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The study deals with detection of the occupation of Intelligent Building (IB) using data obtained 
from indirect methods with Big Data Analysis within IoT. In the area of daily living activity 
monitoring, one of the most challenging tasks is occupancy prediction, giving us information 
about people’s mobility in the building. This task can be done via monitoring of 𝐶𝑂2 as a reliable 
method, which has the ambition to predict the presence of the people in specific areas. In this 
paper, we propose a novel hybrid system, which is based on the Support Vector Machine (SVM) 
prediction of the 𝐶𝑂2 waveform with the use of sensors that measure indoor/outdoor temperature 
and relative humidity. For each such prediction, we also record the gold standard 𝐶𝑂2 signal 
to objectively compare and evaluate the quality of the proposed system. Unfortunately, this 
prediction is often linked with a presence of predicted signal activities in the form of glitches, 
often having an oscillating character, which inaccurately approximates the real 𝐶𝑂2 signals. Thus, 
the difference between the gold standard and the prediction results from SVM is increasing. 
Therefore, we employed as the second part of the proposed system a smoothing procedure 
based on Wavelet transformation, which has ambitions to reduce inaccuracies in predicted signal 
via smoothing and increase the accuracy of the whole prediction system. The whole system is 
completed with an optimization procedure based on the Artificial Bee Colony (ABC) algorithm, 
which finally classifies the wavelet’s response to recommend the most suitable wavelet settings 
to be used for data smoothing.

1. Introduction

In order to optimize the management of operational and technical functions in intelligent buildings, Big data processing and IoT 
concepts are increasingly being applied to reduce the cost of building operation.

The presented work deals with the utilization and implementation of modern mathematical methods (Big Data processing, SVM, 
Wavelet transformation (WT) in noise canceling application) for processing of measured data as part of the occupancy monitoring in 
IB within IoT.
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Nowadays, it is more common to understand IoT as a data collection network obtained by sensors. Nevertheless, due to the large 
amount of information that these sensors generate in time, and the speed at which it occurs, the concept of Big Data (BD) emerges, 
being capable of generating, according to IBM and CSA [1], more than 2.5 quintillion bytes per day, to the point, that 90% of the 
world’s data has been created during the last two years. In this investigation, we will focus on the application of IoT and Big Data on 
the detection of the presence or occupancy of people in Smart Home or intelligent buildings.

2. Related works

Occupancy monitoring or detection systems play a significant role in the possibility of energy-saving and consumption of this type 
of buildings [2,3]. According to a study published by Cisco, the Internet of things will connect around 50 billion devices worldwide 
in 2020, generating data traffic, which should be saved, analysed, and prepared for processing [4]. Therefore, we refer to the 
treatment and analysis of vast data repositories, so immensely large that it is impossible to treat them with the tools of conventional 
databases and analytics. The current data storage paradigm “cloud computing” and the various security concerns in IoT have led to 
the emergence of alternatives for data storage, organization, and processing, as well as technologies such as block chain that provide 
decentralized management of private data, as well as a higher level of security in IoT [5–7]. Currently, the most studies are focused on 
predicting the presence and number of people based on the recognition of the human silhouette [8], as well as with motion detection 
sensors or even through technologies such as Wi-Fi, Bluetooth [9,10], or images obtained from video cameras [11]. With this 
approach, an inconvenience arises, such as the privacy of people [12]. Since they would be continuously monitored, an alternative 
is proposed to detect if there is the presence of people or not in an IoT, such as the use of non-invasive methods using the current 
infrastructure of IoT or Infrastructure Mediated Sensing (IMS) [13]. These methods will also be useful for the care of elder people and 
the detection of possible falls or aging issues [14]. This study is focus on methods that predict occupancy in a non-intrusive manner 
for individuals. By leveraging the pre-existing infrastructure within a building, such as temperature sensors, CO2 sensors, HVAC units, 
surveillance cameras, and gas consumers, we can monitor occupancy without the need for user-installed software [15–20]. Various 
mathematical experiments have been conducted for occupancy recognition and people detection in Smart Homes, including Linear 
Discriminant Analysis (LDA), Classification and Regression Trees (CART), Random Forest (RF), Decision Trees (DT), rule induction, 
k-means clustering, and K-nearest neighbor algorithm (KNN), all of which have shown promising results [21].

The objective of this article is the design of a prediction method based on SVM, to determine the occupancy of the room, 
using non-invasive methods [22]. The article describes a proposal of a newly designed indirect method for detecting occupancy 
of monitored areas in intelligent buildings using the prediction of the 𝐶𝑂2 concentration trend from the operational measurement 
of non-electrical quantities (temperature indoor, relative humidity indoor) using SVM [23]. To enhance the accuracy of the newly 
proposed CO2 prediction method, an additional novel approach has been employed in this study. This approach optimally adjusts 
the parameters of the Wavelet Transformation (WT) mathematical method, which is utilized for suppressing additive noise in the 
predicted 𝐶𝑂2 waveform.

3. Material and methods

The practical implementation of the proposed Wavelet transformation method optimization in the noise-canceling application 
within Intelligent Building occupancy detection monitoring is divided into the following parts:

1. Part the SVM prediction of the 𝐶𝑂2 waveform

(a) Data measuring, preprocessing and visualization.

(b) Model design, model building, model evaluation, Test Developed, ShuffleSplit Configuration, Train_test_split Configuration, 
Model performance based on the SVM prediction of the 𝐶𝑂2 waveform with the use of sensors that measure indoor/outdoor 
temperature and relative humidity.

(c) Implementation of the practical part experiments.

2. The new Wavelet transformation method optimization in the noise-canceling application

(a) Motivation of Wavelet-based 𝐶𝑂2 signal smoothing.

(b) Spatial wavelet response for 𝐶𝑂2 prediction.

(c) A decomposition scheme for optimal wavelet selection.

(d) Wavelet-based recommendation system.

(e) A design of decomposition model for wavelet recommendation.

(f) Definition of Fuzzy logic-based decomposition model.

(g) Prediction model for estimation of vertex function.

3.1. Data preprocessing and data visualization

“The fundamental purpose of data preparation is to manipulate and transform raw data so that the information content enfolded 
in the data set can be exposed or made more easily accessible” [24]. One of the most important tasks in data analysis is data 
preprocessing [25]. It may be due to the impure nature of the data, which may result in the extraction of patterns or rules that are 
2

not very useful, and possibly as a result of:
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• Uncompleted data

• Data noise

• Inconsistent data

Data preparation can generate a smaller data set than the original [26], which can improve the efficiency of the Data Mining 
process that includes:

• Relevant data selection: eliminating duplicate records, eliminating anomalies.

• Data Reduction: Selection of characteristics, sampling or selection of instances, discretization, and correlation coefficient.

• Recover incomplete information and outliers treatment.

Another crucial step in our methodology is the visualization of the data, which allows us to understand the initial distribution of 
our dataset [27]. Our analysis will be based on the following key aspects of data visualization:

• Data visualization is a way of displaying complex data graphically.

• The graphics can be precise to locate the implemented models as planned.

• It is possible allow greater ease to compare and interpret data, thus visualizing a large number of them quickly.

• It allows us to have a first global and fast image on how the data is distributed, as well as a time-saving [28].

In our case, it will allow us to choose what type of kernel to implement using SVM.

3.2. Model design

Once the requirements analysis and preprocessing are finished, we will proceed to design each of the modules and software 
components of the system to be implemented during project development. In the same way, they must safely devise the algorithms 
and mechanisms with which they will solve the problem, and that will be implemented in the software components. The preprocessing 
of the data is critical for determining which method is appropriate for our problem and that the free lunch theorem does not 
apply [29,30].

3.3. Model building

The phase will proceed to implement each of the component’s software obtained during the design phase and with which it is 
intended to give solution to the problem posed. The Python programming language was selected for this study due to its inherent 
ease of use and the broad range of available libraries that facilitate the processing of data and the implementation of advanced 
mathematical and machine learning algorithms.

3.4. Model evaluation

At this point, we will focus on the execution of the algorithm developed with the data obtained in order to obtain results that 
should be analyzed later. In this phase, it will also be advisable to compare the algorithm with others already implemented in order 
to know the performance of our algorithm. The phase analysis of results in which the operation of the developed system will be 
tested in order to find errors and improve the system. In turn, the results of the SVM algorithm to be implemented will be obtained, 
having used the dataset provided by the project tutor. This output will be analyzed, as well as conclusions will be given for them.

3.5. Test developed

A set of tests have been carried out to obtain the generalization values of our model. For this, a division of the data set has been 
made into 80% of data for the train and 20% for tests. The division of the data has been divided in two ways, using a separation 
using split arrays or matrices into a random train and test subsets. Also, on the other hand, through ShuffleSplit, which will randomly 
sample the entire data set, in this way, we will be able to obtain the performance of our model by using the validation set. Various 
intervals will be used to conduct the generalization tests, including one day, three days, one week, two weeks, and one month. To 
ensure fairness in the tests, the first day and time of each dataset have been selected as the starting point. Testing could be conducted 
on random days, but this approach may not provide a fair comparison between the models. For each parameter configuration and 
method used in evaluating the model, the results will be presented in a table.

