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Abstract

Understanding how cells change their identity and behaviour in living systems is an

important question in many fields of biology. The problem of inferring cell trajectories from

single-cell measurements has been a major topic in the single-cell analysis community, with

different methods developed for equilibrium and non-equilibrium systems (e.g. haemato-

poeisis vs. embryonic development). We show that optimal transport analysis, a technique

originally designed for analysing time-courses, may also be applied to infer cellular trajecto-

ries from a single snapshot of a population in equilibrium. Therefore, optimal transport pro-

vides a unified approach to inferring trajectories that is applicable to both stationary and

non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural

way from the hypothesis of a Waddington’s epigenetic landscape. We implement Stationar-

yOT as a software package and demonstrate its efficacy in applications to simulated data as

well as single-cell data from Arabidopsis thaliana root development.

Author summary

Many important biological phenomena involve populations of cells that undergo changes

in behaviour over time to achieve a desired state or function. Modern experimental tech-

nologies are able to measure aspects of cell state but cannot observe a cell at more than a

single instant in time, since the cell is necessarily destroyed in the measurement process.

Therefore, the relationship between the present and future states of a cell, which we call its

trajectory, must be inferred from observable data. Since biological processes are naturally

noisy, we model cells as evolving following a stochastic dynamical system with growth.

We show that for datasets drawn from a population of cells in equilibrium and when esti-

mates of cell growth rates are available, cellular trajectories can be estimated by solving an

optimal transport problem. We validate our method using simulated data and demon-

strate an application to transcriptomic data from Arabidopsis thaliana root development.

This is a PLOS Computational Biology Methods paper.
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Introduction

Biological processes at the cellular level are driven by stochastic dynamics—cellular popula-

tions evolve through time, driven by regulation at the cellular and tissue level and intrinsic

noise arising from thermal fluctuations. In the context of developmental biology, these pro-

cesses have been classically described by Waddington’s metaphor of an epigenetic landscape

[1], in which differentiating cells can be thought of as evolving from regions of high differenti-

ation potential into valleys corresponding to differentiated cell types. In the last decade, this

metaphor has evolved to be much more quantitative [2, 3]. Modern high-throughput assays

such as single-cell RNA sequencing (scRNA-seq) [4, 5], scATAC-seq [6] and CyTOF [7] now

allow the molecular states of thousands of single cells to be profiled in a single experiment.

With the ability to make these precision measurements of cell state, new challenges emerge in

analysing these new types of high-dimensional data.

Single-cell measurements are destructive in nature, so the state of any individual cell cannot

be observed at more than one instant. Therefore, information about the trajectories taken by

cells over time is lost and must instead be inferred from data. A large collection of trajectory

inference methods have been developed in recent years [2] to address this issue. These meth-

ods broadly fall into two classes [8]: (1) methods that deal with a single stationary snapshot

observed from a cellular population at equilibrium [9–11], and (2) methods that deal with a

time series of snapshots from an evolving population [3, 8, 12].

Time-series experiments are a natural approach for observing biological systems where cel-

lular populations undergo dramatic, synchronous changes, such as in embryogenesis or stem-

cell reprogramming [3, 13–16]. Trajectory inference methods for time series data primarily

seek to infer cellular transition events from snapshots of one timepoint to the next. On the

other hand, development occurs continuously and asynchronously in many biological systems

such as haematopoiesis and spermatogenesis. These systems maintain a stationary population

profile across various cell types and can be thought of as being in dynamic equilibrium (i.e.

steady state). Snapshots therefore capture cells from across the full progression of cell states

from undifferentiated to fully differentiated cells. Trajectory inference for snapshots sampled

from these steady-state systems seek to (a) infer the progression of cells in “developmental

time” (commonly referred to as pseudotime) [10, 17], and (b) uncover bifurcation events or

“cellular decisions” occurring in the differentiation process [9, 18].

In this paper we show that optimal transport analysis, a technique originally applied to ana-

lyse time-courses [3], may also be applied to infer cellular trajectories from a single snapshot of

a population in equilibrium. Therefore, optimal transport (OT) provides a unified approach to

inferring trajectories, applicable to both stationary and non-stationary systems. Our approach

is theoretically justified when the trajectories are driven by a potential landscape, as in [18].

Our method has the potential for extensions to incorporate additional information such as

estimates of the vector field obtained from RNA velocity methods [19, 20] or metabolic

mRNA labelling [21]. When such information is available, we can recover certain aspects of

non-conservative dynamics such as oscillations. Beyond transcriptomics, our method can be

applied to measurements where velocity information cannot be provided, such as scATAC-seq

[6] and CyTOF [7]. Finally, the output of our method could be provided to downstream

methods which aim to extract high-level information from the learned single-cell transition

probabilities. Two methods [21, 22] are especially applicable: CellRank [22] leverages the the-

ory of Markov chains to find groups of cell states and uncover lineage driver genes, while

Dynamo [21] can construct a continuous vector field that is amenable to dynamical systems

analysis.
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Modelling assumptions

Development as drift-diffusion with birth-death. We model cells as points in a space X ,

which we take to be a representation of the space of possible cellular molecular states (for

instance, in the case of scRNA-seq data, X represents the space of gene expression profiles).

