arm
and gynoid fat mass [9]. GRSs for type 2 diabetes are reported
to have a higher predictive value in younger individuals than
older ones [12–17], probably due to a higher impact of genetic
vs environmental factors in youth. The same concept may hold
true for a GRS for IR, which could potentially be used as a
clinical tool in the identification of children for whom early
intervention might be especially relevant. Previously, a GRS
relating to IR based on only ten SNPs was reported to have no
association with IR in 1076 children with obesity [18], yet the
associations of a GRS comprising the newly identified 53
SNPs in a paediatric population remain unknown.

The aims of this study were therefore to investigate the
following in a sample of Danish children and adolescents
who were overweight or obese, as well as in a population-
based sample: (1) the associations of the GRS53 with estimates
of IR phenotypes (fasting concentrations of insulin,
triacylglycerols and HDL-cholesterol) and HOMA-IR; (2)
the SNP-specific effects on these phenotypes; and (3) the as-
sociations of the GRS53 with other components of the meta-
bolic syndrome and body composition. The GRS53 was ini-
tially validated in an adult Danish population.

Methods

Inter99 study population

Clinical data for adults were obtained from the Inter99 study
(ClinicalTrials.gov NCT00289237). The Inter99 study is a
population-based, randomised, non-pharmacological interven-
tion study for the prevention of ischaemic heart disease, con-
ducted by the Research Centre for Prevention and Health,
Glostrup University Hospital, Glostrup, Denmark. Of 13,016
individuals (aged 30–60 years) randomly selected from the
Civil Registration System and invited to participate, 6784
(52%) participated in baseline examinations. Detailed pheno-
typic characteristics from Inter99 have previously been pub-
lished [19], and baseline characteristics are presented in Table 1.

Anthropometric measurements While wearing light indoor
clothes and no shoes, height (cm) and weight (kg) were mea-
sured, and BMI was calculated as weight (kg) divided by
height squared (m2). Waist and hip circumference were mea-
sured in cm, and WHR was calculated as waist measurement
(cm) divided by hip measurement (cm).

BP This was measured using a mercury sphygmomanometer.

Blood sampling Blood samples were drawn following a 12 h
overnight fast, and measures of insulin, blood glucose, HDL-
cholesterol, triacylglycerol and total cholesterol were obtained

as previously described [19, 20]. All participants without pre-
viously diagnosed diabetes underwent a standardised 75 g glu-
cose OGTT, from which participants were diagnosed with type
2 diabetes according to the WHO 1999 criteria. No individuals
with previously diagnosed or screen detected type 2 diabetes
were included in the present study.

GenotypingThis was performed on 5255 participants from the
Inter99 cohort, using the Illumina HumanOmniExpress-24
v1.0_A and HumanOmniExpress-24 v1.1_A (Illumina, San
Diego, CA, USA). Genotypes were called using the
Genotyping module (version 1.9.4) of GenomeStudio soft-
ware (version 2011.1; Illumina). Only individuals having a
call rate ≥98% were included. Genotypes were phased using
Eagle on autosomes and Shapeit on chromosome X and im-
puted in the Phase 3 1KG and HRC1.1 using the Michigan
imputation server (https://imputationserver.sph.umich.edu/
index.html) [21]. All variants included in this study were in
Hardy–Weinberg equilibrium (p > 0.05).

The Danish Childhood Obesity Biobank study
population

Clinical data on Danish children and adolescents was obtained
from The Danish Childhood Obesity Biobank (TDCOB;
ClinicalTrials.gov NCT00928473). Between March 2007 and
March 2013, 1069 children and adolescents (aged 6–18 years)
who were overweight or obese were recruited from the
Children’s Obesity Clinic, Department of Pediatrics,
Copenhagen University Hospital Holbæk as part of the
Children’s Obesity Clinic’s Treatment Protocol (TCOCT)
[22] (see Table 1 for clinical characteristics). In the following
sections, this study sample will be referred to as the TCOCT
sample. Overweight was defined as a BMI above the 90th
percentile for sex and age according to Danish BMI charts
[23] (corresponding to a BMI SD score (SDS) >1.28). All
measures included in this study were obtained at the first visit
to the clinic, i.e. before treatment initiation. Between
September 2010 and March 2013, a population-based sample
of 719 children and adolescents (6–18 years) were recruited
from local schools and high schools (see Table 1 for clinical
characteristics). In the following sections, this study sample
will be referred to as the population-based control sample.

