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A B S T R A C T   

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a critical 
innate immune pathway primarily due to its vital DNA sensing mechanism in pathogen defence. 
Recent research advances have shown that excessive activation or damage to the cGAS-STING 
pathway can exacerbate chronic inflammatory responses, playing a significant role in meta-
bolic dysfunction and aging, leading to the development of related diseases such as obesity, 
osteoporosis, and neurodegenerative diseases. This article reviews the structure and biological 
functions of the cGAS-STING signaling pathway and discusses in detail how this pathway regu-
lates the occurrence and development of metabolic and age-related diseases. Additionally, this 
article introduces potential small molecule drugs targeting cGAS and STING, aiming to provide 
new research perspectives for studying the pathogenesis and treatment of metabolic-related 
diseases.   

1. Introduction 

To sustain their usual physiological operations, organisms transform nutrients from the environment into energy through the 
metabolic. If metabolic disorders occur, cells may not be able to perform their duties, leading to chronic diseases such as metabolic- 
associated fatty liver disease (MAFLD), obesity, insulin resistance (IR), cardiovascular diseases, osteoporosis, and cellular aging. It is 
well known that genetics, environmental factors, and unhealthy lifestyles are significant contributors to metabolic disorders [1–3]. 
Accumulated evidence now indicates that a hallmark of metabolic disorders is chronic sterile inflammation. Danger signals produced 
by metabolic overload are perceived by host pattern recognition receptors (PRRs), triggering pro-inflammatory pathways and pro-
moting mild, sustained chronic inflammation [4,5]. Thus, the close connection between immunity and metabolism is increasingly 
recognized. 

Significant progress has been made in the study of the cGAS-STING pathway as a molecular mechanism of the innate immune 
system’s first line of defense against pathogen infection. cGAS, as a DNA sensor protein, can recognize exogenous DNA such as nuclear 
or mitochondrial DNA (mtDNA) and cellular components exposed due to self-damage, activating downstream STING, promoting the 
expression and release of inflammatory genes [6,7]. Previous research results suggest that improper activation or inhibition of the 
cGAS-STING pathway is associated with metabolic diseases such as obesity [8–10], nonalcoholic fatty liver disease (NAFLD) [11,12], 
and osteoporosis [13]. In this context, we summarized some literature reports on the impact of the cGAS-STING pathway on metabolic 
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disruption. Utilizing the cGAS-STING pathway and its related signaling molecules as potential targets for developing treatments for 
metabolic diseases is very promising. Therefore, we also discuss the latest advancements in novel antagonists and agonists targeting 
cGAS and STING. Moreover, this research lays the groundwork for future studies to deeply understand the specific roles and mech-
anisms of this pathway in metabolic disorders. 

2. cGAS-STING pathway 

2.1. Structure and localisation of the cGAS molecule 

In 2013, a research team led by Zhijian “James” Chen at the University of Texas Southwestern Medical Center utilized biochemical 
fractionation and mass spectrometry analysis techniques to discover a novel cytoplasmic DNA sensor, cGAS, capable of recognizing 
double-stranded DNA (dsDNA) [6]. cGAS is part of the nucleotidyltransferase (NTase) family and is encoded by the MB21D1 gene. The 
cGAS species originated in humans and its structure consists of a single NTase domain and two major DNA-binding domains, this 
structure is composed of a flexible N-terminal domain (amino acids 1–160) and a structured C-terminal region of the NTase and Mab21 
domains (amino acids 161–522) [6]. The C-terminal catalytic domain of cGAS contains a zinc finger motif, which is a crucial site for 
recognition of cytoplasmic DNA. Inhibiting this structure prevents cGAS from recognizing DNA. Both full-length cGAS and its catalytic 
domain can catalyse the synthesis of cGAMP in response to stimulation by dsDNA [14]. In the absence of dsDNA, cGAS is monomeric 
and has no catalytic activity. Upon binding to dsDNA, a conformational alteration in the catalytic centre of cGAS is induced, thus 
promoting the crosslinking of two cGAS molecules into a 2:2 dimer or higher-order complex, thereby activating cGAS. This active 
cGAS-DNA complex limits the structural flexibility of cGAS and stabilises the enzyme’s enzymatically active conformation [15]. Xin Li 
and colleagues discovered that dsDNA with a length of 12 base pairs (bp) cannot effectively activate cGAS. However, dsDNA oligo-
nucleotides with a length of 20 bp, equivalent to that of salmon sperm DNA, exhibit activity. When the length exceeds 45 bp, it can 
induce even stronger enzymatic activity [14]. Additionally, at low DNA concentrations, cGAS can only bind to longer dsDNA se-
quences. dsDNA shorter than 20 bp can induce cGAS catalytic activity in vitro only when the cGAS concentration is very high [16]. It 
seems that the size and concentration of dsDNA, not its sequence specificity, are the deciding factors of cGAS catalytic activity. 
Interestingly, the length of dsDNA that binds and activates cGAS also varies among different species [15]. 