Typically, we will take X � Rd
to be the ambient state space. We regard cells as evolving fol-

lowing a drift-diffusion process [18, 23, 24] described by the stochastic differential equation

(SDE)

dXt ¼ vðXtÞdt þ s dBt: ð1Þ

where Xt 2 X is the state of a cell at time t, v is a vector field, the diffusivity σ2 captures the

noise level and dBt denotes the increments of a Brownian motion. Over time a cell traces out a

path, or trajectory, Xt in the state space. We illustrate these concepts in Fig 1A. In addition,

cells are subject to division and death events at exponential rates β(x) and δ(x) respectively,

which may vary in spatial location in X . That is, in an infinitesimal time interval dt, a cell Xt

may divide with probability β(Xt) dt or die with probability δ(Xt) dt. The underlying assump-

tion in our framework is that the evolution of cell states can be well-described by a Markov

process. While in reality this property may not be truly satisfied, we note that many other

methods [18, 20–22] also make this assumption for the sake of analytical tractability.

Population-level model. At the population level, the drift-diffusion process with birth

and death can be described by a population balance partial differential equation (PDE) [18, 25]

@trðx; tÞ ¼ � r � ðvðxÞrðx; tÞÞ þ
s2

2
r2rðx; tÞ þ RðxÞrðx; tÞ; ð2Þ

where ρ(x, t) is a continuous population density, and R is a spatially varying flux rate defined

as R(x) = β(x) − δ(x) that captures creation and destruction of cells due to birth and death, as

well as entry and exit from the system. For R(x)> 0 we refer to x as a source state, and similarly

for R(x) < 0 we refer to x as a sink state.

Observation model. As we discussed earlier in this introduction, many biological pro-

cesses exist approximately in an equilibrium or steady state. In this setting, a snapshot at a sin-

gle instant in time will capture all stages of cellular development in the system [2, 18], and

relative proportions of various cell types remain unchanged over time. Mathematically at the

population level, this assumption amounts to demanding that @tρ(x, t) = 0 in Eq (2), that is,

Fig 1. Conceptual illustration of inference problem. (a) Vector field (grey), sample trajectory (green) and observed cell state (red) drawn from ground truth process. (b)

Sampled snapshot with labelled source (red) and sink (blue) states. (c) Inferred state transition probabilities. (d) Fate probabilities calculated from Markov chain.

https://doi.org/10.1371/journal.pcbi.1009466.g001
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the population level cell density does not change. We will write ρeq(x) for this steady-state solu-

tion. Experimental observation of such a system is therefore equivalent to sampling a collec-

tion of N cellular states from the population, i.e.

X1; . . . ;XN � req:

We may describe this finite sample as an empirical distribution r̂eq supported on the discrete

space �X ¼ fXig
N
i¼1

,

r̂eq ¼
1

N

XN

i¼1

dXi
: ð3Þ

Fig 1B shows an example of such a sample dataset drawn from the equilibrium distribution,

where we have identified also source and sink states.

Inference goal

Laws on paths. The process described by (1) and (2) is a superposition of a birth-death

process and a drift-diffusion process. The drift-diffusion component of this process, described

by Eq (1), governs the evolution of individual cell states. Therefore, we seek to learn something

about the drift-diffusion dynamics from observed snapshot data. In the framework of SDEs,

Eq (1) (equipped also with an initial condition) induces a probability distribution over the

space of possible cell trajectories. As we also argue in [23], this law on paths is the natural

object we seek to estimate since it directly encodes the trajectories that cells may follow. In

practice, since the process is time-homogeneous, it is characterised by its time-Δt transition

densities P[XΔt 2 �|X0 = x]. We illustrate in Fig 1C the concept of a transition density in the dis-

crete setting of Eq (3). As we will find, an approximation of this transition density for small

enough Δt can be obtained as the solution to a strictly convex minimisation problem. Conve-

niently, we do not have issues of multiple local minima which may be the case if we attempt to

recover the drift field v or potential landscape C directly, such as in [26, 27].

Identifiability. For the sake of making inferences about the law on paths induced by Eq

(1), we must necessarily have estimates of the flux rate R(x) and the noise level σ2. As discussed

at length by Weinreb et al. [18], when only a single snapshot (i.e. r̂eq) is available, in general

more than one drift field v can give rise to the same steady-state density profile ρeq. To ensure

uniqueness of the solution, we must restrict to the case where the drift is given by the gradient

of a scalar potential [18, 23], i.e. v = −rC. We note that C can be thought of a kind of Wad-

dington’s epigenetic landscape [1]. For completeness, we provide an example illustrating the

issue of identifiability in S1 Appendix.

