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High-throughput single-сell sequencing in cancer research
Qingzhu Jia1,2, Han Chu1,3, Zheng Jin4, Haixia Long1,2✉ and Bo Zhu 1,2✉

With advances in sequencing and instrument technology, bioinformatics analysis is being applied to batches of massive cells at
single-cell resolution. High-throughput single-cell sequencing can be utilized for multi-omics characterization of tumor cells,
stromal cells or infiltrated immune cells to evaluate tumor progression, responses to environmental perturbations, heterogeneous
composition of the tumor microenvironment, and complex intercellular interactions between these factors. Particularly, single-cell
sequencing of T cell receptors, alone or in combination with single-cell RNA sequencing, is useful in the fields of tumor immunology
and immunotherapy. Clinical insights obtained from single-cell analysis are critically important for exploring the biomarkers of
disease progression or antitumor treatment, as well as for guiding precise clinical decision-making for patients with malignant
tumors. In this review, we summarize the clinical applications of single-cell sequencing in the fields of tumor cell evolution, tumor
immunology, and tumor immunotherapy. Additionally, we analyze the tumor cell response to antitumor treatment, heterogeneity
of the tumor microenvironment, and response or resistance to immune checkpoint immunotherapy. The limitations of single-cell
analysis in cancer research are also discussed.
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OVERVIEW
The tumor microenvironment (TME) is a multi-component system
composed of tumor cells, stromal cells, and infiltrated immune
cells. Accordingly, the high-level complexity of the TME is
accompanied by substantial heterogeneity at the intratumoral,1–3

inter-tumoral,4 and inter-individual5 levels. Within such a hetero-
geneous system, many pro- and antitumor cellular components or
signals can regulate tumor progression and affect the efficacy of
the antitumor immune response. Bulk-based omic analysis
technologies provide insights into the functional mechanisms in
the TME. However, owing to this extensive heterogeneity, the bulk
sequencing data generated from large numbers of cell lysates
provide only a “global” view of TME while obscuring the presence
of cells with low abundance and highly specialized functions and
ignoring universal intercellular communications.
High-throughput single-cell sequencing approaches refer to

characterize a single cell at multiple levels, including their
genomic,6 transcriptomic,7 epigenetic,8 and protein products.9

Comparing with traditional bulk sequencing strategies, the
significant advantage of sequencing cell sequencing is evaluating
heterogeneity among a population of cells, distinguishing cells
with a small number and highly specified phenotype, and
inferring cell behavior. In the early era of single-cell sequencing,
its application is highly limited by unsatisfactory throughput and
high detection cost. Nowadays, with the rapid progression in
single-cell sequencing technologies, it has been widely applied in
the research of various fields, particularly suitable for cancer
research. Besides, emerging novel sequencing strategies con-
tinues to evolve toward a higher throughput and lower detection
cost, such as single-cell combinatorial marker sequencing

technique (SCI-seq),10 Topographic Single Cell Sequencing,11 or
Split Pool Ligation-based Tranome sequencing.12 In addition,
multi-omics sequencing technologies, rather than technologies
that focus on single omics, provide multiple features such as DNA,
RNA, protein profile for the same individual cell. Single-cell
multiple sequencing technique (scCOOL-seq)13 enables the
simultaneous examination of copy number variation, ploidy,
chromatin, and DNA methylation, providing a broader view of
for different cell populations. All these advanced single-cell
sequencing technologies allow a broad application in the field
of tumor biological and antitumor immunotherapy.
From basic/translational research to clinical practice, single-cell

sequencing technology has been widely used to dissect TME
composition,14,15 and is particularly promising in the fields of
tumor immunology and immunotherapy. Resolution at the single-
cell level enables identification of the immune cell population and
signaling pathways that are actively involved in modulating tumor
immune escape or elimination.16 The success of immune
checkpoint blockade (ICB) immunotherapy exhibits potential for
the treatment of solid tumors, enabling many patients to achieve
long-term survival benefits; however, most patients do not
respond well to ICB treatment.17 Understanding the characteristics
of the baseline TME and dynamic TME changes during ICB
treatment can help clarify the cellular and molecular mechanisms
of ICB-driven tumor control and may reveal novel therapeutic
targets for overcoming ICB resistance. By performing single-cell
RNA sequencing (scRNA-Seq) alone or in combination with multi-
omic strategies, the high-dimensional feature matrix at single-cell
resolution can be used to infer immune cell identity and
functional specification. Annotation of the cell identity merely
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based on scRNA-Seq may reveal a different result to the gating
strategy via flow cytometry analysis. This shortage can be largely
compensated by integrating cytometry and proteo-genomic
data.18 The high-dimensional properties of scRNA-seq data allow
for more refined annotation of cell subpopulations while
investigating the activity of signaling pathways and inferring
cellular state trajectories. Advanced bioinformatics tools have also
been used to reconstruct cellular differentiation potential,
determine the events driving distinct cellular states or transi-
tions19,20 and construct a network of intercellular communication
by exploring ligand-receptor interaction.21,22 The application of
single-cell sequencing technology can be used for precision
medicine in the clinic and to improve the outcomes of patients
administered with ICB immunotherapies, such as identifying
TCF7+CD8+ T cells as a predictor of positive outcomes to anti-
PD-1 treatment.23

In this review, we summarize critical progress in single-cell
sequencing analysis regarding both tumor cell behavior and
tumor immunology, providing insights into tumor cell evolution
and heterogeneity of the tumor immune microenvironment. The
profiling of single tumor cells and immune cells has great
potential to reveal novel mechanisms of resistance, immune
tolerance, and relapse in individual patients with cancer, thereby it
can be applied to facilitate the development of personalized and
effective antitumor treatments.

Principles of single-cell sequencing technologies, analysis pipeline,
and data interpretation
Since Tang et al. successfully developed high-throughput
transcriptomic sequencing in 2009,7 many scRNA-seq protocols
have been developed in the past decades (Fig. 1). In general, all
protocols can be classified into two categories: full-length
transcript sequencing approach and 3′/5′-end transcripts sequen-
cing approach. The first approach attempts to produce uniform
coverage of each transcript (e.g., Smart-seq224) and therefore has
higher sensitivity than the second, which combines unique
molecular identifiers (UMIs) with transcripts to reduce technical
bias during library construction (e.g., 10× Genomics25). Moreover,
all protocols can be classified into plate- or droplet-based
approaches, depending on the strategy of cell capture. The
droplet-based approach is preferable for capturing large amounts
of cells with low sequencing depth.26 However, more technical
noise would be present when this strategy is used. Normally, the
following steps would be involved: (a) isolate single cells from
sample (blood, tissue, etc.); (b) obtain mRNA from single-cell lysis;

(c) convert poly(T)-primed mRNA into cDNA with RT; (d) cDNA
amplification; (e) library construction; and (f) sequencing.27–29

Recently, in 2017, to reduce the inefficient sample processing and
technical batch effect in downstream analysis among multiple
samples, a multiplexed cell capturing method for scRNA-seq was
successfully developed.30 In brief, there are four strategies: (i)
oligo-dA-based barcoding; (ii) combination of mRNA and DNA
barcodes; (iii) multiplexing by viral integration; (iv) natural genetic
variation.31

Sequencing will produce raw data in FASTQ format. The first
step is gene count matrix generation, including quality control,
read alignment, mapping, and gene count quantification. Cell
Ranger pipeline has been developed by 10x Genomics to
automatically complete the above steps for Chromium single-
cell data. After obtaining the gene count matrix, the next step is
processing, which includes quality control, normalization, feature
selection, and dimension reduction.32 The goal of quality control
in the processing step is to remove low-quality cells (e.g., empty
cells and doublet cells). Normalization is used to remove technical
bias due to the different cDNA capture efficiency and PCR
amplification. In general, UMI counts are transformed to counts
per million or transcripts per million.29 Even after removing zero
count gene, the feature space for a human sample can include
over 15,000 dimensions. To determine the most informative genes
from the data, highly variable genes should be defined and
selected. After feature selection, dimension reduction can further
reduce computational burden and capture comprehensible
information from complex data structure. PCA, tSNE, and UMAP
are normally used in this step. However, tSNE and UMAP are not
only used for dimension reduction but are also the main methods
of data visualization. Downstream analysis, including clustering,
annotation, trajectory analysis, and cell–cell interaction, can be
performed based on well-processing data; therefore, the proces-
sing step is the most important step of scRNA-seq analysis. The
clustering step involves finding and grouping cells into various
populations based on similar expression patterns. Each population
can be annotated as a cell type using marker-based or reference-
based methods such as singleR.33 After annotation, differential
gene expression analysis can be completed at cell-type level to
determine detailed differences between cell types. In addition to
cell type annotation, cell differentiation trajectory can also be
inferred based on variable genes (e.g., monocle series tools34,35

and slingshot36) or RNA velocity (e.g., velocyto20 and scVelo37). In
contrast to variable genes strategy, RNA velocity describes the
direction and speed automatically without manually setting a root.

