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Missing data occurs in all research, especially in medical studies. Missing data is the situation in which a part of research data
has not been reported. This will result in the incompatibility of the sample and the population and misguided conclusions.
Missing data is usual in research, and the extent of it will determine how misinterpreted the conclusions will be. All methods of
parameter estimation and prediction models are based on the assumption that the data are complete. Extensive missing data
will result in false predictions and increased bias. In the present study, a novel method has been proposed for the imputation of
medical missing data. The method determines what algorithm is suitable for the imputation of missing data. To do so, a
multiobjective particle swarm optimization algorithm was used. The algorithm imputes the missing data in a way that if a
prediction model is applied to the data, both specificity and sensitivity will be optimized. Our proposed model was evaluated
using real data of gastric cancer and acute T-cell leukemia (ATLL). First, the model was then used to impute the missing data.
Then, the missing data were imputed using deletion, average, expectation maximization, MICE, and missForest methods.
Finally, the prediction model was applied for both imputed datasets. The accuracy of the prediction model for the first and the
second imputation methods was 0.5 and 16.5, respectively. The novel imputation method was more accurate than similar

algorithms like expectation maximization and MICE.

1. Introduction

Disease treatment is closely linked to medical observation
and data interpretation. Medical data collection and inter-
pretation are the foundation of medical and health care since
the data greatly affect decision-making. In fact, all health
care measures are linked to medical data collection, inter-
pretation, and application [1].

Missing data are the values that have not been recorded for
a variable and are a challenge in preprocessing of data in
medical sciences. Missing medical data occurs for different
reasons and results in the poor quality of extracted information
by data mining [2]. Therefore, imputation and deletion of
missing data are necessary approaches for preprocessing and
data cleaning to improve the data quality [3-5]. Data deletion

will eliminate all the information of the records and results in a
low quality of interpretation. However, data imputation with
suitable values results in high-quality interpretation and
knowledge (3, 6, 7].

In recent years, several methods have been proposed to
solve this problem. However, these methods will reduce the
quality of medical data since they introduce bias. The majority
of the models often improve only accuracy, specificity, or
sensitivity and cannot improve all of them simultaneously.

2. Background

One of the problems during data collection is missing or not
reporting some data for dependent and independent vari-
ables. Several mechanisms of missing data exist: (i) missing
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completely at random (MCAR), (ii) missing at random
(MAR), (iii) missing not at random (MNAR), and (iv)
nonignorable missingness (NIM). Knowing these mecha-
nisms plays an important role in the selection of a suitable
analysis and interpretation method [8, 9].

Little and Robin described missing completely at ran-
dom (MCAR) as “if the probability of a solution is not linked
to neither the observed value nor the missing value that
could be collected, the missing value is MCAR” (7). MCAR is
defined as follows:

p(Rlymissing’ Yobserved’ u) =p (R|I/l) (1)

In other words, if the probability of missing Y is not
linked to the observed value of Y but linked to undetermined
parameters (u), these values are MCAR. In this case, the
missing values can be replaced with a random subsample of
complete data. For example, consider variables X and Y are
age and income, respectively, and there are missing values of
income. If the incomes are recorded/missed similarly for all
individuals regardless of their age or income, the missing
values are MCAR [3, 10].

Missing at random (MAR) assumption is stated as
follows:

p(RlYmissing’ Yobserved> Ll) =p (RlYobserved’ Ll), (2)

which means that the conditional probability of missing Y,
given both Yiging and Ygpeerveds €quals the conditional
probability of missed Y values given observed Y values. In
other words, the probability of missing an observation might
be related to observed values but not to the missing value
itself. For example, consider variables X and Y are age and
income, respectively, and there are missing values of income.
If the missed values are observed in a specific age group, the
missed values type is MAR. The limitations of MAR are less
than that of MCAR. Thus, MCAR is a special MAR [3, 10].

Missing not at random (MNAR) is the type of missed
data when the variable itself is the cause of missing data. In
the age and income example above, assume that there are
missed values only of income. If the missed values are
observed in a specific income range, the missed values type is
MNAR [3, 11].

Some types of missing data adversely affect the analysis
more than other types. Therefore, when encountering
missing values, the most important measure is to determine
the type of missing data [12, 13].