Currently, there are differing perspectives regarding the localisation of cGAS in the nucleus, cytoplasm, and plasma membrane. In 
the initial model, the research team of Zhijian “James” Chen [6] prepared cytoplasmic and nuclear extracts of THP-1 cells. Immu-
noblotting and confocal immunofluorescence microscopy revealed detectable levels of cGAS in the cytoplasmic fraction, suggesting 
that cGAS was distributed within the cytoplasm. However, more recent studies have suggested a more complex localisation of cGAS. It 
is found not only in the cytoplasm but also has diverse cellular distributions, including in the cell membrane and nucleus. Barnett et al. 
[17] used differential ultracentrifugation to analyse the distribution of cGAS in subcellular fractions of THP-1 monocytes. They found 
that a substantial amount of endogenous cGAS was associated with membrane components. This led them to propose that cGAS is not 
solely a cytoplasmic protein but is localised to the plasma membrane through the action of its N-terminal phosphoinositide domain. It 
is considered a peripheral membrane protein primarily present on the plasma membranes of human and murine macrophages. Gentili 
et al. [18] tracked the localisation of cGAS throughout the cell cycle in stable GFP-cGAS-expressing HeLa cells. They also transfected 
defective cGAS into cycling 293FT cells, which led to a mixture of cells with varying localisations: primarily cytoplasmic, primarily 
nuclear, or mixed. The localisation of the N-terminal domain of cGAS may have been the cause of its varied activities, potentially 
reducing the risk of self-inflammation and autoimmunity. To determine the resting localisation of endogenous cGAS before activation, 
Volkman et al. [19] employed confocal microscopy and biochemical fractionation. They found that in all cells tested, the majority of 
endogenous cGAS was localised within the nucleus prior to its activation, regardless of whether the cells were in a rapidly dividing or 
postmitotic state. Therefore, to gain a deeper understanding of the cellular distribution of cGAS, studies using quantitative cell 
localisation are necessary. 

2.2. The structure and localisation of STING 

An evolutionarily conserved endoplasmic reticulum transmembrane protein, STING (also known as MITA, ERIS, MPYS, or 
TMEM173), is encoded by the TMEM173 gene and is composed of 379 amino acids [20]. Primarily located on the endoplasmic re-
ticulum membrane, it is partially localised to the Golgi apparatus and mitochondrial membranes. It possesses multiple functional 
domains. Human STING (h-STING) is composed of a cytoplasmic C-terminal domain (CTD) and an N-terminal transmembrane domain 
(TM), which form a complete domain-swapped dimer [21]. The N-terminal domain is located outside the membrane and consists of 
four transmembrane domains that anchor STING to the endoplasmic reticulum membrane or other membrane structures. The cyto-
plasmic C-terminus of STING comprises 250 amino acids, forming a globular C-terminal domain that is crucial for its function. It 
mainly consists of a ligand-binding domain (LBD) and a C-terminal tail (CTT) [21,22]. The CTT of STING is responsible for recruiting 
interferon regulatory factors (IRFs) and TANK-binding kinase 1 (TBK1), leading to the activation of interferon regulatory factor 3 
(IRF3) [23]. 