Fig. 1 Timeline and throughput of single-cell sequencing milestones. Timeline of single-cell sequencing milestones. Scatterplot depicts the
published date and throughput of sequencing for each technology. Color indicates different sequencing specifications
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Cell–cell communication is a common method of analysis to
explore the tumor microenvironment. Two widely used platforms,
Seurat38 and Scanpy,39 have been developed and integrate
various computational methods that can complete most analysis
steps. Meanwhile, an increasing number of algorithms are being
tested to develop application for scRNA-seq data analysis.
Except transcriptome information, single-cell genome sequen-

cing also provides new perspectives to our understanding of
tumors, such as SNS,40 SCI-seq,10 SMOOTH-seq.41 In general, four
steps have been implemented to acquire single-cell genomic
sequencing data, including cell isolation, whole-genome amplifi-
cation (WGA), interrogation of WGA products, and error correc-
tion.42 Due to only two copies of genomic DNA in human cells,
WGA is one of the challenges for single-cell genome sequencing.
To uniformly amplify genomic DNA in each cell, three kinds of
WGA methods have been developed, including DOP-PCR (PCR-
based),43 MDA (isothermal amplification),44 or MALBAC.45 For
genomic data, variant calling is one of the most important step in
the downstream analysis. Bioinformatics tools, such as SCcaller,46

LiRA,47 and Conbase48 have been developed for SNV detection, in
addition, SCNV,49 HMMcopy,50 and Ginkgo51 are tools for CNV
calling.
In recent years, single-cell sequencing technologies for epige-

nomics such as chromatin accessibility, DNA methylation, histone
modification have become a possibility as well. Libraries of
scATAC-seq are created from single cells that have been exposed
to the Tn5 transposase by one of the following protocols: split-
and-pool approach,52 Chromium droplet-based approach,53 and
C1 approach.54 The typical pipeline includes QC, alignment, peak
calling and downstream analysis, such as peak differential analysis,
motif enrichment analysis, and footprinting analysis.55 ArchR,56

SnapATAC,57 and Signac,58 which consist of several algorithms,
can be used in scATAC-seq data processing and analysis. Another
chromatin status investigation technology is single-cell chip-seq.
Drop-ChIP combines microfluidics and droplet-based sequencing
protocol to obtain chromatin data.59 CUT&Tag uses an enzyme
tethering strategy that bounds chromatin protein by appointed
antibody and then generates a fusion protein as protein-Tn5

transposase.60 The experimental procedure of scitChIP-seq is
similar to traditional ChIP-seq method with tagmentation-based
library preparation strategy before canonical ChIP experiment.61

DROMPAplus is a ChIP-seq analysis tools with various algorithms
for any species, including QC, normalization, statistical analysis,
and visualization.62 Moreover, a few scATAC-seq tools can be used
for scChIP-seq as well, such as Signac for CUT&Tag. DNA
methylation is also an important aspect of epigenomics that
provides information about gene expression regulation, develop-
ment, and disease. The single-cell DNA methylation sequencing
can be simply classified into two categories: bisulfite-based and
bisulfite-free.63 One disadvantage of the previous one is that it
cannot distinguish 5mC and 5hmC.64 The downstream analysis
usually contains methylation calling, visualization, clustering, and
methylation segmentation and differentially methylated region
detection.65 Several mature statistical algorithms and bioinfor-
matic tools, such as k-means, Epiclonal,66 NMF,67 and BSmooth68

have been applied to data analysis.

Analysis of heterogeneity and response of tumor cells to
treatment
The heterogeneity of cancer at the intertumoral and intratu-
moral levels is consistently among the main obstacles to cancer
treatment. A combination of multi-region sampling and bulk
sequencing is typically used to study intratumor heterogeneity
at the genome level. This method can partly reveal tumor
heterogeneity but is insufficient for fully understanding lineage
and temporal heterogeneity. Consequently, significant progress
has been made in single-cell sequencing. After reconstructing
the clonal lineage, the primary clone or subclones in the tumor
lineage can be identified using single-cell technology.69–71

Secondly, we used tumor cell phenotypes and their
signaling pathways to determine heterogeneity of
epithelial–mesenchymal transition (EMT), proliferation, migra-
tion, and apoptosis. We also examined spatial heterogeneity of
cancer cell clone composition at different spatial sites. During
cancer occurrence and development, tumor cells evolve into
different clonal lineages in response to selection pressure.

Fig. 2 Application of single-cell omics in research of tumor cells. Tumor cells are composed of cells with various genomic alterations that
influence disease progression and response to environmental perturbations and drug treatment. The characterization of high-dimensional
profiling at a single tumor cell resolution facilitates the understanding of complex tumor cell behavior, clonal evolution during tumor
progression, and identification of novel biomarkers for clinical application. Colored circle with arrows represents sing cell sequencing
technologies and their applications in research of tumor cells
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Herein, we review the latest advances in the use of single-cell
technology to understand the heterogeneity and evolution of
tumor cells in different dimensions (Fig. 2 and Table 1).

Acute myeloid leukemia
Acute myeloid leukemias (AML) are complex ecosystems
characterized by multilevel heterogeneity.72–74 Single-cell
sequencing has revealed that AML cells are diverse, arising from
the proliferation and accumulation of immature cells in bone
marrow development. Mature blood cells (lymphocytes, erythro-
cytes, and megakaryocytes) are derived from normal hemato-
poietic stem cells. Results of single-cell RNA sequencing showed
that a series of lineage-committed progenitor states promoted
the progression of hematopoietic stem cell commitment.75–77

Galen et al. also found that a group of monocyte-like cells among
AML cells express various immunomodulatory genes. In vitro
experiments demonstrated that T cell activity was affected by
this group of AML cells.78 AML cells can be further subdivided
into naïve and differentiated cells. The heterogeneity of initial
AML cells (LICs) is considered the origin of AML progression and
drug resistance.79–81 Stetson et al. used the RNA expression
profiles of 813 LICs to further explain RNA clonal evolution during
AML progression. Additionally, LICs exhibited evident apoptosis
and chemokine signal evolution in relapsed patients.82 Corces
et al. determined the chromatin accessibility map of AML from
the perspective of epigenetics, revealing a unique regulatory
evolution in cancer cells with a further increased mutation
burden. At different stages of development, AML cells also
showed distinctive mixed regulome profiles.83

Wang et al. identified single-nucleotide polymorphisms in
single tumor cells using single-cell DNA technology. They also
found that patients with an IDH1 mutant in leukemia developed
complex polyclonal resistance mechanisms after receiving ivosi-
denib monotherapy.84

Liver cancer
Recent studies have revealed that primary liver cancer is one of
the most heterogeneous cancers among all solid tumors.85 There
are two main histological subtypes of liver cancer, hepatocellular
carcinoma (HCC) and intrahepatic cholangiocarcinoma, which
show different degrees of transcriptome heterogeneity.86 The
heterogeneity of liver cancer is evident at the intertumoral,
intratumoral, interlesional, or even intralesional levels.87–89 Losic
et al. performed single-cell RNA sequencing of tumors in different
regions, which revealed strong transcriptome heterogeneity
among cells in different tumor regions. They also found that
most transcription factors are not active or inactive in all tumor
areas; however, one or several transcription factors are highly
expressed in only one tumor area.90 Ho et al. observed similar
intratumoral heterogeneity in liver cancer and identified a set of
rare subclones rich in CD24+CD44+, which contain unique
carcinogenic characteristics.91 Among the histological subtypes
of HCC in liver cancer, Xiao et al. identified five HCC and two
hepatocyte subclones with significant differences in gene
expression; however, they also observed some common char-
acteristics, including MLXIPL, which is an important marker in HCC
cell trajectories.92 Duan et al. determined the copy number of a
single HCC via single-cell whole-genome sequencing. These
results indicate that HCC shows copy number variations in the
early stages of liver cancer, with almost no new copy number
variation introduced during tumor progression. In addition, they
revealed that the origin of a specific HCC can be monoclonal or
polyclonal and the intratumoral heterogeneity of polyclonal
tumors is higher than that of monoclonal tumors.93 At the same
time, Ma et al. used gene expression profiles to obtain the PCs of
each tumor cell by principal component analysis, and then
calculated the centroids of tumor cells in the eigenvector space
(ie, the arithmetic mean of the PCs of all malignant cells in theTa
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tumor). The average distance from each tumor cell to the centroid
was calculated, and this value was used as the ITH score of the
tumor, which could predict the prognosis of the patient.94