In this study, a model is proposed based on multiobjective
particle swarm optimization and data mining algorithms. The
model can improve the specificity, sensitivity, and accuracy of
medical data and can be used for both continuous and discrete
data.

3. Materials and Methods

There are two major methods to impute missing data. (i) The
missing data are exactly calculated. This method is not
applicable in medical sciences since little imputation error
will adversely affect all calculations, and physicians cannot
rely on the analyses. (ii) The missing data are imputed based
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on another parameter such as the population “mean,” which
is not related to the missing value itself. This method is
applicable in medical sciences [14].

The second method has been used in our proposed
model to impute missing data. The model has five steps
(Figure 1).

Step 1. The data are sorted ascending. Then, a prediction
model is defined based on the number of variables that
include missing data as follows:

x; = Predict, (x,),

x, = Predict, (x,),

(3)

(
x5 = Predict; (x;, x;),
(

x4 = Predict, (x;, x5, x3),

x, = Predict, (x, %5, . . ., X,_1)-

The missing data of variable x; are imputed based on the
Predict; model and x, variable. Then, the missing data of
variable x, are imputed based on the Predict, model and x;
variable. Thus, all missing values of both x; and x, variables
are imputed. Afterward, the missing data of variable x; are
imputed based on the Predict; model and x; and x, variables.
This process will continue until missing data of the last
variable are imputed. To do so, we used a learning system
based on a multiobjective particle swarm optimization al-
gorithm to find the best prediction method for imputation.
For example, k-nearest neighbors (KNN) prediction model
might perform better than other models to predict missing
x, data using x;, and the support vector machine (SVM)
prediction model might perform better than other methods
to predict missing x; data using x; and x,. Optimization
algorithms are used to determine which model performs
better [15].

Step 2. The data are divided into two groups: (i) records
without missing data or observational data and (ii) records
with missing data. The minimum number of observational
data should be at least 50% of all data. If the number of these
records is less than 50%, the records with missing data are
imputed using multivariate imputation by chained equa-
tions (MICE) to obtain at least 50% data. Then, the algo-
rithms are processed for analysis.

Step 3. The type of missing data, that is, MCAR, MAR, and
MNAR, should be determined. To do so, first using the Little
test [16], missing data pattern is determined to be MCAR or
not. Second, if the pattern is not MCAR and there is in-
formation about the data that determines the type of
missing, this type will be the basis of analysis. Otherwise, the
pattern is considered MNAR. Finally, the missing data are
generated based on the observational data. For example, 30%
of variable 1 is missing. Thus, 30% of the variable 1 in the
observational data are eliminated based on the type of
missing data.
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f « Sorting data based on the percent of missing data (ascending) J
4 « Dividing the data into missing and non-missing J
3 « Simulation of missing data like the whole data in variable without missing data ]
1 o Determining the suitable imputation algorithm using multi objective swarm particle algorithm]
5 « Imputation od missing data using the algorithms of step 4 J

FIGURe 1: The steps of the proposed model.

Figure 2 shows the process of dividing the data into
observational, missing, and simulated.

Step 4. The best algorithm should be determined for each
prediction (equation (3)) using a multiobjective particle
swarm optimization algorithm. After that, the data are
categorized as (i) observational data without missing data,
(ii) observational data with missing data that are simulated,
and (iii) data containing real missing data.

Observational data that do not contain missing data are
used to determine the imputation model. Observational data
with simulated data are used to evaluate and optimize the
model. The algorithm imputes the missing data after opti-
mization. In our model, a prediction model is proposed for
any feature that has missing data so that the prediction
model can more accurately impute the missing data.

Prediction models are either discrete or continuous. The
former is used when the input variables are continuous and
discrete independent, and the dependent variable is discrete.
The latter is used when the input variables are continuous and
discrete independent, and the dependent variable is contin-
uous. Table 1 shows continuous and discrete algorithms that
have been used for our model. Note that combinatory al-
gorithms can be used to strengthen the model.

The best approach is to evaluate all possible data im-
putation methods and then determine the best imputation
algorithm for each feature.

4. Problem-Solving Using a Multiobjective
Particle Swarm Optimization Algorithm

In the proposed model, the multiobjective particle swarm
optimization algorithm [17] finds the best imputation al-
gorithm for the missing data of each feature. Depending on
the feature, the continuous/discrete algorithm can be used.