Related work

The SDE framework of Eq (1) is a classical choice for modelling cell state dynamics [24, 28].

For a system at steady state with drift v = −rC, solution of the corresponding Fokker-Planck

equation yields a well-known relationship between the steady-state population density ρeq and

potential function C:

0 ¼ r � ðreqrCÞ þ
s2

2
r2req

) CðxÞ ¼ �
s2

2
logreq:

In practice, a potential landscape can be reconstructed using this relationship if the steady-
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state density ρeq can be estimated from samples, typically using techniques such as kernel den-

sity estimation [26, 28], although this can be difficult in high dimensions. This approach, how-

ever, ignores cell growth and death because the PDE above lacks a source term on the left-

hand-side. This observation motivates the addition of the flux rates R(x) to form a more gen-

eral model as we have done in Eq (2). Once flux is added to the model, a different steady-state

solution will be achieved.

In an alternative methodological direction, a significant amount of work has been devoted

towards the problem of recovering the topology of the dynamics [11, 29, 30]. This can be

thought of as a coarse-grained approach that is concerned with uncovering features such as

bifurcations. While extracting the topology is certainly powerful and highly interpretable,

there is an inherent loss in resolution, since these methods do not truly estimate dynamics at

the level of single cells. For this reason, we consider in this paper the Fokker-Planck framework

at the level of single cells.

Weinreb et al. [18] previously investigated the inference problem for this model and dis-

cussed at length the need for a gradient system for identifiability. In addition, the authors pre-

sented population balance analysis (PBA), a methodological framework for estimating the

potential C based on spectral graph theory. Although our approach and that of [18] share a

problem formulation and may indeed perform similarly, we note that the theoretical founda-

tions of the two approaches are fundamentally distinct—our method is based on solving a con-

vex optimisation problem for the transition probabilities, whilst PBA solves a system of linear

equations for the potential. As an optimisation-based method, optimal transport also allows

for incorporation of additional information such as velocity estimates.

Optimal transportation (OT) theory is a mathematical area of study concerned with opti-

mally coupling probability distributions [31] which has recently found diverse applications in

statistics, machine learning and computational geometry. Optimal transport has been applied

to the problem of tracking particle ensembles [32, 33], and to single-cell trajectory inference in

the setting of time-series population snapshots in [3, 26]. Subsequent work has extended both

methodology and theory in this direction, e.g. [23, 27, 34–36]. However, these works focus on

the setting where multiple snapshots are available over a series of time-points. We show in this

work that optimal transport can be applied in a natural way to the case of a single stationary

snapshot, further establishing optimal transport as a widely applicable and robust framework

for single-cell trajectory inference.

Results

Overview of results

To motivate the mathematical framework for our method, we will consider first the popula-

tion-level setting of infinitely many cells. We then reduce this to the discrete setting where we

deal with finite samples drawn from the steady state population. We name our method Statio-

naryOT and implement it as a software package. Next, we apply the method to simulated data-

sets sampled from drift-diffusion processes in the setting of both potential-driven and non-

conservative vector fields. Finally, we demonstrate an application to a stationary snapshot

scRNA-seq dataset in Arabidopsis thaliana root tip development and discuss approaches for

applying StationaryOT to very large datasets by utilising GPU acceleration, showing that our

method can scale to 1.1 × 105 cells with runtimes of *1 hour.

Throughout this paper, we consider using either entropy-regularised or quadratically-regu-

larised optimal transport for the main step of the StationaryOT method. Although entropy-

regularised optimal transport is the one that arises naturally from the theoretical motivation,

we demonstrate in practice that using the quadratic regularisation generally leads to results
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that are more robust and interpretable, as well as being more computationally favourable

thanks to sparsity of the recovered transition laws, without substantial sacrifices to accuracy.

Methodology: Population level

At the steady state of the process described by Eq (2), the population density profile is constant,

i.e. ρ(�, t) = ρeq. However, at the microscopic level, individual cells Xt continue to undergo

drift-diffusion according to Eq (1), as well as birth-death. Thus, observation of population pro-

files in the stationary setting do not contain information about the dynamics of individual par-

ticles, unlike the non-stationary setting of time series measurements [3, 23].

Suppose that we are able to observe a cell Xt from the stationary population at time t, and

again at time t + Δt (conditioned on not dividing, dying or exiting from the system in that time

interval). Then the joint distribution (Xt, Xt+Δt) would capture information about all possible

transitions in cell state over a time interval Δt. The system is at a steady state and the dynamics

are Markov, so knowledge of the time-Δt evolution of the system captures the full law on paths

that results from the drift-diffusion component, at least at times {kΔt, k = 0, 1, . . .} by simply

composing Markov transitions.