3.6. ShuffleSplit configuration

The ShuffleSplit method, unlike other cross-validation strategies, does not guarantee that all folds will be distinct, though this is 
still highly probable for large datasets [31]. The parameters utilized for ShuffleSplit are as follows:
3

• n_split: The number of re-shuffling and splitting iterations; in this case, five splits have been used.
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Fig. 1. Whole flow-chart of proposed system for spatial mapping of wavelet’s response and consequent classification of suitable wavelet settings.

• test_size: This represents the percentage of the dataset that will be used in the test split; for this study, 20% (0.2) will be used.

• random_state: It is the seed used by the random number generator.

3.7. Motivation of wavelet-based 𝐶𝑂2 signal smoothing

Wavelet-based 𝐶𝑂2 signal smoothing is linked with parameters settings, which may significantly influence the smoothing results. 
When applying Wavelet transformation (Fig. 1), we investigate a degree of the correlation (𝑊 (𝑎, 𝑏)) between the 𝐶𝑂2 signal (𝑠(𝑥)), 
as is denoted in equation (1) and respective wavelet (𝜓𝑎,𝑏) by the definition:

𝑊 (𝑎, 𝑏) =

∞

∫
−∞

𝑠(𝑥)𝜓𝑎,𝑏(𝑥)𝑑𝑥 (1)

The wavelet (𝜓𝑎,𝑏) can be described via using the equation (2):

𝜓𝑎,𝑏 =
1√
𝑎
⋅𝜓

(
𝑥− 𝑏
𝑎

)
(2)

In this equation (2), the parameters (𝑎, 𝑏) represent scaling, respectively shifting factor, and the function 𝜓(𝑥) is denoted as 
mother’s wavelet. Wavelet transformation has been many times proved as a very effective method for various data smoothing, features 
extraction, and other related tasks. One of the most significant limitations in Wavelet transformation is the parameters settings to 
select a proper wavelet. Meaning that a wavelet setting that approximates the predicted 𝐶𝑂2 signals with minimal differences when 
comparing with gold standard. In this sense, based on the experimental testing it is obvious that selection of mother’s wavelet 𝜓(𝑥)
and decomposition level (𝑎) play essential roles for achieving a high correlation with gold standard and improving the whole system 
accuracy. Unfortunately, this is not a trivial task. We have to consider a plenty wavelet families for testing, including Daubechies, 
Biorthogonal, Coiflets, Symlets and many others. Also, various settings of decomposition levels. Such settings offer a wide spectrum 
of combinations, which would be complicated to analyze. Therefore, our aim is to propose a versatile approach for wavelet features 
selection, which will indicate and recommend appropriate wavelet settings to be used for 𝐶𝑂2 signal prediction optimization.

3.7.1. Spatial wavelet response for 𝐶𝑂2 prediction

A selection of a proper wavelet settings can be perceived as a complex challenging task. Meaning that we need to gradually 
analyze a lot of combinations of mother’s wavelets and selected decomposition levels. For instance, when we have Daubechies (Db) 
wavelets, which contains 45 mother’s wavelets, and when we use n different level decompositions, we would test 45 ⋅ 𝑛 different 
settings which should be evaluated to find out which one the best approximate a 𝐶𝑂2 signal in a contrast of a gold standard. 
This is our motivation to propose a scheme, which simultaneously evaluate an appropriateness of respective wavelet settings. The 
proposed recommendation system for optimal wavelet settings is based on so-called spatial mapping of wavelet response. This scheme 
4

represents a distribution of wavelet settings in the form of evaluating coefficients, which give an objective information about the 
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respective wavelet effectiveness. Firstly, we present the evaluation coefficients: index of correlation (Corr) and Mean Square Error 
(MSE), which have the potential to objectively evaluate a level of similarity (Corr) and difference (MSE).

Index of Corelation provides a level of linear dependence between the gold standard and predicted 𝐶𝑂2 signal. We evaluate this 
parameter in the range: [−1; 1], where −1, respectively 1 stands for a perfect linear dependence in the decreasing (−1), respectively 
increasing (1) sense, contrarily 0 stands for the zero linear dependence. We use this parameter to evaluate a level of similarity for 
predicted 𝐶𝑂2 signals.

MSE represents an evaluation parameter which evaluate an average quadratic difference between a gold standard and predicted 
𝐶𝑂2 signal. Instead of Corr where higher values represent a better wavelet settings, MSE represents a level of difference it means 
that lower values represent better agreement between a gold standard and predicted 𝐶𝑂2 signal. MSE formulation is given by the 
following expression, see equation (3), where 𝑋𝑖 represents 𝑖𝑡ℎ sample of a gold standard, and 𝑌𝑖 stands for 𝑖𝑡ℎ sample of predicted 
𝐶𝑂2 signal. In the ideal case (𝑀𝑆𝐸 = 0), we would achieve the zero difference (full agreement) between a gold standard and 
prediction.

𝑀𝑆𝐸 = 1
𝑚

⋅ Σ𝑚
𝑖=1

[
𝑋𝑖 − 𝑌𝑖

]2
(3)

A proposed spatial wavelet response represents a distribution of Corr, respectively MSE for various wavelet settings (selected 
mother’s wavelets and decomposition levels). This scheme provides two important benefits for objective evaluation. Firstly, this 
spatial mapping provides simultaneous computing the wavelet response instead of gradual selecting various wavelet settings. Nev-

ertheless, the main benefit of this method is simultaneous spatial (2𝐷) distribution of evaluation coefficients for various wavelet 
settings, which can be arbitrarily selected by user. The following pseudo algorithm represents a generalized structure of the spatial 
modeling.

Algorithm 1 Generalized algorithm of the spatial modeling.

Step 1: Load input 𝐶𝑂2 signal

Step 2: Selection of mother’s wavelets (n)

Step 3: Selection of level of decomposition (k)

Step 4: Definition of zeros matrix (dimension: k x n) for storing the results

Step 5: for 1:k

Step 6: for 1:n

Step 7: Compute wavelet-based 𝐶𝑂2 signal smoothing

Step 8: For each settings (k, n) compute index of correlation (Corr(k, n))

Step 9: For each settings (k, n) compute index of correlation (MSE(k, n))

end

end

Step 10: Generate color mapping for Corr(k, n) MSE(k, n) spatial response

In order to properly identify differences in various settings, we use an artificial color mapping of spatial response to create a 
color spatial map for each evaluating parameter. This approach apparently has the benefit in simultaneous visualization of wavelet 
response for multiple wavelet settings. Practically, we need to operate with this spatial model to select the wavelet settings which 
will be finally used for prediction. In the simplest way, the settings with the highest correlation, or the lowest MSE can be selected. 
Nevertheless, this is only one setting, which may be impractical because for different 𝐶𝑂2 signals, we can achieve different such 
evaluated settings. For this reason, a robust prediction system, which would classify based on the correlation and MSE distribution, 
wavelet settings into appropriate, neutral and inappropriate would significantly contribute to this complex recommendation model. 
When such classification procedure is applied for each 𝐶𝑂2 signal and we receive a set of appropriate wavelets settings, then we 
perform an intersection among these sets and obtain a mutual set of wavelet settings, which the best fit to analysed predictions. In 
order to perform this task, we propose a decomposition scheme, which classify the spatial wavelet response into three subsets.

3.7.2. A decomposition scheme for optimal wavelet selection

In this section, we introduce a novel approach for modeling of the Wavelet settings response for 𝐶𝑂2 signal. As we discussed 
earlier, one of the main unclear issues in the Wavelet-based denoising is selecting the most effective wavelet to be used for the data 
enhancement. From the general point of the view, we have the particular wavelet family, containing a finite number of the mother’s 
wavelets, which can be applied with using various decomposition levels to data, which we are going to filter out. In this context, we 
tackle with the optimization problem, which is formulated as the follows:

Ω𝑜𝑝𝑡
(
𝜓𝑖(𝑁,𝜏),𝑁𝑗

)
= min

∀𝜓𝑖(𝑠,𝑡),𝑁𝑗∈Ω

(
𝑦𝑚, 𝑦𝑤,𝑚

)
, Ω𝑜𝑝𝑡 ⊆ Ω, 𝑖, 𝑗 =

{
1,2,… , 𝜓𝑚𝑎𝑥,𝑁𝑚𝑎𝑥

}
(4)

Here, we search for a finite domain Ω𝑜𝑝𝑡, which is represented by a set of 𝜓𝑖(𝑁, 𝜏), where 𝑁 stands for the wavelet-based 
decomposition and 𝜏 stands for the time shift of the wavelet. To solve such optimization problems, we search for the cost function 
(eq. (4)), which minimizes the difference between ideal 𝐶𝑂2 signal (gold standard) 𝑦𝑚 and 𝑦𝑤,𝑚. The task can theoretically be 
accomplished in two ways. We can find the global maximum of similarity parameters (for example, the correlation index) or the 
global minimum of difference parameters (for example, the MSE) for all wavelets. In such a procedure, only one wavelet setting is 
selected. As we discussed in the previous section, different wavelet settings can be recommended for various 𝐶𝑂2 signals, so we are 
5

focusing on developing a robust recommendation system that will provide a finite set of wavelet settings for smoothing 𝐶𝑂2 signals 
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in order to improve prediction accuracy. In light of these assumptions, we aim to build a robust recommendation system that is 
capable of selecting a finite number of wavelets and their settings within Ω𝑜𝑝𝑡 as the most suitable solution for particular wavelet 
families.