Anthropometric measurements With participants wearing
light indoor clothes and no shoes, height was measured by a
stadiometer (to the nearest 1 mm), and weight was measured
on a digital scale (to the nearest 0.1 kg). BMI was calculated as
the weight (kg) divided by the height squared (m2), and BMI
SDS was calculated using the least mean squares method [24]
based on a Danish reference [23]. Waist circumference was
measured at umbilical level in the upright position after exha-
lation using a stretch-resistant tape (to the nearest 5 mm). The
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WHR was calculated as the waist measurement (cm) divided
by the hip measurement (cm).

BP Systolic and diastolic BP were measured with an
oscillometric device (Omron 705IT; Omron Healthcare,
Kyoto, Japan) with the appropriate cuff size, as validated in
children [25]. BP was measured three times on the right upper
arm after 5min of rest. An average of the last twomeasurements
was used to calculate systolic and diastolic BP SDS based on
sex-, age- and height-specific American references [25].

Blood samplingBlood sampleswere drawn from an antecubital
vein after an overnight fast. Whole-blood HbA1c was analysed
on a Tosoh HPLC G8 analyser (Tosoh Corporation, Tokyo,
Japan). Plasma glucose was measured on a Dimension Vista
1500 Analyser (Siemens Healthcare, Erlangen, Germany), and
serum insulin, plasma cholesterol, plasma HDL-cholesterol and
plasma triacylglycerol on a Cobas 6000 Analyser (Roche
Diagnostics, Mannheim, Germany).

Dual-energy x-ray absorptiometry Measurements taken using
dual-energy x-ray absorptiometry (DXA) included fat mass in
the arms, legs, torso and whole body.Measures were performed
using a GE Lunar Prodigy (DF+10031 GE Healthcare, Little
Chalfont, UK) until 14 October 2009 and thereafter using a GE
Lunar iDXA (ME+200,179; GE Healthcare).

Genotyping DNA was extracted at LGC Genomics
(Teddington, UK), and samples from all participants (n =
1788) were genotyped using the Illumina Infinium
HumanCoreExome Beadchip (Illumina, San Diego, CA,
USA) using Illumina’s HiScan system at the Novo Nordisk
Foundation Center for Basic Metabolic Research’s laboratory,
Symbion, Copenhagen, Denmark. Genotypes were called
using the Genotyping module (version 1.9.4) of
GenomeStudio software (version 2011.1; Illumina). We ex-
cluded individuals who were duplicates or ethnic outliers, or
had extreme inbreeding coefficients, mislabelled sex or a call
rate of <95%, leaving 1618 individuals. Additional genotypes
were imputed using the 1000 genomes phase 1 panel using
shapeit/IMPUTE2 pipeline (http://mathgen.stats.ox.ac.uk/
impute/impute_v2.html) [26, 27], with only genotyped
variants that were not significant (p > 0.05) in Hardy–
Weinberg equilibrium tests. Only variants with a high
imputation quality (IMPUTE2 estimated R2 > 0.95) were kept.

GRS construction

Genotypes were coded according to the number of IR-
increasing alleles based on 53 independent SNPs shown to
associate with IR phenotypes (higher fasting insulin concen-
trations adjusted for BMI, lower HDL-cholesterol concentra-
tions and higher triacylglycerol concentrations) in adults [9]

(electronic supplementary material [ESM] Table 1). All geno-
types were retrieved from the imputed dataset, and GRS con-
struction was therefore based on genotype dosage informa-
tion. We constructed an unweighted GRS by summing the
number of IR phenotype-increasing alleles. In addition, we
constructed a weighted GRS by summing the number of IR
phenotype-increasing alleles weighted by the effect size of the
variants on fasting insulin concentrations adjusted for BMI, as
reported in the validation study in adults [9], and normalised
by dividing by the sum of all effects, to make the two GRSs
comparable. Similar results were obtained from the two
GRSs, and therefore only results from the unweighted GRS
(GRS53) are reported.