Since we may access densities but not track individual particles, we cannot measure the

joint distribution (Xt, Xt+Δt) directly. Therefore, we seek to infer it from observation of a single

snapshot ρeq and information about the birth-death rates as well as noise level. In the underly-

ing process both birth-death and drift-diffusion take place simultaneously, leading to compli-

cations in directly reasoning with probability laws. In order to simplify this, we approximate

the evolution of the process by introducing an artificial separation of the effects of growth and

transport, inspired by operator splitting methods from numerical analysis [37]. That is, we

split the linear equation Eq (2) into equations corresponding to growth and transport in the

densities ρG and ρT respectively:

@rG

@t
¼ RðxÞrGðx; tÞ; ð4Þ

@rT

@t
¼ � r � ðvðxÞrTðx; tÞÞ þ

s2

2
r2rTðx; tÞ ð5Þ

where rGð�; 0Þ ¼ reqð�Þ and rTð�; 0Þ ¼ rGð�;DtÞ: ð6Þ

Then ρT(�, Δt) is a splitting approximation of the true steady-state solution ρ(�, Δt) = ρeq(�) of

Eq (2), and the two coincide in the limit Δt! 0 with pointwise approximation error of order

OðDt2Þ [37, Section 1.3], i.e.

rTðx;DtÞ ¼ rðx;DtÞ þOðDt2Þ; x 2 X : ð7Þ

We provide a conceptual illustration of this scheme in Fig 2. The solution of Eq (4), corre-

sponding to the growth step, can be determined to be exactly

rGðx;DtÞ ¼ rðx; 0Þe
DtRðxÞ ¼ rðx; 0ÞgðxÞDt;

where we have taken g(x) = eR(x).

It therefore remains for us to examine the effects due to transport as described by Eq (5).

Since the overall system is assumed to be at steady state, composing the effects of growth and

transport should yield the initial density ρ(�, 0) = ρeq(�) up to the OðDt2Þ error introduced by

the splitting approximation. For brevity, let us denote μ0 = ρT(�, 0) and μ1 = ρT(�, Δt) to be the

distributions before and after transport. Under the splitting approximation, our problem of
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estimating the joint law (Xt, Xt+Δt) conditional on no birth or death events amounts to finding

an appropriate coupling γΔt of (μ0, μ1), i.e. a joint distribution γΔt on X 2
whose marginals agree

with μ0 and μ1. We note that the contribution of transport to the dynamics involves drift and

diffusion, which scale as OðDtÞ and Oð
ffiffiffiffiffi
Dt
p
Þ respectively. Since the error incurred by separat-

ing the effects of growth and transport scales as OðDt2Þ, the scheme is asymptotically

consistent.

Inference by optimal transport

By the previous construction, we seek to couple the distributions (μ0, μ1) in a way that approxi-

mates the “true” underlying transition law (Xt, Xt+Δt). To be concise, we write

Pðm0; m1Þ ¼ fp 2MþðX � XÞ :

Z

pðdx; �Þ ¼ m1;

Z

pð�; dyÞ ¼ m0g

to denote the set of possible couplings between μ0 and μ1. For a set of prescribed marginals

there are in general many valid couplings: indeed, for any μ0, μ1 we may always construct the

independent coupling, μ0� μ1. Therefore, additional assumptions on the nature of the process

driving the evolution from μ0 to μ1 are needed if we desire a unique “best” coupling.

From the drift-diffusion step of Eq (5), we know that the evolution from μ0 to μ1 is

described by a drift-diffusion equation (with no source term). At the level of individual parti-

cles, this is equivalent to Eq (1). We note further that for Δt small, the effect of the drift compo-

nent is OðDtÞ and is therefore drowned out by the effect of the diffusion component which is

Oð
ffiffiffiffiffi
Dt
p
Þ. Thus, for small Δt, the setting which we approach is that of a diffusive evolution in

time Δt from μ0 to μ1, and the most likely coupling γΔt is unique and is characterised by an

entropy minimisation principle that is well known in the literature of optimal transport and

large deviation theory [38]. Specifically, the optimal coupling γΔt is the minimiser of the so-

called Schrödinger problem:

min
gDt2Pðm0 ;m1Þ

HðgDtjKs2DtÞ: ð8Þ

In the above, HðajbÞ ¼
R
da log da

db

� �
is the relative entropy between distributions, and Kσ2Δt is

Fig 2. Illustration of the splitting scheme for decomposing Eq (2) into growth (Eq (4)) and transport (Eq (5)).

Composing the effects of growth and transport must maintain the steady-state profile ρeq. The coupling induced by

transport is recovered by matching ρG(�, Δt) and ρT(�, Δt).

https://doi.org/10.1371/journal.pcbi.1009466.g002
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the kernel

Ks2Dtðx; yÞ ¼ exp �
1

2s2Dt
kx � yk2

� �

;

corresponding to the time-Δt evolution of a Brownian motion in X with diffusivity σ2.