3.7.3. Wavelet-based recommendation system

Here, we are focused on the proposal of the mathematical model for selection of a set of the most suitable Wavelet settings to be 
used for the 𝐶𝑂2 data smoothing. This classification procedure is based on the evaluation matrix decomposition. We suppose that 
the evaluation wavelet-based matrix represents a domain of distribution of respective evaluation parameter, such is the correlation 
coefficient or MSE for each analysed wavelet and it’s the decomposition level. Such matrix is decomposed into several finite disjunc-

tive subdomains, corresponding with grouped values of the evaluation coefficients. Among such groups, we can easily select such 
one, corresponding with the most suitable wavelet settings. For the building of the classification procedure, we take advantage the 
concept of the thresholding. In conventional hard thresholding, individual values can be grouped via a system of the threshold val-

ues. In this context, a selection of suitable threshold is a challenging issue. Many concepts utilize so called hard thresholding, which 
firmly determine the threshold values. Such procedure is less effective, when supposing threshold placement variations, caused by 
various noise level and artefacts. This assumption points out on the limitation of the hard thresholding would not be effective in such

case. Therefore, we propose so called soft thresholding procedure based on the sequence of the fuzzy sets, approximating behavior of 
the evaluation parameters distribution. Such sequence of the fuzzy sets can be theoretically distributed over the interval of the eval-

uation parameters by multiple ways. In order to predict the optimized scheme of the fuzzy set’s distribution, we employ a modified 
version of the ABC (Artificial Bee Colony) algorithm for selection the optimized configuration of fuzzy sets-based soft thresholding 
model. This decomposition model classifies the evaluation values into predefined classes, corresponding with grouped values of these 
parameters. By selecting respective class, we select a group of the wavelets, appearing as the most optimal compromise for given 
𝐶𝑂2 data and noise suppression. This complex model represents the minimization procedure, as we depicted in equation (4). This 
model represents a recommendation system for an autonomous wavelet selection for 𝐶𝑂2 signal prediction improvement.

3.7.4. A design of decomposition model for wavelet recommendation

In this section, we introduce the proposed model for the evaluation matrix decomposition. We suppose the input evaluation 
matrix in the following form, presented in the eq. (5).

𝐸𝑃 (𝑁,𝜓) = 𝑓 (𝑁,𝜓) (5)

Where 𝐸𝑃 stands for the respective evaluation parameters, such is the correlation index or MSE, 𝑁 stands for the level of the 
decomposition, and 𝜓 is a Wavelet, belonging to a respective wavelet class, which is tested. The proposed classification scheme does 
the matrix decomposition via using 𝐿 decomposition classes, grouping such 𝐸𝑃 (𝑁,𝜓), which have similar features. Generally, this 
decomposition scheme is given by the matrix 𝑀 (𝑟) in the equation (6):

𝑀 (𝑁,𝜓) = 𝑔𝑠{𝐸𝑃 (𝑁,𝜓)} (6)

In this configuration defined by eq. (6), 𝑔𝑠{.} stands for the decomposition method, transforming individual levels of 𝐸𝑃 into 𝐿
finite classes of the decomposition model. When supposing that the evaluation matrix 𝐸𝑃 (𝑁,𝜓) contains 𝑛 elements, then we have: 
𝐿 < 𝑛.

Based on this decomposition scheme, it is supposed that each element of the evaluation matrix belongs to unique decomposition 
class. The main task in such decomposition procedure is a system of the rules, determining classification values of EP into respective 
class. In order to this task, we propose a decomposition scheme based on the fuzzy classification driven by the ABC evolutionary 
algorithm as defined in equation (7). For the following text, we use the notation for fuzzy set:

𝜇𝑙 (𝑁,𝜓) , 𝑙 = 1, 2, … , 𝐿. (7)

3.7.5. Definition of fuzzy logic-based decomposition model

In this part, we introduce the principle of the decomposition model, which is based on the system of fuzzy sets theory. The 
main idea of this method approximates a finite group of the evaluation parameter values by fuzzy set, which classify these values 
from other in the evaluation matrix. Such task can be in principle done by using histogram approximation based on some statistical 
distribution, for instance a sequence of Gaussian functions can be adopted for building such decomposition model. Such approach 
would be linked with the approximation procedure to find and optimize parameters of respective Gaussian distribution. Furthermore, 
for different situations we would have to recalculate this optimization procedure. Also, it is not ensured that the data behavior well 
corresponds with the shape of some predefined probability functions. Bases on such reasons, we build this decomposition scheme on 
the sequence of the trapezoidal fuzzy functions, where their the most suitable distribution is selected on a general fitness function in 
the optimization evolutionary ABC algorithm.

Fuzzy based decomposition algorithm utilizes the histogram of the evaluation matrix, which is decomposed into 𝐿 classes. We 
define the membership function for each region. This membership function determines a level of the membership for each wavelet 
and respective decomposition level 𝑁 in each class. This feature is taken as the classification rule for the respective wavelet settings. 
In the case of the triangular-shaped fuzzy function, we have the following rule for the membership functions: ∑𝐿

𝑖=1 𝜇𝑙 (𝑁,𝜓) = 1. 
Based on fuzzy-based classification, we classify respective Wavelet settings into the class with the highest membership value by the 
6

formulation in eq. (8).
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𝑀 (𝑁,𝜓) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙{𝜇𝑙 (𝑁,𝜓)} (8)

This procedure represents a classification of the Wavelet settings into individual classes based on the soft thresholding. The 
substantial advantage of such procedure is the fact that the membership function determines a degree of each wavelet to each class 
in the contrast in the hard thresholding methods, which gives a hard threshold. In this context, this method determines a certain 
membership in each class, and consequently we just need to set a rule for the final classification as it is depicted in eq. (8). Based 
on such multiple membership assignment, we compute the membership values for each Wavelet settings by the following way, see 
equation (9):

𝜇 (𝐸𝑃 (𝑁,𝜓)) =
[
𝜇1 (𝐸𝑃 (𝑁,𝜓)) 𝜇2 (𝐸𝑃 (𝑁,𝜓))… 𝜇𝐿(𝐸𝑃 (𝑁,𝜓))

]
(9)

In the case of the triangular function only two elements are non-zero. The decomposition model based on the triangular fuzzy 
functions respects the following rules:

• Complete division: ∀𝑥, ∃𝜇𝑙 (𝑥) , 1 ≤ 𝑙 ≤𝐿, so that 𝜇𝑙 (𝑥) > 0
• Consistency: if 𝜇𝑙

(
𝑥0
)
= 1, then 𝜇𝑘

(
𝑥0
)
= 0, ∀𝑘 ≠ 𝑙

• Normality: max
(
𝜇𝑙 (𝑥)

)
= 1

• Intersection between adjacent classes: 𝜇𝑙
(
𝑥0
)
= 𝜇𝑙+1

(
𝑥0
)
= 0.5

The main issue of such soft-thresholding approach is its construction. Each sub fuzzy set is constructed (in geometric sense) by 
determining its vertex, when utilizing the rule, describing the relationship between the vertex of the class (𝜇𝑙

(
𝑥0
)
) and adjacent foot 

of triangle (𝜇𝑘
(
𝑥0
)
): 𝜇𝑙

(
𝑥0
)
= 1, then 𝜇𝑘

(
𝑥0
)
= 0, ∀𝑘 ≠ 𝑙. It practically means that we need to find a sequence of the vertex function: 

𝑉 =
{
𝑉1, 𝑉2,… , 𝑉𝐿

}
, where 𝑉𝐿 stands for the vertex of Lth decomposition class. After performing this vertex function, we obtain the 

decomposition model based on the sequence of the fuzzy triangular sets.