4.1. Particle Structure. Each particle indicated the algorithms
that are used in the proposed model. The abscissa of a
particle is the number of independent variables that contain
missing data, and the values of a particle are continuous
between 0 and 1. Since we need to choose an algorithm based
on the row number of algorithms in the algorithm table, we
face a discrete condition. Thus, the continuous interval [0, 1]
should be transformed to the discrete interval [1, n].
equation (4) shows this transformation. In fact, a

multiobjective particle swarm optimization algorithm is
transformed from continuous interval to discrete interval
using the “f” function (equation (5)). “n” is 18 and 9 for
continuous and discrete variables, respectively. The “f”
function gives an integer. For example, if the result of the
first index of the particle, whose variable is discrete, is 14
(based on equation (6)), a 9-NN algorithm should be used to
predict the first missing data-containing feature. Likewise, if
the result of the second index of the particle, whose variable
is continuous, is 6 (based on equation (5)), a 6-NN algorithm
should be used to predict the first missing data-containing
feature. Figure 3 shows the structure of the multiobjective
particle swarm optimization algorithm. The particle abscissa
is “n,” which is the number of features that contain missing
data, and “n” is a continuous parameter between 0 and 1.

0,1 -5 11,71, (4)
X; = [0) l]a
1, x;=0, (5)
fx) = { nx;, x;#0.

4.2. Generation of the First Population. First, 100 particles are
generated using uniform distribution as follows [18]; a
number between 0 and 1 is randomly assigned to each one:

particle = U (0, 1). (6)

4.3. Fitness Function. The fitness function of each particle
determines how suitable an imputation algorithm is for the
corresponding feature. First, the observational data are
classified, and the accuracy of the model is evaluated. Then,
missing data are intentionally created in the observational
data (Figure 1). Afterward, the created missing data are
imputed using the determined algorithms. The data are
again classified, and the sensitivity and accuracy of the model
are evaluated. Finally, the difference of sensitivity and
specificity criteria between the two model evaluation modes,
including the use of complete data and data with artificial
missing values, are calculated. This process is repeated 100
times, and the average of the differences is considered as the
fitness function. The lower this value, the more suitable the
particle. Figure 4 shows the structure of the fitness function.
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All data (N features and M=L+K records)
L records = without missing data
K records = with missing data

[ Determining the type of data missing for the N features ]

the feature contains MCAR missing data

[ Performing Little’s test, if the test result is positive, j

N, = the number of features with MCAR missing data
N, = the number of features without MCAR missing data

Does a

variable affects
the data missing
of another

N; : the number of features with MCAR missing data
N, : the number of features with MAR missing data
N; = N-N;-N, : other variables, containing MNAR missing data

variable?

N, : the number of features with MCAR missing data

Variables have no MAR missing data

N; = N-N; : other variables, containing MNAR missing data

Are more than
50% of the data
missed?

Records that contain few missing data are imputed using MICE

algorithm.

The number of these records should decrease the missing data to

less than 50%

v

( Observational data (N feature and K records) J

v

No ig
( Missing data (N features and L records) j
missing data is created for each feature in observational data.
The percent and type of missing data is similar to the actual
missing data of that feature
( Observational data without missing data j

( Observational data with simulated missing data J

FIGURE 2: The process of data classification and missing data simulation.

4.4. Velocity Prevention. One of the important aspects of
determining the accuracy of an optimization algorithm is to
“Explore” and “Exploit” features. “Explore” is the ability of
an algorithm to search for the optimized value. “Exploit” is

the ability to perform a focused search around a probable
area to find the best solution. Thus, an optimized solution is
created between these two opposing factors by updating the
velocity of PSO as follows [19, 20]:

vii (t+1) = v (8) + 7y () [y (8) = x5 (D] + cor0 (B [F; (1) = x5 (D]

vij(t+ 1) :{

Ymax,j>

ifv,»j(t+1)2v

Vi (E+ 1), i v (F+ 1) <oy s (7)

max, j>
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TaBLE 1: The continuous and discrete algorithms that were used in
the proposed model.