The problem Eq (8) is also known in the optimal transport literature as entropy-regularised

optimal transport [31], where the objective to be minimised is often written in the alternative

form

min
gDt2Pðm0;m1Þ

Z

Cðx; yÞdgDtðx; yÞ þ εHðgDtjLebÞ ð9Þ

where Cðx; yÞ ¼ 1

2
kx � yk2

is a quadratic cost function, ε = σ2Δt is the entropy regularisation

parameter and Leb is the reference Lebesgue measure on X . Written in this way, Eq (9) can be

understood as a least action principle, where the optimal γΔt is roughly the one that minimises

the expected action for moving mass from μ0 to μ1, if the action is proportional to the squared

distance moved. In the limiting case of vanishing noise where ε! 0, the entropy-regularised

optimal transport problem becomes what is known as the Monge-Kantorovich problem, or

unregularised optimal transport [31].

We conclude that the coupling γΔt recovered by solving the entropy minimisation problem

Eq (8) is an approximation to the true evolution of Eq (1), corresponding to the drift-diffusion

step Eq (5) of the splitting scheme. This connection between entropy-regularised optimal

transport and SDEs dates back to the work of Schrödinger [39] (see [38] for a general survey,

and see [23, Theorem 2.1] for a more detailed discussion).

Methodology: Finite samples

Formulation of the discrete problem. In practice, we have access to an empirical distri-

bution r̂eq (see Eq (3)) supported on the discrete set �X that can be thought of as approximating

the true continuous density ρeq discussed previously. We also assume for each observed cell xi
that we have an estimate of the corresponding flux rate R̂i ¼ RðxiÞ ¼ bðxiÞ � dðxiÞ. In a

practical biological setting, cell states which are expected to divide or die should therefore have

R̂i > 0 or R̂i < 0 respectively, and those states which do neither should have R̂i ¼ 0. In addi-

tion to division and death, terminally differentiated cells expected to shortly exit the system

may be regarded as representing sinks, and therefore assigned R̂i < 0. The numerical values for

flux rates may be estimated from cell-cycle signatures [3] or prior biological knowledge [18].

In this discrete setting, the growth step Eq (4) is local in space and thus its analogue can be

directly written for a chosen small value of Δt to obtain μ0:

m0ðxiÞ ¼ r̂eqðxiÞeDtR̂ i ¼ r̂eqðxiÞð1þ DtR̂i þOðDt2ÞÞ: ð10Þ

Next, the effect of the transport step Eq (5) is to rearrange mass via diffusion and drift so that

we return to the steady state distribution r̂eq. We cannot take μ1 to be r̂eq exactly, since a single

step of the splitting scheme introduced in Eqs (4) and (5) is only accurate up to OðDt2Þ. There-

fore, a straightforward application of the growth step Eq (10) will result in a slight change in

the total mass of the system. Additionally, in practice we have only estimates R̂i of the true flux

rates, further contributing to this effect. Consequently, we must instead re-normalise μ1 so that

it has the same mass as μ0:

m1ðxiÞ / r̂eq: ð11Þ
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With μ0 and μ1 constructed in this way, we may compute the solution to the discrete Schrö-

dinger problem Eq (8).

Choice of ε and Δt. The key parameters for the scheme we describe are Δt, the time step

introduced in the growth splitting, and the regularisation parameter ε for entropy-regularised

optimal transport. In the theoretical framework of the Schrödinger problem, these parameters

have a proportional relationship ε = σ2Δt. The accuracy of the scheme should improve in the

limit as ε! 0, Δt! 0 and ε = σ2Δt, since the splitting approximation becomes exact. How-

ever, in practice where we have discrete samples we find that allowing ε and Δt to deviate from

this relationship often leads to better results.

In the discrete setting, a key limitation is the value of ε, which controls the level of diffusion

in the reference process in the Schrödinger problem, and consequently influences the level

of diffusion in the inferred process. In practice when we are dealing with a limited number

of samples in a potentially high-dimensional space, taking ε too small may lead to an ill-

conditioned problem. The reason for this is that the distance between points in the set of sam-

ples �X may be quite large compared to ε = σ2Δt. That is, exp � kx� yk2

2s2Dt

� �
may be exceedingly

small, resulting in a reference process that mixes extremely slowly. On the other hand, if we

pick a reasonably sized ε, strictly adhering to the proportionality relationship may mean that

the corresponding Δt is too large for the splitting approximation to be a good one. In practice,

we have often found that it is helpful to take Δt to be slightly smaller (and consequently ε
slightly larger) than what is expected in theory.