Breast cancer
Breast cancers are clinically stratified based on the expression of
estrogen receptor, progesterone receptor, and human epidermal
growth factor receptor (HER2). There are four subtypes that
correlate with prognosis and define treatment strategies: luminal
A, luminal B, HER2-enriched, and triple-negative breast cancer.95

At the transcriptional level, Her2+, luminal A, and luminal B
subtypes also exist in malignant epithelial cells of breast cancer.
Zhou et al. detected basal-like and normal-like cell subsets and
revealed that ETV6 regulated different downstream genes in
different subtypes to exert variable cancer-promoting roles.96 In a
clinical human patient-derived xenograft model, single-cell RNA
sequencing confirmed the transcriptional heterogeneity of
primary tumors and micrometastases. Micrometastasis exhibits a
specific transcriptome program that is conserved in the patient-
derived xenograft model but with significantly upregulated
oxidized phosphate metabolism.97 In breast cancer tissue, cancer
cells originate from different cell lineages that evolve in parallel
and possess different genomic mutations. During this evolution,
in situ and aggressive subpopulations are produced.98–100 These
subpopulations were comprehensively examined by determining
the genome of a single cell. In a study of ductal carcinoma in situ,
a direct genomic lineage between in situ and aggressive tumor
subgroups was constructed. Before tumor invasion, most of the
unique mutations or copy number variant cancer cell subtypes
already exist in the duct.101 Copy number variation arises from
breast cancer genome evolution and is a type of structural
variation.102 Baslan et al. performed single-cell DNA sequencing to
obtain genomic information for a single breast cancer cell and
mapped the breast cancer genome, specifically copy number
variation. Breast cancer cells exhibit both transcriptome and copy
number heterogeneity. Additionally, copy number heterogeneity
is significantly related to clinical or biological features such as
polyploidy or HR-negative status.103

Bassez et al. used scTCR-Seq technology to confirm the
presence of clonotype expansion in patients after PD-1 inhibitor
treatment, indicating a continuous antitumor immune response;
tumor cells from patients with clonotype expansion are enriched
in pathways such as cell death, proteolysis, and immune signal
transduction.104

Lung cancer
According to histopathological results, lung cancer can be
subdivided into non-small cell lung cancer (NSCLC) and small-
cell lung cancer (SCLC).105,106 SCLC is a high-grade neuroendo-
crine lung carcinoma that was once considered a molecularly
homogeneous malignancy. Transcriptional diversity exists among
SCLC cells and the pathways involved (including EMT and C-MYC)
are heterogeneous.107 Similarly, this heterogeneity exists in the
genome of lung cancer cells (e.g., copy number variation).108 SCLC
cells disseminate early. During cancer cell metastasis, there are
dozens of transcriptome heterogeneities, which may be enhanced
by metastasis. Schaff et al. revealed that when SCLC cells
metastasize to the liver (the common metastatic part), their
single-cell regulatory heterogeneity becomes more compli-
cated.109 Lung adenocarcinoma, another subtype of lung cancer,
also exhibits high heterogeneity among tumor cells, with the cells
expressing high levels of proximal and distal epithelial progenitor
markers. This cell heterogeneity is also evident in signaling
pathways such as glycolysis, oxidative phosphorylation, and the
cell cycle.110 Kim et al. performed scRNA-seq on paired normal or
early-stage tumor tissues and metastatic tumor tissues to clarify
the transcriptional heterogeneity between metastatic and primary
tumor tissues; additionally, a subtype of cancer cell differentiated

dissimilarly from normal epithelial cells and may predominate in
metastases.111 Different tumor cell subclones exist in different
parts of lung cancer. Sharma et al. revealed this heterogeneity and
confirmed its presence in the center and edge of the tumor, with
proliferation lower in the center of the tumor than at the edge.108

scRNA-seq analysis confirmed that after systemic targeted
therapy, patients with lung cancer exhibiting different treatment
responses possess cancer cells with varying characteristics. In
residual disease, cancer cells exhibit characteristics of alveolar
regenerative cells, indicating that the status of cancer cells
changes during treatment. In patients with progressive disease,
kynurenine, plasminogen, and gap-junction signaling pathways in
cancer cells are significantly upregulated.112 In an scRNA-seq study
of SCLC, after the development of platinum-based drug resistance,
the heterogeneity of the tumor cell transcriptome increased
significantly; however, there was almost no change in the genome
(copy number).107

Colorectal cancer
The molecular subtypes of colorectal cancer (CRC) are complex
and highly heterogeneous. CRC is generally divided into four main
consensus molecular subtypes (CMSs). CMS1 is characterized by
hypermutation, microsatellite instability, and strong immune
activation; CMS2 activates the epithelial, marked WNT, and MYC
signal pathways; CMS3 exhibits epithelial and metabolic dysregu-
lation; and CMS4 exhibits significant transforming growth factor-β
activation, matrix invasion, and angiogenesis.113 Wu et al.
performed single-cell exome sequencing to compare patients
with normal or adenoma polyps in CRC. Both adenoma and CRC
originate from the gradual accumulation of somatic mutations,
particularly abnormalities in key genes such as LAMA1 (P3K-Akt
signaling pathway) and ADCY3 (FGFR signaling pathway).114 By
combining single-cell transcriptome and single-cell DNA technol-
ogy, Ono et al. characterized the genome and transcriptome of a
single cell; the results showed that at the exome level, tumor cell
heterogeneity was not increased. After tumor transplantation,
transcriptome heterogeneity increased significantly, resulting in a
new subpopulation of cells exhibiting EMT signal activation.115

Bian et al. used single-cell triple omics sequencing to simulta-
neously detect the genome, transcriptome, and methylome of
CRC tissues; epigenetic data showed that DNA methylation was
consistent in the same tumor cell subclone but was very different
in different genetic lineages.116

Circulating tumor cells
Circulating tumor cells (CTCs) migrate from tumor tissues into
blood vessels and play an important role in the formation of
metastases. CTCs are one of the main targets of liquid
biopsy.117,118 The amount of CTCs in the blood is very low
(one part per million) and only a small amount of CTCs can be
obtained from a typical blood draw.119 Obtaining large numbers
of CTCs is difficult, which limits the utility of bulk sequencing.
The application of single-cell sequencing in CTCs has introduced
a new research perspective. By characterizing copy number
variations or other mutational patterns by single-cell sequen-
cing, tumor metastasis mechanisms may be uncovered. Gao
et al. performed single-cell whole-genome sequencing of
primary tumor cells, metastatic lymph nodes, and CTCs from
colorectal cancer.120 Patterns of copy number variation within
primary tumor cells vary greatly, with less variation among CTCs.
CTCs had a similar pattern of copy number variation to
metastatic lymph nodes and to a subpopulation of primary
tumor cells. This suggests that the metastases were derived from
a small fraction of primary tumor cells that can enter the
circulatory system. Single-cell transcriptome sequencing of CTCs
in gastric cancer revealed their transcriptomic heterogeneity
and indicated that most gastric CTCs undergo epithelial-
mesenchymal transition (EMT).121

High-throughput single-сell sequencing in cancer research
Jia et al.