No. Algorithm name

Discrete algorithms

1 Support vector machines-linear

2 Support vector machines-quadratic
3 Support vector machines-polynomial
4 Support vector machines-RBF =5

5 Support vector machines-RBF =2

6 Support vector machines-RBF =1

7 Support vector machines-RBF =0.5
8 Support vector machines-RBF =0.2
9 Support vector machines-RBF =0.1
10 1-NN

11 3-NN

12 5-NN

13 7-NN

14 9-NN

15 Decision tree (C4.5)

16 Artificial neural network feed forward
17 Logistic regression

18 Naive Bayesian

Continuous algorithms
Support vector regression (SVR)
1-NN
3-NN
5-NN
7-NN
9-NN
Continuous decision tree (CART)
Artificial neural network feed forward
Multiple regression

O 0 NI O\ Ul v W N —

1 2 n
[0~1] | (0~1] | | [0~1]

Fitness Function

particle

T
Sensitivity | Specificity

FiGure 3: The structure of the proposed particle.

where v, ; is the maximum speed of the particles in the
number of tables and columns. This parameter is im-
portant since the search speed is limited by this pa-
rameter. If v, ; is a big number, the Explore capability
of the algorithm is increased. On the contrary, if vy, ; is
small, the Exploit capability is enhanced. If v ,, ; is too
small, the swarm might not be able to search the local
optima. In addition, the swarm might be entrapped in
local optima, and the algorithm cannot exit this point.
Large values of v,,,, ; increase the chance of losing op-
timal regions. The swarms might jump the optimized

solutions and search non-optimal regions. Thus, large

Vmax,j results in the distancing of the algorithm from
optimal regions [19].
Vmax,j Should be calculated to create a balance and is

done as follows:
(1) Fast or slow movement
(2) Explore and exploit capabilities

Vnax,j 18 considered as a fraction of each dimension as

follows:

Viax,j = 0(Xmax.j = Xmin,; ) (8)

At first, § equals 1; its value changes in each generation
based on the following equation. Note that, § in each
generation is 90% less than the previous generation.

8=0.9, i=ineration number. 9)

4.5. Termination. The algorithm termination depends on the
swarm diameter, where normalized diameter approaches 0. s
is the diameter of the primary swarm space, and R, is the
maximum diameter, calculated using the following equa-
tions [21]:

R

norm - diameter (S) (10)

m=1,...,n, (11)

4.6. Final Output. Since the algorithm is multitarget and its
output is a set of values, the particle with the highest ac-
curacy is selected. To do so, all final outputs of the algorithm
are calculated, and the highest accuracy one is selected. If
several outputs with identical accuracies are generated, one
is randomly selected.

Step 5. After the multiobjective particle swarm optimization
algorithm determines the imputation algorithm, each al-
gorithm is run according to the described steps until all
missing data are imputed.

5. Evaluation

The proposed algorithm was evaluated using data of gastric
cancer and adult T-cell leukemia/lymphoma (ATLL) pa-
tients. Both data sets include missing data in a way that
cannot be classified. Thus, the missing data should be
imputed.

5.1. Imputation of Gastric Cancer Data Based on the Proposed
Algorithm. Gastric cancer is one of the most prevalent and
life-threatening cancers. It is also more prevalent in males
than in females. Tens of thousands of individuals are affected
by the disease annually in Iran. The research was a survival
study, and 277 individuals, who were admitted to Jahad
Daneshgahi Research Center from 2008 to 2015, were in-
cluded. The data of 197 out of 277 admitted patients were
excluded since there was no survival data. Thus, the data set
contains data of 80 gastric cancer patients. There are 15
independent and 1 dependent variables. Table 2 shows the
type of the variables. There were missing data in 8 variables
from 5% to 88%, and the overall missing data was 29.5%
(Table 3).