2.3. Signal transduction and regulation of the cGAS-STING pathway 

Under physiological circumstances, cGAS is inactive. In the face of pathogenic invasion or cellular harm, micronuclei can be formed 
due to DNA damage and chromosome misalignment, which leads to the assembly of nuclear envelopes that are vulnerable to rupturing 
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and cGAS enrichment. cGAS is recruited and colocalises with DNA damage markers such as phosphorylated histones [6,24,25]. Upon 
activation, it adopts a Y-shaped structure and can form internal double helices and external extensions [26]. 

In 2013, Chen Zhijian and Andrea Ablasser, together with their research team, described cGAMP, the first cyclic dinucleotide to be 
discovered in multicellular organisms, thus elucidating the DNA-cGAS-cGAMP-STING signalling axis [6,27]. The synthesis of cGAMP 
involves two distinct chemical reactions occurring at the same catalytic site. Initially, cGAS catalyzes the formation of a 2′-5′ bond, 
followed by cyclisation to form a 3′-5′ bond, resulting in an isomer known as “2′3′-cGAMP” [28]. The synthesised cGAMP needs to be 
transported from the cytoplasm, where cGAS is located, to the endoplasmic reticulum membrane, where the STING protein functions 
as a secondary messenger [29]. However, as an anionic hydrophilic molecule, cGAMP does not readily traverse the lipid bilayer. 
Therefore, the group investigated how cGAMP achieves transmembrane transport. Andrea Ablasser and colleagues discovered that 
cGAMP is transferred from secreting cells to neighbouring cells through intercellular gap junctions [30]. Additionally, research has 
shown that anionic channel proteins on the cell membrane, such as SLC19A1 [31] and LRRC8 [32], can serve as transmembrane 
transport systems for cGAMP. Recently, Xubiao Wei and his team identified a human host defence peptide, LL-37, to be a transporter 
for cGAMP. With the assistance of the free peptide LL-37, cGAMP can be efficiently delivered to target cells, leading to strong activation 
of the STING pathway [33]. 

In the body, STING exists in a stable homodimeric form on the endoplasmic reticulum, maintaining a self-restrained inactive state. 
During pathogenic invasion or cellular damage, cGAS can recognize aberrant DNA and become activated, catalysing the production of 
cGAMP, which serves as a secondary signalling molecule [14,21]. The binding of STING to cGAMP leads to a conformational trans-
formation, disrupting the connection between STING and STIM1 and augmenting the connection between STING and SEC24C, a COPII 
vesicle coat complex component. This triggers the relocation of STING from the endoplasmic reticulum to the ER-Golgi intermediate 
compartment, a critical regulatory system for STING. Additionally, binding to cGAMP triggers the release of the C-terminal tail CTT of 
STING and the aggregation of STING dimers [23]. This translocation process also causes the palmitoylation of cysteine residues at 
amino acids 88 and 91 of the N-terminal domain of STING in the Golgi apparatus, thus allowing TBK1 to be activated. TBK1 phos-
phorylates STING on serine and threonine residues, and phosphorylated STING exhibits increased affinity for IRFs, thereby recruiting 
IRF3 for TBK1-dependent phosphorylation and activation [34]. Activated IRF3 dimers translocate to the cell nucleus, where they 

Fig. 1. The cGAS-STING Signaling Pathway. When there is invasion by pathogens (including bacteria, viruses) or cellular damage (including injured 
cells, mtDNA), DNA fragments accumulate in the cytoplasm. The cyclic GMP-AMP synthase (cGAS) recognizes cytoplasmic long DNA fragments and 
catalyzes the synthesis of 2′3′-cyclic GMP-AMP (cGAMP). cGAMP binds to the dimeric form of Stimulator of Interferon Genes (STING) located on the 
endoplasmic reticulum (ER) membrane, triggering the oligomerization of STING. This leads to the incorporation of STING into the Coat Protein 
Complex II (COPII) vesicles, initiating the translocation of STING from the ER to the ER-Golgi intermediate compartment and Golgi apparatus. 
STING activates TBK1, which in turn phosphorylates IRF3. Phosphorylated IRF3 then activates the expression of type I interferons (IFNs) in the cell 
nucleus. Activation of STING also leads to the activation of NF-κB and the formation of autophagosomes through non-classical mechanisms. NF-κB 
activation promotes the expression of pro-inflammatory cytokines, and eventually, STING undergoes degradation in autophagosomes and lyso-
somes. Created with BioRender.com. 
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induce the expression of type I interferons (IFNs) and various immune regulatory factors [35,36]. In addition to phosphorylation, 
multiple studies have suggested that the ubiquitination of STING also participates in regulating downstream activity. TRIM56, a 
ubiquitin ligase, binds to STING, thereby causing its ubiquitination. This promotes STING dimerisation and interaction with TBK1, 
thereby activating downstream pathways and subsequently inducing the production and secretion of IFNs and various inflammatory 
factors [37]. Additionally, the activation of STING can also lead to the activation of NF-κB through non-classical mechanisms, pro-
moting the expression of pro-inflammatory cytokines [37]. However, excessive cGAS-STING pathway activity can amplify the in-
flammatory response. Therefore, this pathway is regulated by various negative feedback mechanisms, which might be related to 
cellular autophagy. Dong Liu and colleagues reported that STING possesses typical LC3-interacting regions (LIRs) and mediates 
autophagy and STING degradation through direct interaction with LC3 [38]. Upon ULK1 activation, STING is phosphorylated and 
targeted for autophagic degradation, subsequently limiting downstream type I interferon responses [39] (Fig. 1). 