3.7.6. Prediction model for estimation of vertex function

In this section, we introduce the model, which is aimed on the prediction of the vertex locations to be consequently used for 
the fuzzy based classification. For such task various methods may be adopted. One of the simplest ways can be histogram maxima 
detection, alternatively, methods based on the clustering may be utilized. Such methods are capable of grouping the evaluation 
values with similar features into groups, and by consequent computing of the centroids of such clusters we can obtain the vertexes 
for the fuzzy classes. The main argument, which deteriorates the quality of such methods is producing one unique solution of the 
vertex vector, which is depended on the initial placement of centroids, in the case of clustering algorithm. In the case of the maxima 
detection, the histogram does not have to have appropriate shape. Thus, identification of the maxima values is depended on the 
shape of the histogram. Based on such arguments, we employ ABC algorithm, which is based on the evolutionary computing. This 
method represents an optimization method, which iteratively search for the best solution based on the given criteria. An essential 
advantage of this method is the fact that we do not need any maxima detector, this proposed method analyzes the class distribution 
based on the entropy function to find concentrated distribution of the evaluation parameter in respective class, and in the contrast of 
the clustering, the optimized solution selected from various possibilities based on the optimization process. Here, we describe ABC 
algorithm for optimization of vertex locations.

ABC evolutionary algorithm is an optimization algorithm, which is inspired by a swarm of bees, searching for the food. In the 
contrast of natural reality, this method utilizes the synthetic bees, which are classified into four categories: employed bees (𝐸𝐵), 
onlooker bees (𝑂𝐵) and scouts (𝑆𝐵). The whole population is composed from the same number of 𝐸𝐵 and 𝑂𝐵. It is supposed that 
each 𝐸𝐵 has one food source. Such food source represents one possible combination of the vertexes. The most optimal vertex location 
is perceived as the optimization problem: 𝑉𝑖 = 𝑉𝑖,1, 𝑉𝑖,2,…𝑉𝑖,𝑝, where: 𝑉𝑖 represents 𝑖𝑡ℎ possible solution of the vertex combination 
with p-dimensional parameter, which is optimized. In this situation 𝑝 stands for the number of the classes, in which the evaluation 
matrix is decomposed.

In the first part of ABC algorithm (Employed Bees), the initial population of 𝑉𝑖 is generated. For such purpose, we propose a 
special scheme for definition of the initial population of food sources, respective possible initial combinations of vertex functions 
𝑉𝑖. Since the centroid-based clustering algorithms have been frequently proved as a reliable and powerful methods for the data 
grouping, therefore we are aimed to use such principle to find the initial clusters of evaluation parameters based on the clustering. 
The evaluation matrix is initially decomposed based on the FCM (Fuzzy C-means) algorithm. From this algorithm, we just take the 
centroids of individual clusters, for 𝐿 decomposition classes we have the vector of centroids: 𝐶 =

{
𝐶1, 𝐶2,… , 𝐶𝐿

}
. Consequently, 

we use the generator of normal numbers with the Gaussian distribution probability to generate the initial population of the food 
sources, where the mean value of this distribution is taken centroid of each class, computed by FCM method. This principle is better 
explained by the following pseudo algorithm.

Based on this procedure, we generate a system of random vertex locations 𝑉𝑁 , containing N-combination of the vertexes, which 
are normally distributed.

Consequently, in the 𝐸𝐵 phase, for each vertex solution in
𝑉𝑁 =

{
𝑉𝑁,1, 𝑉𝑁,2,… , 𝑉𝑁,𝑁

}
, we generate the alternative solution 𝑋𝑁 , which is given by the eq. (10).
7

𝑋𝑖𝑘 = 𝑉𝑖𝑘 +𝜙𝑖𝑘 × (𝑉𝑖𝑘 − 𝑉𝑗𝑘) (10)
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Algorithm 2 Pseudo-code for the initialization and computation of centroids.

Initialization: definition of variables:

𝑁 (number of food sources), 𝜎2 (variance of Gaussian distribution),

𝐿 (number of decomposition classes), 𝐸𝑃 (wavelet matrix of evaluation parameter)

Output 𝐕𝐍: (initial combination of food sources), 𝐶 (vector of initial centroids)

1: 𝐂 = compute 𝐅𝐂𝐌(𝐄𝐏, 𝐋)
2: for each element in 𝐂 do

3: compute 𝐕𝐍 = 𝑟𝑎𝑛𝑑(𝑁𝑃𝐷𝐹 (𝜇 = 𝐶, 𝜎2))
4: end for

In this formulation, 𝑉𝑗𝑘 represents a random candidate solution (𝑖 ≠ 𝑗), 𝑘 stands for the random index: 𝑘 ∈ {1, 2,… ,𝐿}, and 
function 𝜙𝑖𝑘 represents a generator of random numbers. As soon as 𝑋𝑁 is generated, it is approached to the selection based on the 
fitness function (𝑓𝑖𝑡𝑁 ) between the solution 𝑋𝑁 and 𝑉𝑁 . In the case when 𝑓𝑖𝑡𝑋𝑁 > 𝑓𝑖𝑡𝑉𝑁 , then 𝑋𝑁 is stored as a better solution. 
Otherwise a new random solution 𝑋𝑁 is generated and selection is repeated. This repetition process is limited by the selection limit 
𝐿𝑣 (we experimentally use 𝐿𝑣 = 10). After reaching 𝐿𝑣, the respective food source 𝑋𝑁 is perceived as exhausted and is eliminated 
from the memory.

The second phase of the methods tackle with onlooker bees (OB), which globally evaluate individual vertex solutions. This 
procedure is based on the roulette selection, which is perceived as a probabilistic selection mechanism and given by the term in 
eq. (11).

𝑃𝑖 =
𝑓𝑖𝑡𝑖∑𝑁

𝑗=1 𝑓𝑖𝑡𝑗
(11)

In this selection mechanism, 𝑓𝑖𝑡𝑖 stands for the fitness function of 𝑖𝑡ℎ solution. As well as in the EB phase, the higher value of the 
fitness function is achieved, the better solution is then indicated. Roulette selection is performed iteratively, where number of the 
iterations is controlled by the roulette limit 𝑅𝑙 (we experimentally use 𝑅𝑙 = 20% 𝑜𝑓 𝑉𝑁 ).

The last phase of ABC algorithm tackle with the scouts (SB). Each scout searches for a new food source instead of exhausted one. 
When denoting the exhausted food source as 𝑉𝑒𝑥ℎ, then scout discovers a new one food source instead of the exhausted. Consequently, 
the whole evaluation process in ABC algorithm is repeated within predefined number of the iteration cycles (NC). A new food source 
in the scout phase is given by the eq. (12).

𝑉𝑖𝑘 = 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑(0,0.1) × (𝑢𝑏𝑗 − 𝑙𝑏𝑗 ) (12)

Where 𝑟𝑎𝑛𝑑(0, 0.1) represents a random value from the range [0; 0.1]. The parameters 𝑙𝑏, 𝑢𝑏 stand for the lower and upper limit 
of the parameter space, for instance in the case of the correlation coefficient we use the range: [0; 1]. The final output of the ABC 
optimization is such 𝑉𝑖, for which we can state: max

(
𝑓𝑖𝑡𝑉𝑖

)
, ∀𝑖 ∈𝑁 .

3.7.7. Definition of fitness function

In the previous sections, we described the optimization methodology based on ABC algorithm with the goal to find a decomposi-

tion scheme of evaluation matrix, representing a spatial distribution of evaluation coefficients for the most optimal Wavelet setting 
selection. An essential element of this evolutionary approach is a fitness function. This function serves for the evaluation of each 
possible combination of the triangular fuzzy sets, consisting the decomposition model. This fitness function is aimed on bringing a 
global information about the quality of each configuration of fuzzy triangular sets. We use the fitness function, which is based on the 
distribution of the parameter values in each triangular fuzzy set. The essential idea is forming parameters values inside each fuzzy 
set close to the shape of Gaussian distribution. Such presumption lead to decomposition regions with concentrated parameter values, 
with minimal outliers. In order to do this task, we firstly calculate the probability of each evaluation parameter value (eq. (13)).

𝑝𝑘 =
𝑝𝑎𝑟(𝑘)∑𝐿−1
𝑘=0 𝑝𝑎𝑟(𝑘)

(13)

In this approach, we suppose that the evaluation matrix contains L parameter values (number of Wavelet settings), where: 
𝑘 = 0, 1, 2, … , 𝐿 − 1, and 𝑝𝑘 stands for the probability of the parameter value 𝑝𝑎𝑟(𝑘). Each of the decomposition class is represented 
by the three parameters: two marginal thresholds t and the centroid 𝑉 , such expression can be written as: 

{
𝑡𝑖,1 𝑉𝑖, 𝑡𝑖,2

}
for 𝑖𝑡ℎ

decomposition class. Supposing the decomposition model contains 𝑝 classes, then we construct the definition vector for triangular 
fuzzy sets system (eq. (14)).