6

Signal Transduction and Targeted Therapy           (2022) 7:145 



Single-cell transcriptome sequencing of CTCs can help research-
ers understand how patients respond to treatment. For example,
in the work of Miyamoto et al., single-cell transcriptome
sequencing of 77 CTCs in prostate cancer demonstrated hetero-
geneity in expression levels of estrogen receptor genes. In a
follow-up retrospective study, the non-canonical Wnt signaling
pathway was found to be activated in CTCs of patients treated
with androgen receptor inhibitors, suggesting potential treatment
resistance.122 Furthermore, in small cell lung cancer, Stewart et al.
acquired CTCs before platinum–etoposide treatment, at maximum
response and following relapse. Subsequent single-cell transcrip-
tome sequencing showed that CTCs from relapsed patients
identified more unique clusters, implying increased transcriptomic
heterogeneity in CTCs following patient resistance.107

Other cancers
Several single-cell sequencing studies of patients with renal cell
carcinoma (RCC) have achieved interesting results. Hu et al.
performed single-cell sequencing of 12 RCC samples and nine
para-tumor samples from three patients and revealed that the
transcriptome of tumor cells was highly heterogeneous.116 In
addition, the metabolism of cancer cells is abnormal, including
hypoxia, lipid biosynthesis, and enrichment of localization path-
ways.123 Bi et al. mapped the single-cell RNA atlas of cancer and
immune cells in patients with metastatic RCC before and after ICB
treatment and revealed that the tumor cells could be divided into
two subgroups: angiogenesis signals and the upregulation of
immunosuppressive programs.124 In gastric cancer, Andor et al.
determined the RNA expression profiles of thousands of single
cells from gastric cancer tumor cell lines via scRNA-seq. The atlas
revealed at least two subclones in each gastric cancer cell line,
indicating strong transcriptome heterogeneity within these cells.
The subclones of different cell lines exhibit differences in their
enriched signaling pathways; however, all cells contain pathways
related to genome mutation or evolution, similar to DNA repair
mechanisms and metabolic pathways.124 In primary uveal
melanomas, Pandiani et al. revealed intratumoral heterogeneity
and identified HES6 as a driver of metastatic disease based on

scRNA-seq.125 At the cellular level, single-cell sequencing can
comprehensively describe cancer heterogeneity through molecu-
lar expression profiling, which cannot be achieved via bulk
sequencing.126

Analysis of the complex immune microenvironment
Tumors contain not only malignant tumor cells but also various
infiltrating and resident host cells, secreted factors, and extra-
cellular proteins, collectively forming the TME.127 The TME is a
complex and dynamic system that directly affects tumor
immunity. Therefore, a comprehensive understanding of the
TME is necessary for tumor therapy, particularly immunotherapy.
The rapid development of single-cell omic technologies, specifi-
cally scRNA-seq, provides comprehensive information on the gene
expression profile of individual cells, offering insights into the
potential role of the TME. Herein, we summarize the key
discoveries obtained using scRNA-seq to refine the complex
cellular composition of the TME in numerous solid tumor types
(Fig. 3 and Table 2).

NSCLC
Non-malignant cells in the NSCLC TME affect both tumor-
promoting and tumor-suppressive activities.127–130 The identifica-
tion of components, particularly the cell populations and their
function in the TME, has yielded potential strategies for
immunotherapy. Previous studies have revealed that treatment
efficacy varies and partly depends on the number and properties
of tumor-infiltrating lymphocytes.131–133

Several recent studies have focused on the complexity of T cells
in NSCLC. Guo et al. first used a full-length single-cell mRNA-seq
technique, Smart-seq2, to evaluate NSCLC biopsies from treat-
ment-naïve patients to determine the baseline landscape of
tumor-infiltrating lymphocytes.134 In addition to conventional
CD4+ and CD8+ T cell clusters, two novel CD8+ T cell clusters were
observed and defined as “pre-exhausted” cells, which exhibited
low expression of exhaustion markers. One subset was signifi-
cantly abundant in NSCLC and exhibited high expression of
ZNF683, suggesting that it functions in NSCLC immunity.134

Fig. 3 High-resolution characterization of tumor microenvironment (TME) by single-cell sequencing. Cellular architecture of the TME-
infiltrated immune cells in the TME is broadly grouped using flow cytometry-based markers. Single-cell sequencing has made it possible to
characterize the phenotypic heterogeneity of immune cells at the transcriptomic, proteomic, and epigenetic levels
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Another pre-exhausted subset was characterized by high expres-
sion levels of GZMK, which was associated with the “effector
memory” phenotype.135 However, GZMK+CD8+ T cells with
intermediate exhaustion markers are likely transferred into
exhausted T cells.136 By comparing intratumoral and para-
tumoral lung-derived T cells, Lambrechts et al. confirmed elevated
glycolysis and suppressed oxidative phosphorylation coherent
between T cell clusters.137 Moreover, the authors found that a
CD8+ T cell cluster enriched at the tumor site exhibited strong IFN-
γ and IFN-α responses, high granzyme expression, and expressed
high levels of exhaustion markers (LAG3, TIGIT, PDCD1, and
CTLA4). In another study, Clarke et al. reported a TIM3+IL7R-tissue-
resident memory T cells (T rm) subset uniquely present at the
tumor site and expressing high levels of PD-1 and other molecules
linked to inhibitory functions; however, functionality analysis
revealed that these cells were not exhausted.138 Compared with
non-Trm cells, PD-1-expressing Trm cells were associated with the
key effector cytokines IL-2, TNF, and IFN-γ as well as granzyme
molecules. In addition to CD8+ T cells, recent studies demon-
strated the depletion of natural killer cells139 and increased
emergence of Tregs at the primary tumor site compared to at the
normal site.128,137,140 Tregs persist in tumors and metastasis sites
to suppress antitumor immunity in NSCLC.140 Wu et al. first
reported a rare T cell cluster, Th17, in NSCLC with a high
expression level of KLRB1 and observed a transitional phenotype
from naïve cells to Tregs.141

Myeloid cells also play a pivotal role in tissue homeostasis and
inflammation in lungs.140 Unsupervised clustering analysis and t-
SNE plotting of myeloid lineage cells revealed a substantial
difference between intra-tumoral and non-tumoral lung macro-
phages, indicating that they have a completely different
composition.137 These results correspond with those of Kim
et al.140 who revealed that tumor-associated macrophages in
tumor sites are primarily derived from monocyte-macrophages
rather than from tissue-resident macrophages. Moreover, the
upregulation of the transcription factors IRF2, IRF7, IRF9, and
STAT2 and downregulation of inflammatory enhancers such as
Fos/Jun supported M2 polarization of tumor macrophages in
NSCLC. Another study revealed that macrophages in treatment-
naïve patients exhibit M2 polarization.142 Zilionis et al. mapped
the myeloid landscape in human and murine lung tumors,
revealing conserved populations across individuals and species;143

additionally, their work revealed limited overlap of myeloid
populations between blood and tumors in patients. One subset
of dendritic cells (plasmacytoid dendritic cells [DCs]) was rarely
found in normal lung sites compared to tumor sites and
metastatic lymph nodes and exhibited an immunosuppressive
phenotype with the upregulation of LILR and GZMB but loss of
CD86, CD83, CD80, and LAMP3.140 A rare cell type, defined as
follicular DCs, was identified by Wu et al.141 Furthermore,
Lambrechts et al. detected a fibroblast cluster highly expressing
COL10A1 that was strongly enriched at the tumor site and
exhibited a strong EMT signal.137

Breast cancer
The function of tumor-infiltrating lymphocytes in breast cancer
remains unclear. Some studies have suggested that increasing
number of tumor-infiltrating lymphocytes can improve patient
survival, whereas other studies revealed contrasting results.144,145

scRNA-seq provided a cell-level landscape that can be used to
further investigate the function of tumor-infiltrating lymphocytes
in breast cancer.
A previous study of primary breast cancer grouped 175 immune

cells into three clusters: T cells, B cells, and M2 macrophages, all
exhibiting an immunosuppressive phenotype.146 In contrast, Azizi
et al. profiled 47,016 CD45+ cells from treatment-naïve patients
with breast cancer and revealed significant heterogeneity for both
lymphoid and myeloid cells.147 Moreover, the observed continuum

of T cell states indicated that canonical classification of T cell
clusters oversimplifies the tumor environment of breast cancer.
Treg clusters expressed similar patterns of anti-inflammatory,
exhaustion, hypoxia, and metabolism genes, suggesting that the
functions of different clusters are inconsistent. Savas et al.
identified a Trm-like cluster highly expressing CD103 and occupying
a large proportion of CD8+ T cells.148 This cluster expressed
granzyme and immune checkpoint molecules, suggesting their
cytotoxic ability and proinflammatory potential.
Breast cancer cells secrete various cytokines that influence

myeloid cell differentiation and suppress antitumor immu-
nity.149,150 Azizi et al. revealed that gene expression in M1 and
M2 macrophages was positively correlated and frequently
expressed in the same cells.147 This finding indicates that the
polarization model cannot be applied to tumor-associated
macrophages. To better understand the characteristics and
capacity of myeloid-derived suppressor cells (MDSCs), Alshetaiwi
et al. established an MDSC-specific gene set between G- and
M-MDSCs. This is unique to normal myeloid counterparts from a
murine breast cancer model; however, these results can also be
transferred to the human context, with a conserved state of
MDSCs between mouse and human suggested.151 IL1B, ARG2,
CD84, WFDC17, and chemokine receptors (e.g., CCR2 and CXCR2)
were included in this gene set, indicating an immunosuppressive
function. Particularly, CD84+ MDSCs capable of T cell suppression
and increased reactive oxygen species production were observed.
Moreover, the spleen was detected as a major site of MDSC
emergence in breast cancer.
Qiu et al. collected 9683 tumor-infiltrating immune cells from