Quadratically regularised optimal transport

The entropy-regularised optimal transport problem Eq (9) is well known for its probabilistic

interpretation and the existence of an efficient solution scheme by matrix scaling [31]. How-

ever, the use of entropic regularisation results in a transport plan that necessarily has a dense

support [40]. Recent contributions to the optimal transport literature [40, 41] have highlighted

that alternative choices of the regulariser may yield other smooth approximations of the

Monge-Kantorovich problem which exhibit desirable properties. In particular, using a qua-

dratic (L2) regulariser to form the problem

min
g2Pðm0 ;m1Þ

Z

Cðx; yÞdgðx; yÞ þ εkgk2

2
ð12Þ

gives rise to what is known as the quadratically regularised optimal transport problem. As

noted by [40, 41], quadratically regularised OT has the property that transport plans are gener-

ally sparse in practice (in the discrete case, transition probabilities are nonzero only on a sparse

graph that spans the data), making it a favourable choice for interpretability of transport plans

as well as computational efficiency. In addition, in [40] the authors remark that the quadrati-

cally regularised problem may be less prone to issues of numerical stability.

In practice, we may employ a quadratic regularisation in our scheme by substituting the

solution of Eq (12) for the optimal coupling γΔt instead of the entropy-regularised solution Eq

(8). As we later demonstrate, we find evidence that quadratic regularisation is more robust to

parameter choices and noise compared to entropy regularisation.

Extension to non-potential vector fields

Estimation of dynamics in the case where the underlying drift v does not arise from a potential

gradient requires additional information to be available, such as potentially noisy or partial

estimates of the velocity of cells [19–22]. Since at its core our method is based on solving a

PLOS COMPUTATIONAL BIOLOGY Optimal transport analysis reveals trajectories in steady-state systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009466 December 3, 2021 9 / 29

https://doi.org/10.1371/journal.pcbi.1009466


convex optimisation problem, additional information such as velocity estimates can be incor-

porated into our estimation procedure in a straightforward manner by modifying the cost

matrix C. Indeed, suppose for each observed cell xi we also have an estimate of its velocity vi.
In the setting of velocity estimates derived from RNA velocity, the orientation of velocity esti-

mates is more biologically informative than the magnitude [27], and it is therefore natural to

incorporate velocity information in terms of cosine similarities [20, 22]. In our case, we con-

sider an overall cost function that is a linear combination of the standard squared Euclidean

cost Ceuc and a matrix of cosine similarities Cvelo, i.e.

C ¼ l1Ceuc þ l2Cvelo;

where

ðCveloÞij ¼
1

2
1 �

hxj � xi; vii

kxj � xikkvik

 !

: ð13Þ

In practice, the weights λ1, λ2 would depend on the relative scales of Ceuc and Cvelo, as well as

any cost normalisation that is applied.

Simulated data—Potential driven dynamics

Simulation setup and parameters. We first consider a tri-stable system (1) in X ¼ R10
,

with drift term v taken to be the negative gradient of the potential

CðxÞ ¼ 2:5kx � z0k
2
kx � z1k

2
kx � z2k

2
; ð14Þ

with wells {z0, z1, z2} located at

z0 ¼ 1:05½cosðp=6Þ; sinðp=6Þ; 0; . . . ; 0�
>

z1 ¼ 1:05½cosð5p=6Þ; sinð5p=6Þ; 0; . . . ; 0�
>
;

z2 ¼ 1:05½cosð� p=2Þ; sinð� p=2Þ; 0; . . . ; 0�
>
:

We illustrate this potential landscape in Fig 3A in the first two dimensions of X . Simulated

particles are initially isotropically distributed around the origin following the law

X0 � 0:01N ð0; IÞ ð15Þ

at t = 0, where N ð0; IÞ denotes the standard normal distribution in R10
with covariance I. Par-

ticles then evolve following drift-diffusion dynamics with σ2 = 0.5. Whenever a particle falls in

the vicinity of any of the potential wells {z0, z1, z2}, it is removed with exponential rate 5. That

is, in each time step dt, a particle located in a sink region is removed with probability 5 dt. We

defined the sink region for each potential well zi to be a ball of radius r = 0.25 centred at zi.
Exact sampling of snapshots from the steady state distribution ρeq of Eq (2) would require

the solution of a high-dimensional PDE and is therefore computationally difficult. Instead, we

obtain an approximate snapshot of the system at its steady state by simulating N = 250 trajecto-

ries from start to finish using the Euler-Maruyama method

Xtþt ¼ Xt � trCðXtÞ þ s
ffiffiffi
t
p

N ð0; 1Þ: ð16Þ

For our simulations we employed a time step τ = 1 × 10−3, and from each trajectory

fXðiÞt : 0 � t � TðiÞfinalg; 1 � i � N we sampled a single particle state chosen at a random time

chosen uniformly on ½0;TðiÞfinal� to form the snapshot data r̂eq. This scheme was also the one

used for obtaining snapshots in [18].
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Particles xi located in the sink regions were labelled as ‘sink’ sites and assigned flux rates Ri

so that the average sink flux rate was −5 and total flux rate for each well {z0, z1, z2} matched the

ground truth in proportion. Particles located in a ball of radius 0.25 of the origin were labelled

as ‘source’ sites, corresponding to locations xi with Ri> 0. Since we deal with finite samples,

we assigned Ri uniformly on source sites such that the equilibrium condition ∑i Ri = 0 was

satisfied.