Variables with more than 50% missing data were ex-
cluded. We imputed the missing data using our proposed
model as well as five other imputation algorithms including
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1 2 n Fitness function
. Fitness : Fitness Observed data
( Simulated missing data creation for training data ) ( Classification model execution
—»( Imput missing data by Algorithms selected with particle ) Evaluation of classification model
* using test
( Classification model execution )
( Evaluation of classification model using test data )
A\ 4
C= Calculation of the Sensitivity of imputed data A= Sensitivity calculation of all data
D= Calculation of the Specificity of imputed data B= Specificity calculation of all data
fitness function1= (A-C)
fitness function2= (B-D)
FIGURE 4: The proposed fitness function.
TaBLE 2: The characteristics of gastric cancer variables.
ID Variable name Variable Notes
type
1 Sex Nominal 61 males and 19 females
2 Birth year Interval Minimum = 1,305, maximum = 1,346
3 Education Ordinal (1) Illiterate, (2) underdiploma
4 Race Ordinal (1) Fars, (2) Kurd, (3) Turk
5 PMH Ordinal (1) Hypertension (HTN), (2) coronary artery disease (CAD), (3) diabetes mellitus (DM), (4)
DM +HTN, (5) DM+ HTN + CAD, (6) HTN + CAD
6 Age at diagnosis Interval Minimum =46, maximum = 87
7 FH of gastric cancer ~ Ordinal ~ Family history of gastric cancer: (1) first-degree relative (FDR), (2) second-degree relatives (SDR)
8 Age at d(x} g f family Interval Family’s age at diagnosis: minimum =45, maximum = 82
History of other GI cancer
9 Hx of other GI Ordinal (1) First-degree relative
cancer .
(2) Second-degree relatives
Types of other GI . . . . . .
10 cancer Ordinal (1) Small intestine, (2) liver, (3) esophagus, (4) large intestine
1 Hx of non-GI Ordinal (1) First-degree relatlye
cancer (2) Second-degree relatives
12 Treatment Ordinal (1) Surgery, (2) surgery + chemo + radio, (3) chemo
13 Cause of death Ordinal (1) cancer, (2) MI, (3) PTE
(1) Adenocarcinoma, (2) inflammatory tumour, (3) mucinous adenocarcinoma, (4)
14 Pathology Ordinal  neuroendocrine carcinoma, (5) signet ring cell carcinoma, (6) GIST tumour, (7) undifferentiated
carcinoma
15 Addiction Nominal 17 subjects: addicted, 63 subjects: non-addicted
16 Survival Nominal 33 and 67 subjects pass away after one and two years, respectively

deletion, average, EM, missFrost, and multivariate impu-
tation by chained equations (MICE). Genetic and logistic
regression algorithms were used to design the proposed
model [22, 23] using MATLAB software to predict the
survival time. Figure 5 shows the structure of the model. A
tenfold method was used to divide the data into training and

test groups in all six imputation methods. Both models were
performed 10,000 times, and the accuracy was calculated.
The mean accuracy was considered the accuracy of the
model. Figure 6 shows the result of all imputation methods
[24]. The accuracy of the proposed model was 72.57%, which
is the highest.
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TaBLE 3: The percent of missing data in independent variables of gastric cancer data.
) Missing .
ID Variable name Valid N
N Percent
1 Hx of non-GI cancer 71 88.75 9
2 Type of other GI cancer 64 80.00 16
3 Hx of other GI cancer 64 80.00 16
4 Age at Dx of family GC 58 72.50 22
5 FH of gastric cancer 57 71.25 23
6 PMH 35 43.75 45
7 Age at diagnosis 4 5.00 76
8 Birth year 1 1.25 79
GA-based Evolutionary Cycle
Feature No
— eneration. o
missing G . Regressmn
Preprocessing eneration
Model Building T T T T T T —/————— T T T T T T T yes
Output Evaluation models
with Test Data —
epaion [« Traing Dt Je—
Regression
FIGURE 5: The structure of model design for the prediction of gastric cancer survival time.
75.00 7227% - 72.57% TaBLE 4: The number and percent of missing data of independent
variables.
70.00 67.93% :
(%) 64.72% 65.20% 66.14% Missing
65.00 ID Variable name Valid N
60,00 . N Percent
’ Delete Mean EM | MICE missForest Proposed 1 FBS 12 48.0 13
Model 2 Rb 8 32.0 17
FiGure 6: The structure of model design for the prediction of 3 P53 8 32.0 17
gastric cancer survival time. 4 CDK4 8 32.0 17
5 CDK2 8 32.0 17
6 Creat 5 20.0 20
5.2. Imputation of ATLL Data Based on the Proposed 7 Urea 5 20.0 20
Algorithm. ATLL is an advanced malignancy of adults 8 CA 5 20.0 20
T cells and is the result of HTLV-1 infection [25, 26]. ?0 I\l/}/ICCI;]C 1 jg ;i
Twenty-five ATLL patients, who were admitted to Jahad ! ‘
Daneshgahi Research Center from 2016 to 2018, were in- 1 MCH ! 40 24
8 ’ 12 RBC 1 4.0 24