treatment-naïve patients with TNBC and identified several novel
cell clusters, such as CD8+CXCL8+ naïve T cells. CXCL8 was
observed primarily during the production of naïve CD4+ cells in
the human peripheral blood or in infants.152 Consistent with its
function in CD4+ T cells,153 differential gene expression and
pathway enrichment analyses suggest that the cluster mediates
neutrophil migration and activates MAPK/extracellular signal-
regulated kinase pathways, which contribute to tumor growth.
Notably, the number of double-negative T cells (CD3+CD4- CD8-)
accounted for ~31.0% of all T cells in breast cancer but only 1–5%
in healthy humans.154,155 Double-negative T cells play a key role in
inflammation and autoimmunity.152,153 However, three indepen-
dent clusters with high levels of effector markers (GZMA, GZMB,
and IFN-γ), regulatory markers (FOXP3 and IL2RA), and naïve
markers (CCR7) indicate that double-negative T cell function is
important and complex in the TNBC microenvironment. Notably, a
novel cluster of CD3- and T cell receptor (TCR)-positive macro-
phages was first observed in the TME of breast cancer. The
upregulation of TCR signaling and cytotoxic effect of genes
compared to TCR- macrophages indicates that these macrophages
exert partial T cell functions. At the single-cell level, authors also
observed a “pre-exhaustion” T cell cluster and high positive
correlation of gene expression between M1 and M2 macrophages,
supporting previous results.147

HCC
The functions of specialized immune cells in HCC, such as Kupffer
cells (macrophages), innate lymphoid cells, and various T cells, are
not well-understood.156,157 Researchers have recently focused on
investigating immune cells using scRNA-seq.
Atlas analysis in HCC classified infiltrating T cells into 11 large

subsets.158 Most clusters have been reported in other cancers,
such as “pre-exhausted” T cells in NSCLC and breast cancer.134 A
unique CD8+ cluster with positive expression of FOXP3 was
defined as a Treg-like population and exhibited both suppressive
and cell-killing characteristics. Zheng et al. also found that LAYN
plays a regulatory role not only in Tregs,159 but also in CD8+ T cells
in HCC. Furthermore, Ma et al. described the different functions of
highly and poorly heterogeneous (Div-high and -low, defined by
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the authors) HCC based on the analysis of the gene expression
pattern, pathway enrichment, and T cell cluster distribution.86

Cytotoxic-related genes (e.g., GZMA and GZMB) and immune
checkpoint molecules (IFNG, PDCD1, and NKG7) were highly
expressed in Div-low compared to in Div-high HCC. The
upregulated pathways in Div-high tumors included EMT and
myogenesis, whereas allograft rejection, oxidative phosphoryla-
tion, and fatty acid oxidation were upregulated in Div-low tumors.
A more detailed analysis revealed that immunosuppressive Tregs
were considerably higher in Div-high than in Div-low HCC. By
evaluating a combination of tumor, leading edge, and normal
samples, Zheng et al. found that the CD4 and CD8 double-positive
T (DPT) cell cluster was enriched in the leading-edge region;160

however, this cluster generally exists in the thymus.161 The DPT
cluster was divided into 11 subclusters based on canonical
markers including cytotoxic DPT, memory DPT, activated DPT, NK-
like DPT, MAIT-like DPT, and exhaustion DPT. Trajectory analysis
revealed that the DPT was functional and well-differentiated
T cells and in conjunction with TCR data, showed a common
ancestry of PD-1+DPT and PD-1+CD8+ T cells.160

Several specialized and unique macrophage subsets have been
reported in recent studies. MacParland et al. observed two distinct
CD68+ macrophages in primary HCC samples, one with high
expression levels of inflammatory markers (LYZ, CSTA, and
CD74)162 and another with enriched expression of immunoregu-
lator genes (e.g., MARCO, VSIG4, and CD163).163 Aizarani et al. also
identified new subsets of Kupffer cells expressing CD1C or LIRB5,
which shared gene expression and pathways with endothelial
cells, suggesting functional cooperation.164 Zhang et al. found two
distinct tumor-associated macrophages165 with high expression
levels of SLC40A1 and GPNMB, by combining 10x Genomics and
Smart-seq2.166 Consistent with recent studies of iron metabolism
in macrophages,167,168 SLC40A1 encodes the iron exporter
ferroportin and promotes proinflammatory cytokines, including
IL-23 and IL-6, but suppresses IL1β production. In contrast to
classical DCs (cDCs), LAMP3+ DCs may represent a common DC
cluster with several interesting characteristics.166 Many ligands for
T and NK cell receptors were expressed, suggesting that these
receptors play immunoregulatory roles in lymphocytes. Moreover,
signature genes of LAMP3+ DCs were strongly correlated with the
signature of Treg or Tex, indicating that DCs contribute to T cell
dysfunction. In contrast, LAMP3+ DCs can migrate from HCC
tumors to lymph nodes and prime T cell migration to the tumor
site.166

Due to the low abundance of innate immune lymphocytes, the
studies on innate lymphoid cells (ILCs) in human liver cancer are
limited. Heinrich et al. performed scRNA-seq analysis to draw a
landscape and determine the role of ILCs in human HCC.169 Four
canonical cell types, including ILC1, ILC2, ILC3, and NK-like, were
identified; the authors also defined a CD127-NK-like cluster with
an intermediate status between NK cells and ILC1s in HCC.
Importantly, the first study that described the details of the
conversion of ILC3s to ILC2s and ILC1s to ILC2s169 suggested IL-4
as a cytokine that drives such a transition.170,171 Overall, these
findings demonstrate the diversity of immunoregulatory mechan-
isms in the HCC TME.

Melanoma
Recently, scRNA-Seq began to dissect TME heterogeneity in
melanoma. Tirosh et al. identified core exhaustion signatures of
T cells, including upregulation of coinhibitory (TIGIT) and
costimulatory (TNFRSF9/4-1BB and CD27) receptors.172 In line
with the findings for NSCLC and breast cancer,134,147 Li et al. noted
that dysfunctional CD8+ T cells transitioned from early effector
cells.173 Analysis of the TCR in peripheral blood mononuclear cells
revealed dysfunctional processes at the tumor site. Additionally,
dysfunctional CD8+ T cells are highly proliferative and dynamic. In
contrast to the transitional state of dysfunctional CD8+ T cells,

cytotoxic CD8+ T cells formed a discrete state with independent
signatures and were unlinked with dysfunctional CD8+ T cells.
Durante et al. drew a TME atlas at single-cell resolution in uveal
melanoma and identified an unrecognized CD8+ T cell, which
primarily expressed LAG3, an exhaustion-associated immune
checkpoint molecule in CRC.174

By analyzing 333 individual DCs and monocytes from metastatic
melanoma, Nirschl et al. revealed that homeostatic modules were
enriched in monocytes and DCs and were positively correlated
with IFN-γ signatures.175 Moreover, SOCS2, a member of the SOCS
family that uniquely degrade all other members,176,177 was
induced by IFN-γ, which is present on monocytes and part of a
tissue signature during melanoma formation.