2.4. The cGAS-STING pathway participates in the pathophysiological processes of metabolism 

Mitochondria are the centers of energy metabolism in the body, participating in numerous cellular signaling, cellular matrix 
metabolism, and apoptosis processes [40]. The development of many metabolism-related diseases, such as cellular aging and obesity, 
is closely related to mitochondrial dysfunction [41,42]. Juli Bai and colleagues found that mitochondrial stress-induced release of 
mtDNA into the cytoplasm can activate the cGAS-STING pathway, leading to an increase in chronic sterile inflammation in adipose 
tissue [43]. In stark contrast to nuclear genomic DNA, mtDNA lacks protective histones, making it highly susceptible to damage and 
disruption of its integrity. Normally, mtDNA resides within the mitochondrial matrix. However, during cellular stress or mitochondrial 
damage, mtDNA can be released into the cytoplasm or circulation. This release of mtDNA leads to its interaction with the DNA sensor 
cGAS, subsequently activating the STING-IRF3 pathway and enhancing the type I interferon (IFN) response [44–46]. So, how is mtDNA 
translocated from within the mitochondrial membrane to the cytoplasm? Current research, both domestic and international, offers 
different views. Studies have found that mitochondrial outer membrane permeabilization (MOMP) may lead to the release of mtDNA 
[47]. McArthur Kate and colleagues used live-cell lattice light-sheet microscopy to observe the mitochondrial network in mouse 
embryonic fibroblasts. They found that the activation and oligomerization of BAX and BAK proteins led to the formation of larger 
BAK/BAX pores in the mitochondrial outer membrane, facilitating the entry of mitochondrial matrix contents, including mtDNA, into 
the cytoplasm [48]. Additionally, mtDNA may also be released into the cytoplasm through the mitochondrial permeability transition 
pore (mPTP) or the voltage-dependent anion channel (VDAC) pore in the mitochondrial outer membrane [49,50]. Overall, these 
studies indicate that mtDNA stress-mediated cGAS-STING signal transduction may contribute to the progression of various metabolic 
disorders (Fig. 2). 

3. cGAS-STING is involved in the pathophysiological processes of metabolic disorders and aging 

As our foundational knowledge of the cGAS-STING pathway continues to expand, many researchers have focused in recent years on 
exploring its specific role in the progression of metabolic diseases. The following section examines examples of cGAS–STING pathway 
overactivation that leads to an overabundance of inflammation in metabolic diseases (Fig. 3). 