𝑇 =
[{
𝑡1,1 𝑉1, 𝑡1,2

}
,
{
𝑡2,1 𝑉2, 𝑡2,2

}
,… ,

{
𝑡𝑝,1 𝑉𝑝, 𝑡𝑝,2

}]
(14)

Gaussian distribution has the ability to maximize entropy. Since we are aimed to approximate individual decomposition classes 
with Gaussian distribution, we use the concept of entropy maximization as the main criteria for the fitness function. In this 
context, Kapur’s entropy enables measuring the compactness and separability of the decomposition classes. Supposing that we 
construct p-decomposition model, we use the following system of Kapur’s entropy functions for all the decomposition classes 
8

(eqs. (15) (16) (17) (18)).
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Table 1

Grid-Search Model Evaluation. RoD - Range of Days. Accuracy (Acc) - Model accuracy with the test set. Accuracy CV - Model accuracy with cross-validation. MSE -

Mean squared error of the model with the test set. MSE CV - MSE of the model with cross-validation. RMSE - Root-mean-square error of the model with the test set.

RMSE CV - RMSE value of the model with cross-validation.

RoD Acc. Acc. CV MSE MSE CV RMSE RMSE CV Month

1 0.9932 0.9825 0.0067 -0.0007 0.0260 -0.0367 April

3 0.9622 0.9647 0.0026 -0.0025 0.0507 -0.0490 April

7 0.9036 0.8929 0.0059 -0.0067 0.0766 -0.0490 April

14 0.8827 0.8834 0.0061 -0.0065 0.0780 -0.0813 April

30 0.8263 0.8029 0.0096 -0.0105 0.0981 -0.1025 April

1 0.9863 0.9863 0.0005 -0.0005 0.0231 -0.0239 March

3 0.9525 0.9424 0.0019 -0.0022 0.0431 -0.0467 March

7 0.9036 0.9044 0.0040 -0.0039 0.0632 -0.0622 March

14 0.8990 0.9312 0.0041 -0.0028 0.0637 -0.0527 March

30 0.8708 0.8823 0.0060 -0.0053 0.0778 -0.0727 March

𝐻1 = −
𝑡1,2∑
𝑖=𝑡1,1

𝑝𝑖

𝜔1
ln
(
𝑝𝑖

𝜔1

)
,𝜔1 =

𝑡1,2∑
𝑖=𝑡1,1

𝑝𝑖 (15)

𝐻2 = −
𝑡2,2∑
𝑖=𝑡2,1

𝑝𝑖

𝜔2
ln
(
𝑝𝑖

𝜔2

)
,𝜔2 =

𝑡2,2∑
𝑖=𝑡2,1

𝑝𝑖 (16)

𝐻𝑝−1 = −
𝑡𝑝−1,2∑
𝑖=𝑡𝑝−1,1

𝑝𝑖

𝜔𝑝−1
ln
(

𝑝𝑖

𝜔𝑝−1

)
,𝜔𝑝−1 =

𝑡𝑝−1,2∑
𝑖=𝑡𝑝−1,1

𝑝𝑖 (17)

𝐻𝑝 = −
𝑡𝑝,2∑
𝑖=𝑡𝑝,1

𝑝𝑖

𝜔𝑝
ln
(
𝑝𝑖

𝜔𝑝

)
,𝜔𝑝 =

𝑡𝑝,2∑
𝑖=𝑡𝑝,1

𝑝𝑖 (18)

Based on the Kapur’s entropy, individual fuzzy sets in p-decomposition model are specified. When taking advantage the fact to 
maximize the entropy function, we are searching such solution within the ABC optimization process which satisfy the following 
fitness function (eq. (19)). Based on the stated presumptions, the higher values of the fitness function we achieve, the better solution 
we obtain.

𝑓𝑖𝑡𝑖 = arg𝑚𝑎𝑥

(
𝑝∑
𝑘=1

𝐻𝑘

)
(19)

4. Results

4.1. Model performance

After completing the tests, the results are presented in both tabular and graphical formats. This enables easy visualization of the 
model’s performance through comparisons between predicted outcomes and actual values. Below are the results obtained using the 
Grid-Search method using the first set of hyperparameters (Kernel = Radial basis function (RBF); C = 32; Gamma = 8; Epsilon = 
0.0313), shown below in the following Table 1. It is important to note that the negative values for MSE and RMSE obtained through 
cross-validation are due to the scoring function used. In this case, a combined score is applied, which is always maximized. Therefore, 
when a test result must be minimized, as in this case, the score is negated for the scoring function to work correctly. Consequently, 
the returned score is negated when it must be minimized, while it is maximized.

Proceeding with the tests, they have been performed using Random-Search Model Evaluation with the set hyperparameters 
(Kernel = RBF; C = 86.8032; Gamma = 46.0693; Epsilon = 0.0313), see Table 2.

It can be seen how the precision of the model varies considerably using both methods. Thus, it is much more accurate when 
predicting intervals between one day and three days. However, as the number of days increases, the model begins to decrease the 
precision. The best values obtained have been for the second set of hyperparameters, in which we can observe the best values 
obtained for the set of days.

4.2. Implementation of the practical experiments

All the measurement were conducted using operating sensors with specific characteristics. For indoor 𝐶𝑂2 measurements, the 
sensors offer a range of 0 to 2000 𝑝𝑝𝑚, and accuracy of less than 50𝑝𝑝𝑚 + 2% at 25 ◦C and 1013 𝑚𝑏𝑎𝑟, and a temperature dependency 
of 2 𝑝𝑝𝑚 𝐶𝑂2∕◦𝐶 . In terms of indoor and outdoor temperature measurements, the sensors have an accuracy at 20 ◦C and a range 
of 0 to 50 ◦C. Lastly, for indoor relative humidity measurements, capacitance-type sensors were used, which provide a range of 0 to 
100% 𝑅𝐻 , and an accuracy of 3%𝑅𝐻 at 20 ◦C. Implementation, construction, and verification of the SVR model are carried out as 
9

follows:



Heliyon 9 (2023) e16114J. Vanus, J. Kubicek, D. Vilimek et al.

Table 2

Random-Search Model Evaluation. RoD - Range of Days. Accuracy (Acc) - Model accuracy with the test set. Accuracy CV - Model accuracy with cross-validation.

MSE - Mean squared error of the model with the test set. MSE CV - MSE of the model with cross-validation. RMSE - Root-mean-square error of the model with the 
test set. RMSE CV - RMSE value of the model with cross-validation.

RoD Acc. Acc. CV MSE MSE CV RMSE RMSE CV Month

1 0.9939 0.9824 0.0006 -0.0015 0.0245 -0.0366 April

3 0.9646 0.9690 0.0024 -0.0022 0.0490 -0.0461 April

7 0.9333 0.9045 0.0041 -0.0059 0.0637 -0.0768 April

14 0.9069 0.8988 0.0048 -0.0057 0.0695 -0.0750 April

30 0.8611 0.8285 0.0077 -0.0092 0.0877 -0.0955 April

1 0.9604 0.9480 0.0015 -0.0022 0.0391 -0.0466 March

3 0.9055 0.9236 0.0037 -0.0029 0.0608 -0.0535 March

7 0.9060 0.8809 0.0039 -0.0049 0.0623 -0.0692 March

14 0.9120 0.9369 0.0035 -0.0026 0.0595 -0.0507 March

30 0.9127 0.9096 0.0041 -0.0041 0.0639 -0.0636 March

Fig. 2. Block scheme of data collection within Intelligent building automation.

Step 1: Measurement of non-electrical variables (Fig. 2) Temp1, Temp2, rH, and 𝐶𝑂2 at the Ostrava Faculty of Electrical Engi-

neering and Computer Science (FEI) during two periods: March 4 to March 31, 2019, and April 1 to April 25, 2019.

Step 2: Data preprocessing by removing correlated elements, outliers, missing values, normalization, and duplicate patterns.

Step 3: Compare the model to be implemented along with other algorithms to compare its performance.

Step 4: Optimization of hyperparameters of the model to be built to obtain higher performance.

Step 5: Training of the SVR model, for the parameters obtained through the search methods explained in previous sections.

Step 6: Evaluation of the model using the described metrics, as well as through the use of cross-validation.

Step 7: Evaluation of the results achieved.

4.3. SVR 1

The tested data (spanning the same timeframe) for March 4th to March 5th, 2019 is shown in Table 2. The best results were 
obtained with the predicted course of 𝐶𝑂2 for SVR using Grid-Search hyperparameters, as indicated in the image and employing a 
five-fold cross-validation, which yielded an 𝑀𝑆𝐸 = 0.023 𝑝𝑝𝑚 and an 𝑅2 = 0.98.

4.4. SVR 2

From April 1st to April 2nd, 2019, the tested data (spanning the same time frame) is shown in Table 1 and Table 2. The best 
results were obtained with the predicted course of 𝐶𝑂2 for SVR using Random-Search hyperparameters, as indicated in the image 
and employing a five-fold cross-validation, which yielded an 𝑀𝑆𝐸 = 0.0365 𝑝𝑝𝑚 and an 𝑅2 = 0.982.