CRC
In contrast to previously summarized cancers, immunotherapy has
shown limited advances in the treatment of patients with CRC,178

likely due to incomplete understanding of the TME in CRC.179,180

scRNA-seq is a powerful technique that can improve the capacity
to excavate and understand the complexity of the TME in CRC.
Similar to NSCLC134 and HCC,158 Zhang et al. profiled the T cell

atlas in CRC using Smart-seq2 and TCR-seq and identified 20
unique T cell clusters, including typical CD8+ and CD4+ T cell
clusters. In contrast, additional T cell clusters, including Th17,
follicular T helper cells, follicular T regulatory cells, and two CD8+ T
cell clusters were identified in CRC.181 Among them, Tex cells, two
IFNG+ Th1 cells, and one Treg cluster were enriched in the tumor.
Focusing on the tumor subtypes, CXCL13+BHLHE40+ Th1-like cells
were enriched in microsatellite instability tumors, whereas Th17
cells primarily existed in microsatellite stable tumors. Lee et al. also
found that Th17 cells and Tregs were predominantly present at
the tumor site, whereas γδT cells were enriched at the normal
tissue site.182 Zhang et al. observed that CD8+ T cells, Th1/Th2
cells, and memory T cells were increased at the tumor site,
whereas CD4+ T cells and Tregs were decreased.183 Based on
enrichment analysis results, the imbalance in T cell clusters may be
affected by T cell proliferation, activation/differentiation, and TCR
signaling.
Lee et al. suggested that the immunosuppressive function of

myeloid cells is enhanced because of their expansion in CRC.181

SPP1+ macrophages were more abundant in tumor sites than in
normal sites. Previous studies have revealed that SPP1+ macro-
phages play a central role in both the pro- and anti-inflammatory
phenotype,184–186 which is consistent with the findings of Lee
et al. In addition to T cells, Zhang et al. combined 10x genomics
and Smart-seq2 to draw a transcriptome landscape of CRC
immune cells, focusing on myeloid cells.187 Two distinct TAM
populations were identified: C1QC+ and SPP1+ TAM. Consistent
with previous studies of other cancers, these clusters could not be
explained by either the M1 or M2 phenotype.147,188 C1QC+ TAM
was primarily associated with phagocytosis and antigen presenta-
tion, whereas SPP1+ TAM was significantly enriched in angiogen-
esis regulation. Moreover, compared to the normal site, SPP1+

TAM exhibited greater enrichment at the tumor site. In addition to
SPP1, Zhang et al. found that GPNMB, which was reported to
mediate MDSCs and inhibit T cells,189 was highly expressed in
granulocytes.183 The authors also revealed that IL-17 signaling and
ferroptosis pathways were enriched in granulocytes at the tumor
site. The IL-17 pathway may play a role in CRC liver metastasis and
the ferroptosis pathway has been reported to mediate reactive
oxygen species production and p53 downstream effectors during
cancer cell death.190,191

Li et al. developed a novel algorithm named as reference
component analysis and identified two distinct clusters of
cancer-associated fibroblasts (CAFs), CAF-A and CAF-B.192 CAF-
A may be an intermediate cluster between normal fibroblasts
and CAF-B, as it expresses genes related to extracellular matrix
remodeling, whereas CAF-B expresses known markers of
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activated myofibroblasts. In addition, EMT-related genes are
highly expressed in CAFs.

Other cancers
With the widespread use of scRNA-seq technology, an increasing
number of TME from different cancer types have been studied.
Oh et al. found that the composition of CD8+ T cells did not differ
between bladder tumor and non-malignant tissues.193 In contrast,
tumor-specific Tregs were identified with high expression levels
of IL2RA and immune checkpoint molecules. Multiple cytotoxic
CD4+ T cell clusters were clearly defined using canonical markers,
suggesting that these cells kill autologous tumor cells. Chen et al.
found that monocytes were enriched in the M2 state of the
bladder tumor region; moreover, a cluster of DCs with high
LAMP3 expression was correlated with Treg recruitment, indicat-
ing the regulation of immunosuppressive formation.194 Zhang
et al. employed scRNA-seq to create the transcriptomic landscape
of intrahepatic cholangiocarcinoma and identified six distinct
types of fibroblasts.195 The main fibroblast cluster was vascular
CAFs, which expressed high levels of IL-6, thereby enhancing the
malignancy of the tumor cells. In gastric cancer, Sathe et al. found
that two cytotoxic T lymphocyte clusters highly expressed
exhaustion markers, with one cluster exhibiting higher prolifera-
tion potential than the other. Macrophages cannot simply be
classified as M1 or M2 macrophages because the canonical
markers are co-expressed in the same cluster. Additionally, the
authors identified a cluster of DCs enriched at the tumor site
expressing chemokines such as CCL22, CCL17, CCL19, and IL32,
which are associated with naïve T cell recruitment.196 By profiling
3.5 million cells from 73 patients with clear cell RCC (ccRCC),
Chevrier et al. constructed an immune atlas with 22T cell clusters
and 17 macrophage clusters. Moreover, the authors found that
CD38, a mediator of nitric oxide,197 is a potential exhaustion
marker of T cells in ccRCC. As the first landscape of TME in
nasopharyngeal carcinoma (NPC), Zhao et al. observed that the
proportion of B cells was higher than that of T cells, particularly in
Epstein–Barr virus-negative patients.198 A study reported that
malignant cells secrete mediators (e.g., miR-21) to expand B cells,
which suppress CD8+ T cells.199 Thus, B cells may be a useful
immunotherapeutic target in NPC.198 Shih et al. recently revealed
that myeloid cells of both primary and metastatic ovarian cells
and fibroblasts of metastatic ovarian cells produced increased
levels of secreted factors, indicating that these cells play
important roles in tumor growth.200 Additionally, B cells and
T cells did not express high levels of pro-tumor genes such as IL-
10, STAT3, and CCL22 but expressed genes that influenced
complement pathways.

Pan-cancer analysis
Several studies have recently concentrated on excavating the TME
with multiple tumors and integrating scRNA-seq data. Wu et al.
identified two T cell clusters that did not match published studies;
they collected 141,623 T cells from four different tumor types,
including NSCLC, uterine corpus endometrial carcinoma, CRC, and
RCC.135 One cluster expressed high levels of the long noncoding
RNA MALAT1 and chromatin remodeling enzyme CHD1. Another
cluster was enriched in mitosis genes. Neither cluster had high
scores on Trm cell signature, which was considered as the origin of
exhausted T cells.
Qian et al. collected 233,591 single cells from lung, colon,

ovarian, and breast cancer tumors.201 Overall, authors identified 22
tumor-specific clusters, including mast cells, germinal center-
independent B cells, and neutrophils. The new cDC2 subset
expressed CD1C and Langerhans cell-specific markers, such as
CD207 and CD1A. In T cells, clustering was not affected by CCA,
suggesting that T cell distribution was not tumor-specific.
However, both B cells and T cells were more enriched in LC than
in OV and CRC, likely because LC is a hot tumor.

Zhang et al. collected myeloid cells from 15 different types of
tumors and identified distinct features of myeloid cells across the
tumor types.202 However, NPC possessed a higher proportion of
mast cells and was the only tumor with higher TNF+mast cells
than VEGFA+ , indicating a stronger antitumor function. The
authors also confirmed a previously reported cDC subset,166

LAMP3+ cDCs, which widely exist across all 15 tumor types.
Although both conventional type 1 dendritic cells (cDC1) and
cDC2 could differentiate into cDC3, more LAMP3+ cDCs were
derived from cDC1, except in pancreatic adenocarcinoma and
NPC. cDC1-derived LAMP3+ cDCs highly expressed IL12B and
BTLA, which induced the differentiation of T helper 1 cells and
Treg cells, respectively.203,204 In contrast, CCL17, a chemokine that
recruits Tregs into tumors,205 was specifically expressed by cDC2-
derived LAMP3+ DCs. Macrophage clusters from different tumor
types were diverse; additionally, SPP1+, C1QC+, ISG15+, and FN1+

TAMs were primarily enriched at the tumor site. The authors also
found that both M1 and M2 gene signatures were co-expressed in
the TAM clusters of all tumor types, suggesting a limitation of the
in vitro polarization model in the TME. Notably, SPP1 can be
considered as a marker gene of macrophages with angiogenesis
function across eight tumor types, including BRCA, pancreatic
adenocarcinoma, lung cancer, CRC, uterine corpus endometrial
carcinoma, NPC, OV, and THCA.

Immune microenvironment, dynamic phenotypic changes, and
response to immunotherapy by single-cell sequencing
Immune checkpoint blockade (ICB) immunotherapy has intro-
duced a new era of antitumor treatment. It is known that
responsiveness to ICB treatment is determined by the preexisting
TME and peripheral immuno-compartment of patients. Single-cell
analysis is being exploited to investigate whether certain cell
populations with multi-parameter defined identities are related to
responsiveness or resistance to ICB treatment. Applying single-cell
sequencing to predictive biomarker analysis has revealed several
translational and clinical insights into ICB-induced tumor control
across a range of tumor types. These include melanoma,23,206

NSCLC,207 glioblastoma,208 renal cell carcinoma, squamous cell
carcinoma,209 bladder cancer,207 prostate cancer,210 breast can-
cer,211 and urothelial cancer.212

Several studies in pre-clinical mouse models have indicated the
critical role of the CXCR5/TCF1+ subset of CD8+ T cells in
sustaining a prolonged response to ICB immunotherapy.213–217