Fig. 2. The mechanism of mitochondrial DNA activation of cGAS. Within the mitochondria, transcription factor A mitochondrial (TFAM) plays a 
crucial role in maintaining the stability of mitochondrial DNA (mtDNA). The absence of TFAM can result in mitochondrial genomic instability and 
mitochondrial stress, leading to the escape of mtDNA into the cytoplasm. Additionally, exogenous stress signals may also lead to mitochondrial 
dysfunction. Mitochondrial DNA can be released through both mitochondrial inner membrane herniation, followed by release through BAX/BAK 
pores, and through the voltage-dependent anion channel (VDAC) pores in the mitochondrial outer membrane. Mitochondrial outer membrane 
permeabilization (MOMP) could also lead to the release of mitochondrial DNA. Furthermore, the mitochondrial permeability transition pore (MPTP) 
may serve as another pathway for translocating across the mitochondrial inner membrane. Created with BioRender.com. 
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3.1. The cGAS-STING pathway in obesity 

Obesity is a chronic metabolic disorder by a plethora of pathological and physiological traits, such as excessive fat content, 
persistent inflammation, and insulin resistance. This condition is linked to a variety of metabolic illnesses, such as type 2 diabetes, 
NAFLD, cardiovascular diseases, and a variety of cancers. Studies have indicated that chronic inflammation of physiologically sterile 
adipose tissue is a major contributor to the emergence of obesity-induced insulin resistance and metabolic disorders [51,52]. 
Nevertheless, the exact mechanisms by which obesity triggers inflammation remain largely unknown. The accumulation of adipose 
tissue in an overweight state combined with an inflammatory reaction can lead to an increase in oxidative stress, which leads to 
mitochondrial membrane and DNA damage, causing mitochondrial harm. This can then cause mtDNA to be released into the cyto-
plasm, subsequently activating the cGAS-STING pathway and intensifying the chronic sterile inflammatory response [53]. Obesity is 
associated with the release of mtDNA into the cytoplasm, which is induced by FFAs. In mice fed a high-fat diet, the overall loss of 
expression of downstream targets of cGAS-STING, such as TBK1 or IRF3, is associated with improvements in insulin sensitivity and 
reduced inflammation in adipose tissue [54]. 

Studies have found that in high-fat diet-fed mice, the expression of TBK1 increased in adipocytes [55]. Elif et al. conducted a study 
on 42 patients with type 2 diabetes and NAFLD and reported that a subgroup treated with the TBK1 inhibitor amlexanox exhibited 
improvements in insulin sensitivity and hepatic steatosis [56]. In conclusion, the above studies indicate that the cGAS-STING pathway 
is closely related to obesity-induced aseptic inflammation, insulin resistance, and other metabolic disorders. However, the specific 
mechanisms of its action remain to be determined. 

3.2. The cGAS-STING pathway in NAFLD 

The prevalence of NAFLD, is increasing, and hepatic steatosis is its defining characteristic. This chronic liver disease is now the most 
widespread liver disease. Inflammation and fibrosis are typical symptoms of nonalcoholic steatohepatitis (NASH), yet their role in liver 
cell injury is still uncertain. The cGAS-STING pathway has been highlighted as a key factor in the progression of NASH, which can 
result in liver fibrosis, cirrhosis, and eventually liver failure [57]. The cGAS-STING pathway is activated by the release of mtDNA after 
liver cell injury, resulting in the expression of various inflammatory cytokines and chemokines [11]. Moreover, STING knockout 
alleviated HFD-induced insulin resistance and weight gain while also reducing serum cholesterol, triglyceride, and LDL levels. A 
previous study revealed that chronic exposure to 5,6-dimethylxanthenone-4-acetic acid (a STING agonist) induced hepatic steatosis 

Fig. 3. The cGAS-STING pathway mediates the pathophysiological process of metabolic diseases. In diseases such as NAFLD, osteoporosis, and 
obesity, cGAS senses mtDNA and subsequently activates the cGAS-STING pathway. This activation leads to the activation of TBK1 and phos-
phorylation of IRF3, inducing the transcriptional expression of pro-inflammatory cytokines, thereby triggering corresponding metabolic dysfunc-
tions, including lipid deposition, promotion of osteoclast activity, inhibition of bone formation, or insulin resistance. Additionally, TBK1 inhibits 
inflammation by phosphorylating and inducing the degradation of NF-κB inducing kinase (NIK), thereby attenuating the inflammatory response. 
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and inflammation in mice but not in STING-deficient mice [12]. Qiao et al. reported that mice fed a high-fat diet had increased liver 
expression of STING and IRF3. Knockout of either STING or IRF3 significantly reduced liver inflammation and cell apoptosis, indi-
cating that the STING-IRF3 pathway promotes liver cell injury and dysfunction by inducing inflammation and apoptosis and by 
interfering with glucose and lipid metabolism [58]. In a recent study, Ma et al. reported that liver-specific related protein 1 (DRP1) 
knockout (L-DRP1 KO) in mice led to reduced DRP1 expression levels and increased accumulation of giant mitochondria in the liver. 
RNA-seq and qPCR analysis revealed that the expression of genes related to the cGAS-STING-interferon pathway was increased in 
L-DRP1-KO mice, regardless of alcohol consumption. Moreover, alcohol-fed L-DRP1-KO mice exhibit increased cytoplasmic mtDNA 
levels, impaired mitochondrial function, increased activation of the cGAS-STING pathway, and subsequent liver injury [59]. The role 
of the cGAS-STING pathway in fatty liver disease (including NAFLD and ALD) has not been fully elucidated, but experimental results 
suggest that the cGAS-STING pathway could be a therapeutic target for treating fatty liver disease. 