We display some example trajectories in Fig 3B, and illustrate the snapshot data r̂eq in Fig

3C, where the values of Ri at source and sink sites are shown by colour.

Inferring dynamics using StationaryOT. To apply StationaryOT, we chose a time step

Δt = 25τ = 2.5 × 10−2, noting that this is small compared to the average particle lifespan of

0.934 in this simulation. We solved the StationaryOT problem using entropy-regularised opti-

mal transport using a range of regularisation parameter values ε in 10−2.5 − 101. As we discuss

in more detail later, we found that ε = 0.026 best matched the ground truth in terms of average

fate probability correlation across the three lineages. For this choice of ε we computed a for-

ward transition matrix P from the optimal transport coupling γΔt by row-normalising:

Pij ¼
ðgDtÞij
P

jðgDtÞij
:

The matrix P therefore describes a time-Δt evolution of probability densities on the discrete set

�X . For an initial distribution π0 supported on �X , we can compute the evolution {π0Pk, k = 0, 1,

2, . . .} over steps of length Δt, which we take to be an estimate of the dynamics of the underly-

ing drift-diffusion process. In Fig 3D we show the inferred process for k = 1, 5, 10, 20 where

we have taken π0 to be uniform on the source sites.

Fig 3. Potential-driven simulation. (a) Illustration of the potentialC in the first two dimensions of the space X . (b) Examples of simulated particle

trajectories XðiÞt following the drift-diffusion process. (c) Snapshot particles r̂eq shown in the first two dimensions of X , with the value of R indicated. Source

and sink regions correspond to R> 0 and R< 0 respectively. (d) Evolution of the dynamics recovered by StationaryOT.

https://doi.org/10.1371/journal.pcbi.1009466.g003
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From the transition probabilities Pij we may compute fate probabilities for each of the three

lineages defined by the potential wells {z0, z1, z2}. (These are absorption probabilities of the

Markov chain P—see S1 Appendix for further details). We summarise these fate probabilities

in Fig 4A–4D, and find that the correspondence between inferred and ground truth fate proba-

bilities measured in terms of the Pearson correlation is high (r� 0.99). As another measure of

the accuracy of the estimated dynamics, we compute the mean-first passage time (MFPT) of

each sampled point xj. This is the expected time at which a Markov chain initialised at a ran-

domly chosen source location xi reaches xj:

MFPTðxjÞ ¼ Exi�sources
MFPTðxjjxiÞ;

where MFPT(xj|xi) denotes the conditional MFPT for a particle starting at xi to hit state xj.
Comparing the MFPT estimates to the ground truth MFPT in Fig 4E, we find that the corre-

spondence is high (r> 0.9).

Reconstructing the drift field v. Since the transition probabilities encode the displace-

ment law of the underlying process over a time interval Δt, we can also recover an estimate v̂
of the velocity field v by computing the expected time-Δt displacement of each cell:

v̂ðxiÞ ¼
EPðXDt � X0jX0 ¼ xiÞ

Dt
:

In Fig 4F we show the estimated velocity field v̂ alongside the ground truth v, and we measure

Fig 4. Accuracy of inferred dynamics for potential-driven system. (a) Colours representing estimated fate probabilities towards each of the wells {z0, z1, z2} are displayed

on the snapshot coordinates. (b-d) Correlation with ground truth fate probabilities. (e) Comparison of estimated MFPT (in terms of Markov chain steps) to ground-truth

MFPT (in continuous time units). (f) Comparison of recovered velocities to ground truth velocity.

https://doi.org/10.1371/journal.pcbi.1009466.g004
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the error by computing the mean cosine error between vector fields:

1

N

XN

i¼1

ð1 � cosffðvðxiÞ; v̂ðxiÞÞÞ � 0:024:

We observe that the estimated field v̂ resembles the ground truth quite well near the potential

wells where particles are subjected to a relatively strong drift, but struggles near the origin

where the true velocity field has a small magnitude. Overall however, the cosine error is close

to zero, indicating that our recovered velocity field matches the ground truth field well.

Effect of the choice of regularisation parameter ε and flux rates R. We next turn to

investigating the effects of the choice of the regularisation parameter ε on the quality of the

recovered dynamics. To quantitatively measure this, we choose to compute the average corre-

lation r between estimated and ground truth fate probabilities across the three lineages. We

applied StationaryOT using both entropy and quadratic regularisations, and let ε vary on a

log-scale from 10−2.5 − 101 and 10−1 − 102 respectively.