cluded. There were 35 independent variables and 1 de-
pendent variable, median overall survival time (Table 4).
Twelve independent variables contained missing data,
among which fasting blood glucose (FBS) had the highest
missing data (48%). Overall, there were 18.47% missing data.
Variables with more than 50% missing data were excluded
from the study. We imputed the missing data using our
proposed model as well as 5 other imputation algorithms
including deletion, average, EM, missFrost, and multivariate
imputation by chained equations. Genetic and logistic re-
gression algorithms were used to design the proposed model
using MATLAB software to predict the survival time. The
30-70 method was used to divide the data into training and
test groups in all six methods. The model was performed
10,000 times, and mean accuracy was considered as the
accuracy of the models. Table 5 shows the structure of the
model. As shown, the proposed model performed better
than other methods, that is, it improved the accuracy by
16.52% compared to other imputation methods.

6. Discussion

Missing data have been gained attention in various statistical
analyses. Most researchers encounter missing data during
data analysis. Several reasons result in missing data. For
example, when a researcher uses a questionnaire, the par-
ticipants might not be willing to answer some questions
because of a lack of time or personal questions. Thus, re-
searchers need to properly impute the missing data to be able
to analyse the data.

Low-quality data result in the low quality of conclusions.
Thus, preprocessing and data cleaning are applied to improve
the quality of the data. In case of missing data, one needs to
impute the missing data using a suitable method before
modelling [5, 27]. Data are missed due to various reasons, and
researchers must determine the type of missing data [2, 28, 29].
The reason is that the selection of the method of imputation is



Journal of Healthcare Engineering

TaBLE 5: The comparison of the proposed model of imputation with EM algorithm for ATLL patients’ data.

Algorithm name Sensitivity (%) Specificity (%) Accuracy (%) PPV* (%) PPV~ (%) F-measure (%)
Delete missing 47.00 40.60 45.95 47.1 38.95 45.47
Mean algorithm 47.37 51.20 53.77 44.77 49.83 43.49
Expectation maximization 62.57 69.25 70.23 64.44 65.35 61.31
MICE algorithm 46.16 49.28 53.37 45.92 46.88 43.09
missForest algorithm 58.30 62.65 64.65 58.15 61.00 56.09
Proposed algorithm 86.15 82.4 86.75 83.57 84.67 83.50

different based on the type of missing data. There are three
types of missing data: (i) MCAR, which does not depend on
other variables, (i) MAR, which depends on the status of
observational data, and (iii) MNAR, which depends on the
status of the missing data. We have shown that the type of
missing data affects the accuracy of the imputation algorithms.

Enders has stated that if missing data is MCAR, the
missing data can be excluded [30]. However, we showed that
excluding MCAR missing data decreases the accuracy of
classification. In fact, our model selects the best imputation
algorithm for a specific type of missing data. We used 18 and
9 variable classification algorithms for discrete and con-
tinuous variables, respectively. Then, a training algorithm
determines the best algorithm. The training model was
performed using a multiobjective particle swarm optimi-
zation algorithm. To improve the model, the fitness function
was adjusted based on sensitivity and specificity.

To assess the model, the data sets of gastric cancer and
ATLL patients were used. In gastric cancer data, the survival
time was predicted by the model. The data contained 29.5%
missing data, which were imputed by the model. The result
indicated that the proposed model improved the accuracy by
6.43% compared to multivariate imputation by chained
equations. In ATLL data also, the survival time was predicted
by the model. The data contained 18.47% missing data. The
result indicated that the proposed model improved the
accuracy by 16.52% compared to EM.

The proposed model has several advantages over other
methods: (i) in the proposed model, missing data simulation is
based on the part of data, which are not missing. Thus, the
algorithm uses the same structure for the missing data impu-
tation as the non-missing data. (ii) Most algorithms use a single
imputation method to impute missing data. The proposed
model is flexible, that is, it determines the best imputation
algorithm for the missing data based on the type of Missing
data. The proposed model, however, has several disadvantages:
(i) it is slow due to the multiobjective particle swarm optimi-
zation algorithm and (ii) it depends on the variables rather than
the records. Thus, we suggest developing a dynamic algorithm
that imputes the missing data based on the records.
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