4.5. Days prediction

Predicting one day: The accuracy of both models for single-day predictions is 0.99 with a test set and 0.98 with cross-validation. 
Both models have 𝑅𝑀𝑆𝐸 values of 0.02 with cross-validation in April. Nevertheless, the results for March are lower, with Grid-Search 
achieving 0.98 compared to Random-Search 0.94, and 𝑅𝑀𝑆𝐸 values of 0.02 with Grid-Search and 0.04 with Random-Search.

Predicting three days: The three-day predictions show a similar pattern to the previous model, with both achieving an accuracy 
of 0.96 using test set and cross-validation. Additionally, the 𝑅𝑀𝑆𝐸 values of both models are comparable, with 0.04 in cross-

validation, indicating a good fit to the data. The results have been better for April, regardless of the search method used. The 
best outcome achieved an 𝑅2 = 0.96 and an 𝑅𝑀𝑆𝐸 = 0.04 𝑝𝑝𝑚. In contrast, for March, the optimal result was an 𝑅2 = 0.92 and 
10

𝑅𝑀𝑆𝐸 = 0.05 𝑝𝑝𝑚, obtained using the hyperparameters derived from Random-Search.
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Fig. 3. Prediction obtained for March.

Fig. 4. Prediction obtained for April.

Predicting seven days: In the seven-day prediction, we found a difference between the different methods, since the parameters 
obtained through Random-Search, have achieved a higher precision than that of Grid-Search, being this of 0.904, as well as a lower 
𝑅𝑀𝑆𝐸 than that of Grid-Search with a value of 0.07. For April, the best prediction obtained was 𝑅2 = 0.90 and 𝑅𝑀𝑆𝐸 = 0.06∕𝑝𝑝𝑚. By 
using the hyperparameters obtained through Grid-Search, the best result obtained for March was 𝑅2 = 0.90 and 𝑅𝑀𝑆𝐸 = 0.06∕𝑝𝑝𝑚.

Predicting fourteen days: In the fourteen-day prediction range, Random-Search achieved similar results through cross-

validation, attaining an 𝑅2 of 0.936 and an 𝑅𝑀𝑆𝐸 of 0.05 for March. These results are comparable to the values obtained with 
Grid-Search for the same month. However, for April, the outcomes have decreased to 0.89 with an 𝑅𝑀𝑆𝐸 of 0.07.

Predicting a month: For the prediction of a full month, the best result has been obtained with Random-Search, with a validation 
precision of 0.9; however, the 𝑅𝑀𝑆𝐸 committed is very low, at 0.06. For March, the predictions were better as shown in Fig. 3.

For April, the best result obtained was 𝑅2 = 0.82 and 𝑅𝑀𝑆𝐸 = 0.09 𝑝𝑝𝑚, by using the hyperparameters obtained with Random-

Search, as is shown in the next Fig. 4.

4.6. Results summary

This study describes an approach applying support vector machines to monitor the occupation of the designated space, in this 
case, the Ostrava Faculty of Electrical Engineering and Computer Science (FEI). The first part of the study explains the mathematical 
procedure on which the operation of SVM is based, as well as the implementation of the KNX system in an IoT environment since the 
data processed were obtained using the KNX system and the use of sensors temperature ◦𝐶 , relative humidity (% RH) and 𝐶𝑂2 sensors 
(𝑝𝑝𝑚) (Fig. 2). As previously mentioned, the majority of the time spent in this study was dedicated to data processing. The reason for 
this is that dealing with repeated values, missing values, outliers, and attributes on different scales requires substantial effort in order 
to achieve favorable results. Our next step was to optimize the SVR algorithm by searching for the optimal hyperparameters for our 
problem. Furthermore, we trained our model using 80% of the patterns from the April dataset. This dataset was chosen because it 
yielded the best results in the search and subsequent tests. A standard scaling has been used. However, in the initial tests, the robust 
Scaler provided better results. However, the computation time for obtaining the hyperparameters, as well as the execution of the 
11

SVR algorithm increases dramatically.



Heliyon 9 (2023) e16114J. Vanus, J. Kubicek, D. Vilimek et al.

Fig. 5. Prediction Peaks.

Following optimization, as demonstrated in Table 1 and Table 2, it has been possible to improve the initial result from 0.67 to a 
precision close to and even greater than 0.90. Additionally, the Root Mean Squared Error (RMSE) metric was employed using cross-

validation to verify the effectiveness of our model with previously unseen data. Lastly, the predicted ppm values were plotted against 
the actual values, resulting in a graph with denormalized values, which helped us understand the real values that were predicted. 
It can be seen how at the most extreme peak, as shown in Fig. 5, it corresponds to March 5 at nine and 12:14, obtaining a high 
predicted 𝐶𝑂2 level with a value of 1292 𝑝𝑝𝑚; however, the real value is 945 𝑝𝑝𝑚. So it may be a time when the windows and doors 
are closed, with the ventilation system turned off. It can be seen how, before the abrupt ascent to the maximum peak since 9:00, the 
𝐶𝑂2 levels are deficient, being around 450 to 500 𝑝𝑝𝑚. To conclude, this increase is likely due to the presence of people in the room 
as well as the closed and off ventilation systems, as previously mentioned. The concentration of 𝐶𝑂2 is medium before the peak. The 
presence of people in the room may remain constant for the next few hours, before slowly decreasing again. After that, it rises again. 
We assume that the room will remain empty until 14:00, with ventilation systems turned off and windows closed.

Moreover, To properly control HVAC (Heating, Ventilation, and Air Conditioning), three indoor air parameters must be measured 
- temperature, relative humidity, and 𝐶𝑂2 concentration. As a result of breathing, every individual releases 𝐶𝑂2. By measuring 𝐶𝑂2
concentrations, it is possible to obtain reasonably accurate information regarding the presence of people in an enclosed space or 
the time of their arrival and departure from the monitored space (Fig. 6). 𝐶𝑂2x is a natural gaseous component of atmospheric 
air and is odorless [32]. Higher concentrations of 𝐶𝑂2 may result in drowsiness, fatigue, headaches, and nausea, as well as a loss 
of concentration. It is therefore necessary to supply fresh air regularly by ventilating the living space [33]. In addition to volatile 
organic compounds (VOCs), dust, microorganisms, water vapor, and radon, other factors also affect indoor air quality. However, 
measuring all of these components would be relatively uneconomical. Therefore, it is possible to obtain information about the 
measured quantities indirectly. As an example, the article presents a newly proposed method for predicting 𝐶𝑂2 concentration from 
measurements of relative humidity and indoor temperature using a wavelet transform to remove additive noise from the predicted 
𝐶𝑂2 waveform [34]. Information about the occupancy of the monitored spaces (Fig. 6) can be analyzed retrospectively to set the 
optimal HVAC (heating, ventilation, and air conditioning) control in the living space [35]. Additionally, occupancy information can 
be used to monitor the activity of the occupants of the apartment (opening a window causes a sharp drop in 𝐶𝑂2 concentrations, 
increasing 𝐶𝑂2 concentrations means a greater number of people in the monitored space, etc.) [36].

4.7. Results of wavelet-based recommendation system

In this section, we present the experimental results of the proposed recommendation system for 𝐶𝑂2 signal prediction. For the 
testing of the proposed system, we used historical data of the predicted 𝐶𝑂2 signals. We used the predictions from April and March 
2019, where we tested the predictions for 1, 3, 7, 14 days and the whole month. So, we provide testing together for 10 𝐶𝑂2 signals. 
As an example Fig. 6, we provide a comparison between the gold standard 𝐶𝑂2 signal and predicted signal based on SVM for one 
day. We can gather information about the arrival and departure of individuals in the monitored area by analyzing the predicted 
𝐶𝑂2 values and the 𝐶𝑂2 values obtained through wavelet filtering for additive noise removal. Moreover, we can determine the time 
intervals during which people were present in the area, denoted as Δ𝑡 𝑎 = (𝑡1 − 𝑡2), Δ𝑡 𝑏 = (𝑡3 − 𝑡4), and Δ𝑡 𝑐 = (𝑡5 − 𝑡6). Time stamps are 
as follows: 𝑇 1 (arrival), 𝑇 2 (departure), 𝑇 3 (arrival), 𝑇 4 (departure), 𝑇 5 (arrival), 𝑇 6 (departure), 𝑇 7 (arrival), and 𝑇 8 (departure).

4.8. Analysis of spatial maps

In this part, we present experimental results of the spatial (2𝐷) mapping of Wavelet distributions. As we described in the previous 
text, this approach enables to perform a complex distribution of multiple wavelet response for given 𝐶𝑂2 signal, or group of the 
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signals. Another important fact is a versatility of the proposed scheme in the context of any number of wavelets from one or multiple 
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Fig. 6. Comparison of predicted one-day 𝐶𝑂2 signal from April (1) and March (2) with the gold standard signals.