Statistical analyses

Only children and adolescents from the TDCOB cohort with
available information on HOMA-IR were included in our
analyses (n = 1364). For clinical characteristics of study
participants included in the analyses, see Table 1. All statistical
analyses were performed with and without the inclusion of
participants who had conditions or were receiving medication
potentially influencing IR, such as long-term present or prior
systemic use of steroid hormones (n = 29). Statistical analyses
were performed using R software (version 3.1.3; R Foundation
for Statistical Computing, Boston, MA, USA). HOMA-IR was
calculated as ([fasting plasma glucose (mmol/l)] × [fasting
serum insulin (pmol/l)])/135 [28]. LDL-cholesterol was calcu-
lated according to the Friedewald formula: [LDL-cholesterol
(mmol/l) = total cholesterol (mmol/l) − HDL-cholesterol
(mmol/l) − triacylglycerol (mmol/l)/5] [29]. Associations
between the GRS and IR, metabolic traits and body composi-
tion estimates were examined by linear regression using
additive genetic models. Analyses were adjusted for sex and
age where indicated, and all analyses of DXA measures were
adjusted for type of DXA scanner. Quantitative traits deviating
from normal distributionwere log-transformed (log10) to ensure
a normal distribution as assumed in the model. For log-
transformed traits, the corresponding p values are reported.
Furthermore, clinically interpretable effect sizes and SEs from
the analyses of untransformed traits are reported. Binominal
tests were performed to assess the directionality of SNP-
specific effects. Differences in effect sizes between groups were
assessed using a standard two-tailed t-test with β values and
SEs for each group. Correction for multiple testing was
performed using a false discovery rate (FDR) of 10% [30].
Values of p < 0.05 were considered statistically significant.

Ethical aspects

Written informed consent was obtained from all participants.
If they were younger than 18 years, informed oral consent was
given by the participant while the parents provided informed
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written consent. The study was approved by the Danish Data
Protection Agency (REG-06-2014), the Ethics Committee of
Region Zealand, Denmark (SJ-104) and the Scientific Ethics
Committee of the Capital Region of Denmark (KA98155).
The study was performed in accordance with the Declaration
of Helsinki 2013 and is registered at ClinicalTrials.gov
(NCT00928473 and NCT00289237).

Results

Validation of the association between the GRS53
and IR phenotypes in Danish adults

As a means of validating the association of the GRS53 with IR
phenotypes in an adult Danish population, we used data from
the Inter99 study population comprising 5255 non-diabetic
Danish individuals (aged 30–60 years). The Inter99 popula-
tion was not part of the study by Lotta et al [9], and Inter99
therefore constitutes an adult study sample suitable for vali-
dating the association between the GRS53 and IR phenotypes.
In the Danish adults, the unweighted GRS53 associated with
fasting concentrations of insulin adjusted for BMI (β = 0.014
± 0.003; p = 2.25 × 10−7), triacylglycerol (β = 0.022 ± 0.003;
p = 1.14 × 10−12) and HDL-cholesterol (β = −0.018 ± 0.003;
p = 4.86 × 10−10) (ESM Table 2) with effect sizes similar to
those previously reported [9]. Furthermore, the unweighted
GRS53 associated with HOMA-IR in the Danish adults (β =
0.014 ± 0.003; p = 1.45 × 10−7) (ESM Table 2). Similar results
were obtained for the weighted GRS53.

Association of the GRS53 with IR phenotypes
in children and adolescents

All statistical tests were performed with and without the in-
clusion of individuals (n = 29) who had conditions or were
receiving medication potentially influencing IR, but the re-
sults obtained did not differ (data not shown). Only results
based on the inclusion of these individuals are thus provided.
In the TCOCT sample, the GRS53 associated with HOMA-IR
(β = 0.109 ± 0.050; p = 2.73 × 10−2); however, no association
was observed in the population-based control sample (p =
0.10) (Table 2). The GRS53 was inversely associated with
HDL-cholesterol in both the TCOCT sample (β = −0.008 ±
0.003 mmol/l; p = 1.23 × 10−3) and the population-based con-
trol sample (β = −0.007 ± 0.003 mmol/l; p = 1.79 × 10−2)
(Table 2). The GRS53 did not associate with concentrations
of fasting insulin or triacylglycerol in either population (p >
0.05) (Table 2). Despite the fact that the observed associations
of the GRS53 were greater in the TCOCT sample, no statisti-
cally significant difference in the effect size of the GRS53 in
the two groups was identified, as determined by a two-tailed t
test (Table 2).