3.3. The cGAS-STING pathway in bone metabolism physiology and pathology 

The skeleton provides structural support and protection, plays a role in calcium metabolism and endocrine control, and stimulates 
the haematopoietic system in the bone marrow. The perpetual process of bone remodelling largely relies on osteoclasts that absorb old 
bone and osteoblasts that build the new matrix and refine it. In adults, bone remodelling typically remains in a state of balance, known 
as bone homeostasis [60]. Disruption of these factors can lead to a decrease in bone quality and a decrease in bone mass, leading to 
osteoporosis. This common pathological mechanism is observed in various metabolic bone disorders. The receptor activator of nuclear 
factor-κB (RANK)-RANKL-OPG pathway, which plays a critical role in bone resorption, regulates osteoblast differentiation through a 
variety of pathways and transcription factors, in either a beneficial or detrimental way [61]. In recent years, the role of STING in bone 
metabolic disorders has become a major focus of attention. Osteoporosis is a bone metabolic disease characterised by aseptic in-
flammatory processes. Elevated levels of NF-κB, which promotes osteoclast-mediated bone resorption and suppresses 
osteoblast-induced bone formation, can be observed in osteoporosis models [62]. STING acts as an upstream regulator of NF-κB, 
stimulating its activation and transcription, thus mediating proinflammatory effects and playing a role in the pathogenesis of osteo-
porosis. Notably, IFN-β is also a downstream target of STING and can negatively regulate osteoclast activation through a feedback 
mechanism [63]. The above research findings indicate that the cGAS-STING pathway plays a significant role in the pathogenesis of 
osteoporosis. Therefore, targeting the cGAS-STING pathway could have potential in the treatment of osteoporosis. 

3.4. The cGAS-STING pathway in neurodegenerative diseases 

Aging is characterized by systemic chronic low-grade inflammation, accompanied by cellular senescence and immunosenescence. 
When cells become senescent, they produce cytokines, chemokines, growth factors, proteases, and angiogenic factors, which are 
characteristic of the senescence-associated secretory phenotype (SASP), along with the production of inflammatory responses, further 
promoting cellular senescence [64]. Immune cells, as key regulators of senescent cells, have been repeatedly shown to be related to 
cognitive processes and neurodegenerative diseases, most notably Alzheimer’s disease (AD) and Parkinson’s disease (PD) [65]. AD is 
an age-dependent, fatal neurodegenerative disorder, with mitochondrial dysfunction being one of the key pathophysiological 
mechanisms involved. Toxic protein aggregates such as amyloid-beta or hyperphosphorylated tau induce mtDNA oxidative damage 
and DNA double-strand breaks, with damaged DNA fragments released into the cytoplasm acting as ligands for cGAS, further acti-
vating STING and promoting neuroinflammatory responses [66]. Xie et al. found that 6-month-old 5xFAD mice have much higher 
levels of cytoplasmic mtDNA (cmtDNA) in their brain cells compared to wild-type (WT) mice, and that 20-month-old WT mice have 
higher levels of cmtDNA in their brain cells compared to 3-month-old mice. Further studies have shown significant increases in the 
levels of STING, TBK1, p-65, and phosphorylated IRF3 in the prefrontal cortex of humans with AD and in the cortex of aged mice [67]. 
PD is a neurodegenerative movement disorder characterized by the loss of substantia nigra neurons, leading to striatal dopamine 
deficiency [68]. Alex et al. found that STING protein levels in endothelial cells and neurons of PD patients were elevated compared to 
non-neurodegenerative control tissues, and they also observed the widespread presence of STING-positive neuronal cell bodies in the 
SnPC area of PD brain tissue [69]. 