Fig. 7. Spatial modeling of wavelet response for one-day April prediction for wavelets db1-db5: corelation spatial matrix (1) and MSE spatial matrix (2).

wavelet’s families and levels of decomposition. We determine the wavelet response distribution by using spatial color mapping, which 
allows us to distinguish individual levels of the response. Fig. 7 shows experimental results of the correlation coefficient and mean 
square error (MSE) for selected wavelets in the Daubechies family (db): db1-db5 in Fig. 7, and db1-db20 in Fig. 8. These results are 
shown for both one-day and one-month predictions. When compared to other families, the Db family demonstrates better performance 
in terms of lower MSE values and higher correlation indices between the gold standard 𝐶𝑂2 signal and the respective prediction 
from SVM. Analyzing the spatial maps Fig. 8, we found comparatively different MSE values from shorter (one-day) prediction and 
a longer time period (month-prediction), where MSE values are approximately ten-times higher. This fact predetermines substantial 
13

differences also in effectivity of SVM prediction for various length of 𝐶𝑂2 signal prediction.
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Fig. 8. Spatial modeling of wavelet response for one-day April prediction for wavelets Db1-Db20: corelation spatial matrix (1) and MSE spatial matrix (2).

4.9. Features analysis from spatial map

Based on the spatial maps, we can evaluate the 𝐶𝑂2 signal distribution in arbitrary 2𝐷 domain. Such spatial maps allow subjective 
evaluation regarding particular evaluation parameter as a level of quality prediction. In order to provide a robust quantitative 
analysis, we extracted statistical features, which can evaluate trend and distribution of wavelet features among various settings, 
signal length and individual tested families. Based on the experimental testing, we found that Db family appears as effective for 
𝐶𝑂2 signal prediction – we provide later a justification of this statement. Thus, we firstly provide a comparison of histograms for 
the tested predictions from April and March. We provide a comparison of histograms, representing the distribution of MSE values 
for the wavelets: Db1-Db5, with decomposition levels: 1-5 (Fig. 9), and Db1-dB20, with decomposition levels 1-20. Based on the 
results, we can conclude that individual distribution for the same time period is separate. That means that we receive a significantly 
different MSE values for various tested months. This fact is better observable in shorter predictions. In the case of one-month 
prediction for April, both histograms are partially overlaid. Thus, in this case, there are slighter difference between both predictions. 
These distributions also well illustrate the difference in MSE values in the dependence on the time of prediction. It is notable that 
for shorter predictions we receive smaller MSE values when comparing with for instance one-month prediction. This fact brings a 
modeling of the SVM accuracy for different time-period of prediction.

Lastly, we provide the characteristic (Fig. 10) of the globally best wavelet settings among all the tested wavelet families. This 
part of the analysis we consider as the most important from the view of appropriate wavelet selection. Here, we must note that 
this characteristic brings the information about the comparison among individual tested wavelet families, and not particular wavelet 
settings, appearing as the best for particular 𝐶𝑂2 signal. In this comparison, we constructed the spatial wavelet distributions for the 
whole families: Daubechies, Symlet, Coiflet, Biorthogonal, Reverse Biorthogonal, Shannon and Gaussian. For each of these settings, 
we selected the minimal MSE values, representing the global best evaluation of respective family. When analyzing the results in 
Fig. 10, it is also obvious an increasing trend of MSE values for all the tested wavelet settings. Here, we can objectively justify that 
Db family (red mark) is comparatively better to others. Therefore, it is obvious this family would be the most suitable for the 𝐶𝑂2
signal prediction, judging by MSE evaluation.

4.10. Classification of wavelet response

In the previous analysis of the results of the enhancement of 𝐶𝑂2 signal prediction, we studied the behavior of individual wavelet 
families and the prediction period on the signal prediction accuracy. As we report earlier, Db family appears as the most optimal 
based on the spatial map and consequent feature extractions. On the other hand, such analysis does not bring the information which 
particular wavelet settings (mother’s wavelet and decomposition level) appears as the best to be used in the proposed prediction 
system. The major problem is we can expect various the best wavelet settings for different 𝐶𝑂2 signals. That is a complication in the 
context of selection unique wavelet settings for arbitrarily 𝐶𝑂2 signal prediction. In order to build a robust prediction system, we 
employed a classification procedure to select a set of the most suitable wavelet settings, satisfying any 𝐶𝑂2 signal, regardless its time 
prediction.

This classification procedure performs the matrix decomposition based on the fuzzy soft thresholding driven by evolutionary ABC 
algorithm. This decomposition procedure classifies the spatial wavelet response for any evaluation parameter into predefined number 
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of classes, representing the quality of wavelet response. In this study, we use number of classes (𝐿 = 3). This configuration performs 
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Fig. 9. Comparison of histograms for April (blue) and March (red) of MSE distributions for the wavelet settings: Db1-Db5 and level of decomposition: 1-5. One-day 
prediciton (1a), three-day prediction (1b), seven-day prediction (2a), and month prediction (2b).

Fig. 10. A comparison of individual tested families for various time prediction, where data from April and March were averaged.

the decomposition into the least suitable, neutral and the most suitable settings. We tested the proposed system for the number 
of food sources (𝑁 = {100, 200,500,1000,2000,5000}) and the number of iterations (𝑁𝐶 = {100, 500,1000,5000}). Fig. 11 represents 
an example of the decomposition procedure for the spatial map of MSE parameter see Fig. 11 (1). This decomposition performs 
the spatial map labeling, according to the classification of wavelet settings into individual classes, an unique color is selected for a 
respective class to visually distinguish individual settings. Blue mark indicates the class with the most suitable wavelet settings (the 
lowest values of MSE), green neutral settings and blue the least effective settings. Consequently, we present a binary classification 
(see Fig. 11 (2)), where we selected the class with the lowest MSE values as logical one, and others are suppressed as logical zero.

ABC optimization algorithm is linked with initial settings of the parameters 𝑁𝐶 and 𝑁 , as we mentioned earlier. Thus, it is needed 
to evaluate the most suitable settings for using ABC algorithm for finding the optimal wavelet settings. ABC algorithm classifies the 
most suitable wavelet sets for each tested 𝐶𝑂2 signal (1, 3, 7, 14-day and month prediction). For each such signal, we receive a finite 
set of classified mother’s wavelets and decomposition levels.

Since we need to achieve a unified set of these wavelet settings, we compute the intersection of these best wavelet settings 
for to find mutual wavelet settings, suiting all the signals periods. This operation is done for all the ABC settings. Quality of each 
such ABC settings is evaluated based on the average MSE of classified wavelet with the gold standard. Logically, the most suitable 
wavelet settings are that, which minimize MSE function. In order to evaluate these settings, we constructed spatial evaluation 
matrix: 𝐴𝐵𝐶𝑀𝑆𝐸 (𝑁, 𝑁𝐶), representing the MSE distribution for all the testing settings. Based on the experimental results, we select: 
15

𝑁 = 1000 and 𝑁𝐶 = 500 as the best compromise, minimizing the MSE function.
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Fig. 11. An example of decomposition matrix for wavelet response classification for 14-day prediction in April (a) and 14-day in March (b) based on MSE – upper 
row (1), and the binary classification of the wavelet response (2).

Fig. 12. Difference distribution for individual prediction periods for wavelet settings: Db5 and level 4.

For this configuration, we found wavelets Db5 with decomposition level 4 as the most effective with minimal MSE function 
against the gold standard 𝐶𝑂2 signal. As we selected the most suitable wavelet settings, we objectivize a difference distribution 
between individual smooth 𝐶𝑂2 signals (Db5, level 4) and its gold standards. We constructed these difference distributions for all 
the samples in both signals: wavelet prediction and gold standards (Fig. 12). Judging by the results, comparable differences can 
be noted for various time predictions. It is obvious that the lowest difference is achieved for one-day prediction, contrarily the 
month prediction exhibits higher differences. Completely, all the difference distributions show differences below 4%, which can be 
considered as satisfactory results.

As an example of the smoothing procedure, we provide the example (Fig. 13) of testing the wavelet smoothing prediction on 
real 𝐶𝑂2 signal. For the comparison, we show the gold standard signals from April prediction for one day and the whole month. We 
noted only neglectable difference between both signals, leading to improving the prediction accuracy.

Lastly, we provide a comparative analysis (Fig. 14) of the MSE evaluation between the original predictions for all the tested 
time periods and the smoothing procedures (Db5 and decomposition level 4). Here, we provide a percentual difference between 
individual predictions before and after the smoothing procedure. We can notice slightly different results between April and march 
predictions. That points out relatively robust wavelet settings for various datasets. For the predictions 1 − 14-period, we obtained 
a decreasing tendency. Nevertheless, the interesting fact is a relatively high difference in month prediction (around 9%) where the 
original prediction was the most inaccurate compared with other periods, and the smoothing procedure was able to significantly 
16

improve the prediction accuracy.
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Fig. 13. An example of the gold standard 𝐶𝑂2 signal and predicted signal with wavelet-based smoothing with Db5 and decomposition level 4 for one-day prediction 
(1) and month prediction (2).