SNP-specific associations with IR phenotypes

When calculating the individual association of each SNP with
HOMA-IR, fasting insulin, HDL-cholesterol and triacylglyc-
erol, associations were identified for three, three, five and four
SNPs, respectively, in the children with obesity, whereas as-
sociations were identified for four, four, four and six SNPs,
respectively, in the control population (Fig. 1, ESM Figs 1–3).
Consistency of the SNP-specific directionally effect sizes was
only observed for HDL-cholesterol in the children with obe-
sity, with 38 out of 53 SNPs showing negative directional
effects (p = 2.19 × 10−3; ESM Table 3). In contrast, consistent
directional effects of the included SNPs were observed for all
four traits examined in the adult Inter99 population (ESM
Table 3).

Association between the GRS53 and metabolic traits

When investigating whether the GRS53 associated with addi-
tional traits related to the metabolic syndrome, the GRS53
associated with higher fasting plasma glucose concentrations
(β = 0.010 ± 0.005 mmol/l; p = 2.51 × 10−2) in the TCOCT
sample (Table 2), whereas no association was observed in
the population-based control sample (p = 0.40) (Table 2).
Although no associations between the GRS53 and BMI SDS,
WHR, HbA1c or diastolic BP SDS were found in either of the
populations, an association between the GRS53 and the
systolic BP SDS was identified in the TCOCT sample (β =
0.026 ± 0.012; p = 3.32 × 10−2) (Table 2). No difference in the
effect size of the GRS53 between the two study populations
was identified (Table 2).

Association between GRS53 and measures of fat
deposition

In the TCOCT sample, we observed an association between
the GRS53 and lower total fat-mass percentage (β = −0.143 ±
0.054%; p = 9.15 × 10−3) (Table 2). We also investigated fat-
mass percentages for specific parts of the body, such as the
arms, legs and torso. In the TCOCT sample, the GRS53 asso-
ciated with reduced leg fat-mass percentage (β = −0.197 ±
0.055%; p = 4.09 × 10−4) (Table 2). In the population-based
control sample, no associations between GRS53 and measures
of fat deposition were observed, yet the effect size of the
GRS53 did not differ between the examined study populations,
as determined by a two-tailed t test (Table 2).

Discussion

In this study, we sought to investigate whether the associations
of a GRS previously associated with IR phenotypes (fasting
insul in adjus ted for BMI, HDL-choles tero l and
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triacylglycerol) in adults [9] are already evident during child-
hood and adolescence. We initially demonstrated that the
GRS53 also associated with these phenotypes and the
HOMA-IR in Danish adults. We then proceeded to examine
whether these associations between the GRS53 and IR pheno-
types could be identified in two samples of Danish children
and adolescents: one sample that was population-based, and
the other comprising children and adolescents who were over-
weight/obese, thereby representing a clinical subset with ele-
vated risk of obesity-induced IR. In the TCOCT sample com-
prising overweight/obese children and adolescents, the GRS53