Studies have demonstrated stem cell-like properties in these cells,
characterized by lower expression levels of inhibitory checkpoint
molecules such as PD-1, LAG3, TIM-3, and 2B4, and potent self-
renewal capacity in the tumor niche. From a phenotypic
perspective, this CD8+ T cell subset displayed common properties
with tumor-residing GZMK+ effector memory CD8+ T cells and
MKi67+ expanded CD8+ intratumoral T cells. These support the
effector memory origin of these cells.134,158,181 These findings are
consistent with the fact that stem cell-like or memory-like
intratumoral CD8+ T cells are crucial for effective tumor
immunology218 and immunotherapy.219 In response to ICB
treatment, while maintaining self-renewal, stem cell-like CD8+

T cells differentiate to yield enough cytotoxic cells with negative
TCF1 and high inhibitory checkpoint expression. The CXCR5/
TCF1+CD8+ T cell subset is indispensable for successful ICB
immunotherapy. In an ICB-treated B16-bearing mouse model,
diphtheria toxin-mediated ablation of TCF1+CD8+ T cells could
not completely abolish tumor control. This suggests that
TCF1+CD8+ T cells are not the only important subset in ICB
treatment.216 In addition to TCF1+CD8+ stem cell-like memory
cells, tissue-resident memory T cells (Trm) can also be important for
supporting T cell reinvigoration during ICB immunotherapy.
CD4 T cells are the hub components of the fine-tuned network

of the adaptive immune response. Accumulating evidence
indicates that in addition to CD8+ T cells with direct cytolytic
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activity, CD4+ T cells play an orchestrated role in modulation of
tumor immunology and immunotherapy. Facilitated by single T
cell analysis by RNA sequencing and TCR tracking (STARTRAC)
analysis, Zhang et al. found that Th1 cells are abundant in MSI and
sparse in MSS-CRC patients; this is closely associated with
responsive or resistant ICB treatment.181 Conversely, Th17 cells,
showing a paradoxical function in tumor immunology, were
significantly enriched in patients with MSS-, but not in patients
with MSI-CRC. The balance between Th1/Th17 cell polarization in
bone metastatic TME of castration-resistant prostate cancer is
associated with sensitivity to anti-PD-1/anti-CTLA-4 treatment.220

Intraosseous intratumoral CD4+ T cells tend to polarize to the
Th17 lineage rather than to the Th1 lineage in the subcutaneous
lesion via an osteoclast-associated TGF-β mechanism. In addition
to the classical PD-1/PD-L1/CTLA-4-targeting drug, Th1-like CD4+

T cells play a critical role in conferring responsiveness to anti-CD40
immunotherapy in both preclinical models and clinical cohorts.187

Single-cell sequencing analysis suggests crosstalk between these
BHLHE40+ Th1-like cells, high in IFN-γ- and CXCL13-producing
cells, with cDC1 to synergize with anti-PD-1 administration.
In addition to several helper T cell populations, the presence of

MHC-II-restricted cytotoxic CD4+ T cells has been documented in
various solid tumor types.134,158,181,193,221–223 In the case of tumor
immunotherapy for patients with bladder cancer, recent single-
cell analysis demonstrated a critical role of cytotoxic CD4+ T cells
in exerting anti-PD-L1-mediated tumor elimination in an MHC-II-
restricted manner.193 In tumor-bearing mouse models, CD4+

T cells can harbor the properties of both cytotoxic and helper cells
at the same time.224 These multifaceted CD4+ T cells are
characterized by high expression of cytolytic mediators (GzmB,
IFN-γ, and TNF-α), which are independently controlled by T-bet
and Blimp-1.
The classic model of tumor immunology holds that tumor-

specific naïve T cells are mainly primed in the tumor-draining
lymph node. This leads to expression of activation markers,

differentiation to effector phenotypes, and recruitment to the
tumor site. In addition to local antitumor immunity in the TME, a
systemic immune response was evident following effective ICB
therapy.225 In an organism-wide genetically engineered model,
Spitzer et al. demonstrated that tumor eradication following ICB
therapy requires immune activation in the peripheral compart-
ment.225 Moreover, emerging evidence further supports that
T cells from adjacent or peripheral tissues are essential for
effective responses to ICB immunotherapies.135,226–228 Single-cell
sequencing analysis is being used to investigate the association
between the response to ICB therapy, preexisting T-cell reinvi-
goration, and with recruitment of novel peripheral tumor-specific
T cells. Among the contributions from “local reinvigoration” versus
“peripheral recruitment,” T cell repertoire tracking strategy
indicates a clonal replacement mechanism (“peripheral recruit-
ment”) in response to ICB therapy. This consists of a terminally
differentiated phenotype of intratumoral tumor-specific T cells. In
terms of the CD4+ T cell subset, peripheral CD4+ T cells are also
implicated in mediating antitumor immunity when treated with
anti-CTLA-4 antibodies, either from mouse models or patients with
metastatic melanoma.225

Intra-tumoral cell–cell communications
Many studies have focused on identifying novel cell types or
determining the roles of distinct immune cell types in the TME
(Fig. 4 and Table 3). However, tumor microenvironments are
composed of heterogeneous tumors and immune cells which
interact with each other to modulate the cellular network.229 In
addition to analyzing the characteristics and heterogeneity of the
TME, scRNA-seq can be used to infer cell–cell communication
between different cell types. Several methods, such as CellPho-
neDB,22 CellChat,21 and NicheNet,230 were recently developed for
evaluating cellular communication. For inferring inter-cellular
communication, the algorithms generally compare the expression
level of receptor expression from one cell population and

Fig. 4 Inferring inter-cellular communication by single-cell sequencing. Inter-cellular contact or transfer of informative material is essential for
coordinating the antitumor immune response and the malignant phenotype of tumor cells. Dissecting inter-cellular communication with
single-cell sequencing analysis is instructive in understanding active signaling pathways between different cell types, which could eventually
be applied to construct a communication network in the tumor immune microenvironment
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corresponding ligand expression on another cell population with a
known gene list of ligand and receptor pairs.231–234

Based on this database, Ji et al. found that tumor-specific
keratinocytes, a subset of keratinocytes in cutaneous squamous
cell carcinoma, interact with CAFs, endothelial cells, macrophages,
and MDSCs, which influence autocrine and paracrine responses.235

Additional ligands from TAMs and MDSCs to tumor-specific
keratinocytes contained ITGA3 and ITGB1, indicating their
association with EMT and epithelial tumor invasion.
In bladder cancer, inflammatory CAFs (iCAFs) have the largest

number of potential ligand–receptor pairs with other cell types,
exhibiting particularly strong interactions with endothelial cells.194

VEGFA, VEGFB, and FGFR1, produced by iCAFs, bind to endothelial
and tumor cells, suggesting that iCAFs promote the proliferation
of tumor and stromal cells. Additionally, the receptor CXCL12 is
highly expressed in iCAFs and affects immune cell infiltration.
Zhang et al. constructed a computational model by combining

scRNA-seq and The Cancer Genome Atlas bulk RNA-seq data to
examine cell–cell communication in CRC.187 The authors first
identified classical cell–cell interactions between fibroblasts and
endothelial cells in the tumor and between follicular B cells and
Tfh cells in a normal site, indicating that the identification of
cell–cell communication using the model was robust and mean-
ingful. In the tumor tissue, TAMs and cDCs became the core of
communications, and C1QC+ TAMs and two groups of cDCs
interacted with T cell subsets, implicating the regulation of
antitumor T cell function. Another study of CRC identified several
interactions between tumor cells and myofibroblasts, SPP1+

macrophages, CD8+ T cells, and Treg cells.182 Notably, the
connection between IgA+ plasma cells and CD4+ T cells, which
supports the mucosal antibody response at the normal site, was
weaker than that at the tumor site. Furthermore, the comparison
of the CMSs revealed that tumor cells play important roles in the
formation of TME.
In gastric tumors, Sathe et al. discovered that the interaction

between stromal cells and other cell types exhibited the highest

enrichment.196 Ligands on stromal cells were connected to EGFR
and MET on epithelial cells to promote tumor proliferation. LGR4-
RSPO3 is a paired ligand–receptor on epithelial cells and
fibroblasts that may regulate stemness.
Zhang et al. investigated cell–cell communication between

lymphocytes in HCC, specifically T cells and DC cells.166 All DC
subsets communicated with Tex cells, proliferative T cells, and
Treg cells via the CD28/B7 family and IL-15. LAMP3+ interacts with
multiple T cells through various ligand–receptor pairs, such as
CCL19-CCR7 for CD4+ T cells, PD-L1-PD-1 for Tex cells, and effector
memory T cells, suggesting that LAMP3+ DCs influence T cell
function. Additionally, LAMP3+ DCs communicate with NK cells
through IL-15 and NECTIN2, suggesting that these molecules
regulate NK cells.
In head and neck squamous cell carcinoma, Cilo et al. mapped

possible cell–cell interactions in human papillomavirus (HPV)- and
HPV+ HNSCC, respectively.236 Almost all immune cell types from
HPV- tumors showed unique ligand–receptor pairs versus other
cell types, whereas unique communications of HPV+ tumors were
predicted across pDCs, CD14+ cells, CD16+ cells, and DCs.
Kim et al. demonstrated that a novel cancer cell type, tS2,

strongly interacts with myeloid and stromal cells in the progres-
sion or metastases of lung adenocarcinoma.140 The most
important communication was between tS2 and mo-Macs,
whereas the most important communication in the immune cell
network was between mo-Macs and CD8+ T cells. In primary lung
adenocarcinoma, ligand–receptor pairs of growth factors were the
most significant between mo-Macs and tS2 cells. Notably,
communication between mo-Macs and exhausted CD8+ T cells
was more complex and included both activating pairs and
inhibitory pairs.
Overall, an increasing number of studies have focused on

cell–cell communication within the tumor microenvironment or
between the tumor and immune cells. These studies have
improved understanding of the TME and provided opportunities
to develop immunotherapy strategies