Fig. 14. Representation of MSE distribution for various time-predictions between original data and smooth signals (Db5 and decomposition level 4).

5. Discussion

In this paper, we proposed a combined method for improving and analyze the SVM prediction of 𝐶𝑂2 signals in the concept of 
the smart home. We used the tested data for different time periods, where for all the records we use the gold standard to evaluate the 
quality of the prediction. We use 1, 3, 7, 14-day, and month predictions for testing the proposed prediction system. In this prediction 
system, we utilize the features of Wavelet transformation for data smoothing. Wavelet transformation is a versatile approach, offering 
a lot of settings especially the selection of mother’s wavelets and decomposition levels. These parameters are essential for the effect 
of wavelet-based smoothing.

Instead of randomly selecting combinations of wavelet settings to be used for the prediction enhancement, we proposed a ver-

satile scheme, representing a spatial 2D distribution of wavelet response of arbitrarily wavelet settings based on selected evaluation 
parameters (in this study, we use correlation index and MSE). These spatial characteristics allow for simultaneously analyze multiple 
wavelet features and decide between more and less suitable wavelet settings. Based on the features extraction of such spatial wavelet 
distributions, we found that Daubechies wavelets appear as the most suitable for 𝐶𝑂2 signals prediction enhancement, judging by 
the lowest MSE values and the highest correlation index when comparing with other wavelet families. Therefore, for further analysis, 
we only use Db family settings for signal smoothing.

The main task in this analysis is the selection of single, or multiple wavelet settings, which approximate the 𝐶𝑂2 signal trend 
with minimal error functions against the gold standard signals. This task is done based on the feature extraction of the proposed 
spatial maps. In order to extract the most suitable wavelet settings, we employ the classification procedure based on the matrix 
17

decomposition via fuzzy soft thresholding driven by ABC evolutionary optimization procedure. We use three decomposition classes, 
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Table 3

Comparison with state-of-the-art approaches for occupancy estimation and 𝐶𝑂2 sensing.

Topic of the Article Observations Accuracy (%)

Hidden Markov models (HMM) in occupancy estimation: 
A novel methodology applied to the study case of occupancy 
detection [38]

Occupancy estimation and detection, HMM 97.8

A Hybrid of Interactive Learning and Predictive Modeling for 
Occupancy Estimation in Smart Buildings [39]

Occupancy estimation, classification - predictive 
distribution, generalized Dirichlet (GD), set of small and 
simple nonintrusive sensors

87.5

Human activity recognition (HAR), activities of daily living 
(ADL) [42]

motion detectors [PIR] and door entry sensors, novel 
method based on different entropy measures

99.1

Occupancy-Driven Energy-Efficient Buildings Using Audio 
Processing with Background Sound Cancellation [43]

occupancy information in real time, environmental sounds 
on the recorded voice sounds of humans, background sound 
cancellation algorithm

80.8

Accurate people counting towards energy efficient 
buildings [40]

People counting, IoT, Lattice iCE40-HX1K stick FPGA 
boards and Raspberry Pi modules, direction of human 
movement

97.0

Neural Embedding Singular Value Decomposition for 
Collaborative Filtering [44]

Filtering, Singular value decomposition (SVD), 
recommender systems (RSs), neural network

–

Measuring Indoor Occupancy through Environmental 
Sensors [37]

𝐶𝑂2 sensing as the main environmental parameter and RH 
as priority measures, data processing for occupancy 
detection - preferred Machine Learning algorithms such as 
SVM, RF and ANN

–

Our study 𝐶𝑂2 sensing, occupancy estimation in intelligent building, 
big data analysis, support vector machine (SVM), wavelet 
transformations

87.1 – 99.3

recognizing wavelet settings as the most suitable, neutral, and the least suitable for 𝐶𝑂2 signals. This recommendation system is 
capable of identifying the wavelet settings, which should minimize the error function for respective 𝐶𝑂2 signals against its gold 
standard.

The proposed approach has several advantages as summarized below:

• Use of operational sensors measuring the quality of the indoor environment (𝐶𝑂2, Temperature, relative humidity) [37] to 
determine the prediction of the course of the 𝐶𝑂2 concentration as part of the occupancy detection of the monitored spaces in 
the Smart Home.

• Using an indirect method (without violating privacy, e.g. a camera) to determine the occupancy of monitored spaces [38,39]

within the IoT [40,41].

• Using the SVM method to predict the course of the 𝐶𝑂2 concentration with great accuracy for the measured data in an interval 
of 1 day (accuracy was better than 98%) see Table 1 and Table 2 [40,37].

The results of the proposed method are comparable with the state-of-the-art approaches, as summarized in Table 3.

Future research should focus on the cost-effective sensor placement and exploration of fusion modules [37] that can reduce data 
redundancy while correlating subject measurements from multiple points [45]. The further approach for the 𝐶𝑂2 prediction in real 
time [43] utilizes other methods for own 𝐶𝑂2 prediction such as HMM [38], SVD [44] for HAR and ADL with the possibility of using 
other sensors, e.g. (motion detectors [PIR] and door entry sensors) [42] and using new methods [44] to additive noise canceling in 
the predicted course of the 𝐶𝑂2 signal. Moreover, as suggested in [46], the classification can be further improved by projecting the 
training instances into the low-dimensional singular subspace; the SVM can train the classification model on it while not violating 
the privacy requirements for the training data. The main advantage such approach is that singular value decomposition does not 
need to calculate the matrix of covariance, such as in the case of other methods, for example eigenvalue decomposition. The method 
also protects privacy of the training instances before training the classification model.

Nevertheless, we are aware of certain limitations in this approach that could be summarized as follows:

• Additive noise appeared in the prediction of the course of 𝐶𝑂2 concentration [44].

• For the measured data within a one-week and two-week interval (Table 1, Table 2), the accuracy of the used method of predicting 
the course of 𝐶𝑂2 decreased to values of around 80%.

• A lack of direct comparisons with other relevant algorithms. By not including these comparisons, we may not be able to fully 
assess the effectiveness of our chosen model in relation to alternative approaches. This could potentially limit the generalizability 
and applicability of our findings.

To eliminate the disadvantages of the proposed method, the Wavelet method was used to additive noise canceling in the predicted 
course of the 𝐶𝑂2 signal. It is needed to mention that the proposed system utilizes the mother’s wavelet and the decomposition level 
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as the wavelet-based features, which are evaluated for the prediction enhancement. Looking at the wavelet-based smoothing, there 
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are further parameters that may influence the smoothing effect. Since this procedure utilizes the wavelet coefficient thresholding, 
we select the threshold selection rule and type of thresholding. In this study, we used the principle of Stein’s Unbiased Risk as 
a thresholding rule and soft thresholding. In the future study, it would be worth studying the significance of wavelet response 
differences between soft and hard thresholding, and individual thresholding rules. Thus, the impact of these settings on prediction 
accuracy. Also, we should mention that we use two predictions from April and March for modeling the wavelet response, where we 
can observe the significantly different wavelet responses, especially for the different time periods. To better prove the robustness of 
the proposed method, we are going to perform testing on the extensive dataset to verify the achieved results from this study.

6. Conclusion

The presented work can be used for the area of technological support of independent housing of seniors, elderly and disabled 
persons in buildings where automation of the operational and technical functions (SH) is implemented with regard to the needs of 
the inhabitants with the possibility of monitoring daily life activities.

The article describes the design and verification of the indirect method of predicting the course of 𝐶𝑂2 concentration (ppm) 
using SVR with parameter optimization techniques for monitoring the presence of people in the Ostrava Faculty of Electrotechnics 
and Computer Science (FEI). The article further describes the method of Support Vector Regression (SVR) for predicting the course 
of 𝐶𝑂2 from the values measured by the relative temperature and humidity sensors. For estimating 𝐶𝑂2 concentration in the air in 
order to obtain information on the occupancy of individual rooms (arrival time, departure time, number of people). There are much 
better methods for predicting human occupation by measuring the level of 𝐶𝑂2 (ppm), such as neural networks [47], as well as 
methods for optimizing model parameters, both regression and classification.

As it has already been commented in the development of this research, due to the computation time of the Grid-Search method 
with a large data set, it is possible that the performance of the optimization of these parameters can be improved by another class of 
algorithms [48,49], such as genetic algorithms [50], Particle Swarm Optimization (PSO) [51], possible improvements in Grid-Search, 
algorithms based on sine-cosine, and multi-objective optimization [52]. In this way, it is possible to achieve optimal hyperparameters 
in reasonable computation time, thus trying to improve the prediction model to a level of reliability higher than that obtained in the 
development of this study.
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