associated with higher HOMA-IR, but no association was
identified in the population-based control sample.
Previously, the 53 SNPs included in the GRS have all been
independently associated with IR in adults [9]. In the current
study, however, only a few of the 53 SNPs displayed associ-
ations with either HOMA-IR, fasting insulin, HDL-
cholesterol or triacylglycerol in both Danish children and
adults, a discrepancy which may be due to the larger statistical
power of the original study [9]. Although the majority of the
included loci exhibited same-directional effect sizes, com-
pared with the reports made in the discovery study [9], formal
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Fig. 1 SNP-specific associations
with HOMA-IR in children from
the TCOCT sample (black lines)
and population-based control
sample (grey lines). For each
SNP, the name of the nearest
gene, rs number and risk allele as
reported [9] are provided. *p <
0.05 for the association between
the given SNP and HOMA-IR in
the TCOCT sample. †p < 0.05 for
the association between the given
SNP and HOMA-IR in the
population-based sample
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tests of directional effects only reached statistical significance
for HDL-cholesterol in the children with overweight/obesity,
and for all the examined traits in the Danish adults. This same-
directional effect was more evident in the Danish adult popu-
lation than the child populations, suggesting that the associa-
tion of the SNPs may be stronger in adulthood than childhood
and may thus be age-dependent. Nevertheless, as the current
study has only limited power to detect SNP-specific associa-
tions, larger study populations of both children and adults
seem necessary to elucidate whether the included SNPs do
in fact display age-dependent effects.

In a recent study by Morandi et al comprising 1076 chil-
dren with obesity (mean age 11.4 years) and 1265 young
adults with normal weight (mean age 21.1 years), no associa-
tions between a GRS comprising ten IR-associated SNPs and
OGTT-derived traits (fasting insulin, fasting glucose and
HOMA-IR) were identified [18]. This discrepancy in relation
to our results may be explained by the difference in the SNPs
included in the GRS. Morandi et al used in their GRS ten
SNPs originally chosen by Vassy et al [17] because of their
association with HOMA-IR, higher fasting insulin or IR-
related traits such as lower HDL-cholesterol or higher triacyl-
glycerol, BMI or WHR in earlier publications. The GRS53
used in the current study consists of 53 SNPs used by Lotta
et al to create their GRS [9]. By employing a meta-analysis,
Lotta et al included up to 188,577 individuals and identified
630 SNPs within 53 loci associating with higher fasting insu-
lin, lower HDL-cholesterol and higher triacylglycerol. The 53
lead SNPs from these loci were then compiled into the GRS.
In the same study, the association between the GRS53 and IR
in adults was validated based on previously obtainedmeasures
from a euglycemic–hyperinsulinemic clamp or insulin sup-
pression test in 2764 adults, or by insulin sensitivity index in
4769 individuals [10, 11] . The better validated and higher
number of SNPs in the GRS53 used in our study may explain
why the GRS53, in contrast to the earlier publication [18],
associates with IR despite our smaller study population.

We found that the GRS53 associated with other traits of the
metabolic syndrome, namely lower HDL-cholesterol concen-
trations and higher systolic BP in the TCOCT sample.
Interestingly, the GRS53 was inversely associated with HDL-
cholesterol level in the population-based control children as
well. In contrast, there were no associations between the
GRS53 and higher fasting insulin and triacylglycerol concen-
trations in either population, even though associations
with these traits, together with HDL-cholesterol, were
originally used to identify the susceptibility SNPs in adults.
Unfortunately, concentrations of fasting plasma lipids and
BP were not investigated by Lotta et al [9]. Furthermore, in
the TCOCT sample, the GRS53 associated with higher
fasting plasma glucose, in consistency with the association
identified in adults [9]. The GRS53 has previously been
associated with lower BMI and higher WHR/hip

circumference in adults [9]; however, no associations
between the GRS53 and these traits were identified in either
of our child populations.

When examining the DXA-derived measures of fat de-
position, the GRS53 showed an association with lower total
fat percentage and leg fat-mass percentage, corresponding
to the findings in adults [9]. IR, lower fat mass and ectopic
fat deposition associate with the GRS53 in adults [9]. As the
GRS53 in our study associates with both HOMA-IR and
lower fat-mass percentage, it is likely that the GRS53 may
associate with ectopic lipid deposition, a potential cause of
IR, in children as well. A more detailed analysis of lipid
accumulation in liver and skeletal muscles is needed to val-
idate this hypothesis.