Table 3. Summary of principle and tools for investigation of intercellular communication by single cell sequencing

Method Tools Platform Characteristic

Differential
combinations

CellTalker R 1. Differential ligand–receptor pairs can be calculated. 2. Capture highly abundant
ligand–receptor pairs via comparative analysis.iTALK R

PyMINEr Python

Expression permutation CellChat R and Web 1. Discard random noise results via permutation test. 2. Cluster-to-cluster
communication is inferred.CellPhoneDB Python and Web

Giotto R

ICELLNET R

SingleCellSignalR R

ProxmID Software

CSOmap Matlab

Cell2Cell Python

MISTY R

stLearn Python

SVCA R and Python

Graph or network CCCExplorer Software 1. With a prior model, the inference is beyond ligand–receptor interactions and
incorporates intracellular signaling. 2. Inference of cell-to-cell communication is
possible. 3. Signaling pathway information can also be used.

NicheNet R

SoptSC Matlab and R

SpaOTsc Python

COMUNET R

NATMI Python

Tensor based scTensor R Detect many-to-many CCC involving multiple cell clusters rather than one-to-
one CCC.
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Limitations of single-cell sequencing in cancer research
With continuous advancements in high-throughput omic technol-
ogy, various bioinformatic tools have recently emerged. At the
single-cell level, high-throughput genomics, transcriptomics and
epigenomics have been continuously improved. However, these
technical methods have limitations that must be overcome.
First, at the transcriptome level, scRNA-seq data are inherently

noisy and sparse. Eukaryotic transcription occurs in a pulsed
manner rather than at a consistent basal rate.237,238 Therefore,
when a “0” value is obtained in sequencing results, it may not
indicate an inactive state in the cell. In fact, the value of “0” may
also imply that the gene is activated but not detected due to burst
kinetics, improper sampling time, or technical defects.
Secondly, cells captured using single-cell technology may not

represent cells in the body. For example, during the processing of
brain tissue into a single-cell suspension, neurons are more likely
to be lost than glial cells, leading to deviation between cell
composition obtained in the analysis and actual cell composi-
tion.239,240 In response to this situation, single-nucleus analysis has
become a useful alternative. This approach effectively reduces the
loss of specific cell types or interference with gene expression but
shows lower transcriptome coverage. The specific sample collec-
tion and processing procedures also affect the results. scRNA-seq
relies on qualified single-cell preparations, which can be obtained
from peripheral blood but are typically not easy to isolate from
solid tumor mass. In addition, differences in single-cell separation
methods and sample storage conditions affect sequencing
results.241 For example, in blood samples, inconsistencies in the
blood draw time can affect cells transcripts and even lead to the
changes in the expression of certain key genes (such as specific
markers of immune cells).242

In addition, 10X scRNA-seq is one of the most popular single-
cell techniques. It is a high-throughput method and uses 5′ or 3′
primers to capture RNA. Somatic single nucleotide variations
(SNVs) far from transcript ends due to end sequencing are often
difficult to capture. When bioinformatics tools (Freebayes, copy-
KAT etc.) are used to infer SNVs or copy number variations (CNVs)
in these data, the results may be slightly flawed.243,244 Therefore,
methods such as Smart-seq or FLASH-seq that capture the whole
transcriptome are better in this regard.245,246 Genotyping of
Transcriptomes based on the 10x Genomics platform could be an
effective solution to this deficiency.247 The existence of mature
single-cell DNA sequencing technologies (such as Tapestri solution
from Mission Bio) must also be mentioned; these may be the best
way to accurately obtain genotypes (SNVs, CNVs etc.) at the single-
cell level.248

The preparation of single-cell suspensions is an essential step in
single-cell omics, however cells lose spatial information during this
process. Spatial multi-omics (including spatial transcrip-
tomics249,250 and spatial epigenomics251) allows researchers to
understand the locational context of these cells in tissues while
acquiring omics data. Unfortunately, spatial multi-omics has not
yet reached the level of single-cell resolution.252 ST further
accelerates the generation of multimodal omics measurements.
Multimodal omics implies that multiple modalities up to
thousands of single cells can be measured simultaneously in the
same experiment.235,253 This technology has significant advan-
tages in study design and bioinformatic analysis. The data
coverage of single-cell multi-omics in the measurement is similar
to that of scRNA-seq but is sparse and noisy. Therefore, the
development of biochemical and molecular-based detection tools
is the basis for improving the sensitivity, specificity, and
robustness of multimodal omics. Currently, high-throughput
multimodal omics analysis remains limited to certain types of
omic measurements that are mostly based on RNA. However,
high-throughput multimodal omics has great potential, and
researchers are developing methods for processing massive
numbers of cells in a single experiment.

In both single omics or multimodal omics, powerful computing
resources and efficient tools are required to analyze large-scale,
high-dimensional data. Different single-cell sequencing technolo-
gies have varying sequencing coverage and cell capture
efficiencies. Single-cell sequencing platforms and species exhibit
substantial variation in heterogeneous resolution, sensitivity, and
variability. This greatly limits cross-experiment queries or the
establishment of a comprehensive database. At present, more
powerful statistical and calculation tools are required so that an
increasing number of single-cell data can be better integrated and
fully utilized. In addition, rapid and accurate integration of cell
metabolomics, proteomics, transcriptomics, epigenetics, and
genomics is an extremely complex task. Some existing methods
include dimension reduction-based approaches,38 similarity-based
approaches,254 and statistical modeling-based approaches,255 a
considerable number of which target scRNA-seq. Under the
integration requirements of low batch scRNA-seq, the ComBat or
Harmony methods perform better,256,257 while on the atlas-level
scRNA-seq data integration task, scANVI, Scanorama, scVI, and
scGen perform well. Batch effects from scATAC-seq data can be
effectively removed with LIGER and Harmony.258 In addition,
methods of Single-Cell Multi-omic Integration have been further
developed, including LIGER (for gene expression, epigenetic, or
spatial data) and WNN (for CITE-seq data).259,260

Finally, the cost of single-cell sequencing is expensive. Before
applying single-cell sequencing technology, its technical advan-
tages should be considered. The appropriate number of single-cell
sequencing platforms should be selected for the subject, as this is
important for supporting hypothesis-driven and well-designed
research.

CONCLUSION
The rapid development of single-cell sequencing technology and
analytical tools makes it possible for oncologists to understand the
complexity of the tumor immune microenvironment and the
resultant antitumor immune response. The application of single-
cell sequencing in tumor immunotherapy will substantially
enhance the ability of researchers to discover promising targets
to overcome immuno-resistance, investigate the signaling path-
way and cellular response caused by these drugs and determine
the optimal regimen of immuno-combinational therapy in clinical
practice. For research on pre-clinical models, single-cell sequen-
cing enables comprehensive characterization of cellular composi-
tion and temporal evolution of tumor cells and infiltrated immune
and stromal cells. This helps in validating the pathological
relevance of disease models and identifying promising targets
for drug development. In terms of translation application, the
high-dimensional phenotypic information obtained by single-cell
sequencing can be used to identify predictive biomarkers in
immunotherapy and propose an instructive companion diagnostic
strategy for further clinical testing. We anticipate that single-cell
sequence analysis will become an indispensable tool in on the
fields of tumor immunology and immunotherapy. The massive
phenotypic data and biological insights generated from this study
will substantially accelerate the progress of antitumor treatment
and improve clinical outcomes for patients with cancer.
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