In summary, these findings indicate that cGAS-STING signaling and neuroinflammatory responses are closely related to aging and 
neurodegenerative diseases, with microglia playing a crucial role. 

4. Inhibitors of the cGAS-STING pathway 

4.1. cGAS inhibitors 

Continuous activation of cGAS, an intracellular DNA sensor, can potentially lead to various chronic metabolic disorders. Inhibiting 
its activation, as a key initiator in this pathway, could be a therapeutic approach for such diseases. Interfering with DNA binding to 
cGAS, disrupting ATP and GTP-cGAS interactions, and altering cGAS activity through posttranslational changes to its catalytic activity 
are all ways to impede cGAS activation. Previously, it was discovered that antimalarial drugs (AMDs), such as hydroxychloroquine and 
quinacrine, have inhibitory effects on cGAMP synthesis. Their mechanism of action involves binding to cytoplasmic DNA, thereby 
preventing the binding of DNA to cGAS [70]. Through high-throughput screening analysis, compounds such as RU.365 and its ben-
zothiazole analogue RU.332 were found to exhibit inhibitory effects on mouse cGAS [71]. These compounds occupy the catalytic site of 
cGAS, thereby reducing the affinity of cGAS for ATP and GTP and consequently inhibiting the production of 2′,3′-cGAMP. The 
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chlorinated compound RU.521 can reduce the expression of IFN-β1 in mouse macrophages [71,72]. Posttranslational modifications are 
highly significant in regulating protein functionality. Aspirin, an acetyl donor, can increase cGAS acetylation and inhibit cGAS activity 
[73]. Hall and colleagues described the development of a high-affinity (KD = 200 nM) small molecule inhibitor, PF-06928215, and 
demonstrated its drug-like properties. This binding may impact the interaction between ATP and cGAS, as well as downstream cGAMP 
synthesis [74]. 

Research into the efficacy and safety of these inhibitors is ongoing, and further exploration is essential. 

4.2. STING inhibitors 

As a crucial signaling molecule bridging the cGAS-STING pathway, STING has been extensively studied for drug development in 
recent years. Research on STING inhibitors has focused primarily on the palmitoylation of STING. Mukai et al. [34] found that pal-
mitoylation sites are located at cysteine 88/91 of the STING protein following STING activation. The palmitoylation of STING pro-
motes its dimerisation and recruitment of downstream TBK1. Based on this discovery, researchers have developed compounds that 
target the cysteine 88 and 91 residues of the STING protein to inhibit protein palmitoylation. Additionally, compounds targeting other 
sites on the STING protein have been found to exhibit inhibitory effects. The cyclic peptide astin C, which is isolated from paclitaxel, 
prevents the recruitment of IRF3 by competitively binding to the activation pocket at the C-terminus of the STING protein, thereby 
inhibiting the innate immune response triggered by the cGAS-STING signalling pathway [75]. Moreover, Hansen et al. reported that 
endogenously formed nitro-fatty acids can covalently modify STING through nitroalkylation and subsequently suppress the release of 
type I IFN in human and mouse cells [76]. Recent research has shown that remdesivir can regulate hepatic cell lipid disorders and 
inflammation by inhibiting the expression of the STING gene, thereby alleviating high-fat diet-induced NAFLD [77]. 

Blocking cGAS-STING pathway activity may reduce the immune system’s ability to detect tumour cells, thereby increasing the risk 
of tumour growth. It can also weaken antiviral and antibacterial responses, increasing the susceptibility of the body to severe infections 
[78–80]. The potential for these risks to impede the clinical utilisation of such drugs necessitates that they be accounted for during drug 
development. To validate these discoveries, preclinical studies and early clinical trials must be conducted. Recent advances in the 
development of STING inhibitors are summarized in Table 1. 