Although we observed more associations between the
GRS53 and IR-related phenotypes in the sample of children
with obesity, the identified effect estimates of the GRS53 in
the two groups of children did not differ. With our statistical
power, we can therefore not claim that the associations of
the GRS53 di ffe r be tween our two popula t ions .
Nevertheless, our results still indicate that the GRS53 has a
greater association in children with obesity, compared with
a population-based sample of children. Collectively, our
results obtained in Danish children, adolescents and adults
suggest that the association of the GRS comprising the 53
SNPs are mediated via metabolic stresses such as obesity
and ageing. Our findings indicate a different effect size of
the individual SNPs in the GRS53 in populations comprising
children and adolescents compared with adults. Potentially,
the SNP-specific associations are modified by obesity, age-
ing and other exposures. Our findings correspond well with
previous studies reporting age-dependent effects of loci as-
sociating with metabolic traits such as BMI and obesity
[31–33]. An age-dependent variation of the effect of the
individual SNPs in the GRS53 complicates the interpretation
of data and calls for the identification of age-specific trait
loci and subsequent construction of age- and trait-specific
GRSs.

Although our results must be validated in larger paediatric
study populations, our findings could have clinical implica-
tions, as they suggest that children with an increased risk of IR
may benefit from preventive and therapeutic lifestyle and/or
pharmacological treatment approaches aiming to reduce obe-
sity to prevent the development of IR-associated cardiometa-
bolic risks. Furthermore, our findings indicate that the GRS53
has potential as a clinical marker to aid the identification of
children with a higher risk of IR than that mediated via obesity
alone. In adults, the GRS53 strongly associated with increased
risk of developing type 2 diabetes [9], yet it remains unknown
whether children with a high genetic burden, as assessed by
the GRS53, also have an increased risk of developing diabetes
and/or diabetes-related comorbidities later in life. Future stud-
ies examining the associations of the GRS53 in larger
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populations and across a lifespan could potentially help to
elucidate whether the GRS53 could be used as a clinical tool
that would, during childhood and adolescence, already enable
the identification of individuals with an increased risk of IR
and ultimately type 2 diabetes. As such, the GRS53, or even an
improved GRS comprising other or additional SNPs with val-
idated strong associations with IR phenotypes in childhood,
could potentially be one of the first steps towards personalised
intervention programmes aiming to minimise the occurrence
of cardiovascular events and preterm death associated with
early-onset type 2 diabetes [34].

Our study is limited by the relatively small study sample,
which reduces the statistical power. Furthermore, analyses
were not adjusted for stage of puberty but only for age.
Nevertheless, a very detailed phenotypic characterisation
was available for the included study population, enabling the
detailed analysis of several traits related to IR and fat deposi-
tion. Furthermore, data for the examined traits were available
for two populations of children with similar age spans yet
different ranges of BMI SDS, enabling an evaluation of the
effect of obesity on the effect of the GRS. It should be noted
that the two populations of children were selected in different
ways: the children with obesity were highly selected accord-
ing to their BMI and age, whereas the children from the
population-based group were selected only according to age.
This discrepancy in the selection of study participants may
potentially affect our findings.

In conclusion, we investigated whether the GRS53 asso-
ciates with IR phenotypes and HOMA-IR in both children
and adolescents who are overweight or obese, and in a
population-based control sample. A GRS associating with
IR in children could help to identify children predisposed to
IR. In overweight or obese children and adolescents, the 53
SNPs cumulatively associate with IR. The results indicate
that children who have a genetic predisposition to IR, as
assessed by the 53 SNPs, will have a higher risk of devel-
oping IR if they become overweight or obese. However, as
no difference between the effects size of the GRS53 in the
two groups of children could be identified, we cannot with
certainty conclude that obesity is essential for the associa-
tion between HOMA-IR and the GRS53. This hypothesis
needs to be verified in a larger population. The identifica-
tion of additional SNPs displaying strong associations with
IR-related phenotypes during childhood would increase the
clinical impact of the GRS53 and allow the identification of
children predisposed to IR. Treatment strategies targeted
against factors important for the development of IR, such
as obesity, could be developed specifically for predisposed
children. Furthermore, our study showed that fat percentage
in the body extremities was inversely associated with
GRS53 in the children and adolescents who are overweight
or obese, suggesting that impaired capacity to store fat in
peripheral compartments increases the risk of IR.
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