Currently, agonists for the STING pathway are also being developed, primarily for the treatment of cancer, and the development of 
STING pathway agonists as cancer therapies predates the discovery of the STING pathway itself. Initial studies found that flavone 
acetic acid (FAA), as a vascular disrupting agent, showed potential as a cancer therapeutic agent [81]. Based on this, further optimized 
5,6-dimethylxanthenone-4-acetic acid (DMXAA) exhibited potent anti-tumor activity in mouse tumor models [82], which is now 
known to involve STING activation. As research into the mechanism of the STING pathway deepened, the focus of STING-related 
agonist research shifted to STING’s natural ligand cyclic dinucleotide (CDN) [83], and researchers are currently exploring synthetic 
STING small molecules. Similar to the development of STING inhibitors, research into the efficacy and safety of STING agonists is still 
ongoing, with Garland et al. providing a detailed review of the use of STING agonists in cancer therapy [84]. 

5. Discussion 

Despite the discovery of the cGAS-STING signalling pathway being only in 2013, recent research has led to significant progress in 
understanding the mode of action of the DNA sensor cGAS, its crucial association with STING, and the role of the cGAS-STING sig-
nalling pathway in host defence and immunity. A recent study indicated that activation of the cGAS-STING pathway is closely 
associated with inflammation and immune regulation in metabolic disorders. Activation of the cGAS-STING pathway has been found to 
be a major factor in metabolic disorders, including obesity, insulin resistance, and fatty liver disease. Therefore, cGAS-STING plays a 
unique role in the development of metabolic diseases. Finding safe and effective methods to treat metabolic diseases remains a 

Table 1 
Inhibitors of STING protein.  

STING inhibitors Representative Compounds Functions note References 

Nitrofurans C-178 Covalently binding with STING’s Cys91 to 
block STING activation-induced 
palmitoylation. 

Mouse-specific 
STING inhibitor. 

[85] 

Nitrofurans C-176 Reducing the secretion of Type I interferons. Mouse-specific 
STING inhibitor. 

[86] 

Indole derivatives H-151 Binding to the Cys91 of STING  [87] 
Oxo-tetrahydro-isoquinoline 

carboxylic acids 
A series of tetrahydroisoquinolone 
analogs. 

Competitive antagonist of cGAMP.  [88] 

Multisubstituted benzamides or 
benzenesulfonamides. 

A series of benzamides substituted 
with sulfonamide groups. 

Inhibiting STING signaling transduction.  [89] 

Cyclopeptides astin C Inhibiting intracellular DNA-induced Ifnb 
expression.  

[90] 

Dimeric benzimidazoles  Reducing the secretion of IFN.  [91] 
Heterobicyclic derivatives  Inhibiting STING activity.  [92] 
STING degraders Proteolytic targeting chimera 

(PROTAC). 
Recruiting E3 ubiquitin ligases to induce 
target protein degradation.  

[93]  
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challenge. Notably, in a recent study on cancer metabolism in tumours, Liting Zhang and colleagues reported that STING limits aerobic 
glycolysis in tumours by inhibiting the activity of hexokinase II (HK2), thus enhancing antitumour immunity [94]. This innovative 
study suggested that STING acts as a metabolic checkpoint in cancer cells, highlighting its role in tumour biology. The development of 
therapeutic strategies and drugs targeting the cGAS-STING pathway is a significant challenge. Inhibiting the cGAS-STING pathway 
may have potential for treating metabolic disorders. Conversely, developing approaches targeting STING itself or promoting STING 
degradation is important for enhancing antitumour immunity and combating microbial pathogens. Hence, it is particularly important 
to identify drugs that allow for the selective modulation of cGAS-STING activity in various disease contexts. An in-depth understanding 
of the regulatory mechanisms of the cGAS-STING pathway is necessary to discover targetable effectors and to develop drugs that are 
both effective and safe. Targeting cGAS or STING has already been applied in antiviral immunotherapy and holds great promise as a 
novel therapeutic option in the field of metabolic disease treatment. In conclusion, these key discoveries and results offer significant 
insight into the role of the dsDNA pathway in metabolic disorders. Nevertheless, more research is required to probe the fundamental 
regulatory processes, interactions with other pathways, and potential therapeutic goals and tactics. 
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