As shown in Fig 5A, in the case of entropy-regularised optimal transport we observe from

the fate probability estimates that there is clearly a single optimal value of this parameter at ε =

0.026. This is larger than the theoretically optimal value of σ2Δt = 0.0125, in keeping with our

observations discussed earlier (see Choice of ε and Δt.). However, StationaryOT with the theo-

retically optimal value fares only slightly worse and is located close to the maximum. When ε
is chosen too small or too large, performance degrades. On the other hand, we find that perfor-

mance when using a quadratic regularisation is much less sensitive to the choice of ε, with the

correlation over ε showing a much flatter profile. We emphasise that ε is shown on a logarith-

mic axis in order to remove differences in the scales of ε for different regularisations.

Since flux rates R are also parameters that need to be specified, we examine the sensitivity to

varying the flux rate in Fig 5B. We systematically perturb the proportion of particles that exit

at each of the wells {z0, z1, z2} by scaling the ground truth flux rates by values in the simplex.

We observe that performance is optimal near (1/3, 1/3, 1/3) corresponding to no perturbation

to the ground truth flux rates, and degrades moderately as bias is introduced to each well. We

show results for entropic and quadratic regularisation where ε is chosen to be the optimal

Fig 5. Effect of parameter choices on inference for potential-driven system. (a) Correlation for varying regularisation parameter ε for entropic and quadratic

regularisations. For entropic regularisation, the theoretically optimal value of ε is indicated in red. (b) Summarised correlations for systematic perturbation of flux rates

towards each of the wells {z0, z1, z2}. Note that the simplex represents the perturbation applied to the true flux rates rather than the flux itself, so the centre (1/3, 1/3, 1/3)

of each simplex corresponds to using the true flux rates.

https://doi.org/10.1371/journal.pcbi.1009466.g005
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values of 0.026 and 0.43 respectively, and note that both choices of regularisation behave very

similarly. While it is certain that perfect knowledge of the flux rates yields optimal perfor-

mance, examining the level sets at r> 0.95, 0.975 leads us to conclude that StationaryOT still

provides informative fate probabilities for a wide range of perturbations. Interestingly, the cor-

relation remains reasonable even at the corners of the simplex, when all the flux is localised at

a single well. This is due to particles in the vicinity of the other wells that diffuse into those

wells randomly (as opposed to due to an inferred drift).

Laws on paths. The SDE described by Eq (1) naturally induces a probability measure on

the space of continuous functions valued in X , from which one can sample cell trajectories.

We discuss this point of view at length in related work on the non-stationary case [23]. From

this perspective, we may treat the recovered process as inducing a law on discrete-time paths

valued in �X , and we expect that a good estimate of the dynamics should correspond to a law

on paths that is closer to the ground truth law. To illustrate this, in Fig 6A we display 100 sam-

ple paths over T = 25 timesteps, i.e. t 2 {0, Δt, 2Δt, . . ., (T − 1)Δt}. The ground truth paths are

obtained by sampling solutions to the Eq (1) using the Euler-Maruyama method with the ini-

tial condition Eq (15). To sample paths from the output of StationaryOT, we sampled first X0

to be a random source cell and then let XkΔt, 1� k� 24 evolve following the Markov chain

defined by the transition matrix P output by StationaryOT.

We compare the ground truth to the StationaryOT output for both entropic and quadratic

OT for optimal and sub-optimal (taken as 10× the optimal value) choices of the regularisation

parameter ε. Visually, it is clear that StationaryOT using both entropic and quadratic OT pro-

duces very similar output resembling the ground truth when ε is chosen to be optimal. On the

Fig 6. Inferred dynamics in the space of paths for potential-driven system. (a) Collections of 100 sample paths from the ground truth process Eq (1) as well as

StationaryOT outputs for both entropic and quadratic OT with optimal and sub-optimal ε. The vertical axis corresponds to a projection hx, ui of the 10-dimensional state

space X onto a convenient 1-dimensional subspace defined by u = (cos(π/12), sin(π/12), 0, . . ., 0). (b) W2 error on paths for StationaryOT reconstructions, shown for 5

repeated samplings of 250 paths.

https://doi.org/10.1371/journal.pcbi.1009466.g006
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other hand, when ε is chosen to be too large we observe a visible worsening of performance,

with more paths jumping between branches. As we also observed in terms of fate probabilities,

the performance of StationaryOT with quadratic regularisation appears to degrade more

gracefully than with the entropic regularisation.

To provide a quantitative assessment of performance, the natural metric to use is the

2-Wasserstein (W2) distance on the space of laws on paths, as we also argue in [23]. We refer

the reader to S1 Appendix for details on the definition of the W2 distance. Since we work in

the setting of discrete time steps, the squared Euclidean (L2) distance between a pair of paths f,
g is taken to be

kf � gk2

2
¼

1

T

XT� 1

k¼0

kf ðkDtÞ � gðkDtÞk2

2
: ð17Þ

Using the W2 metric for laws on paths, we computed the error of each reconstruction relative

to the ground truth. Importantly, we note that since we are dealing with finite samples, the

expected W2 distance between independent collections of sample paths from the same distri-

bution will be nonzero. Thus, as done in [23] we compute a baseline error as the W2 distance

between independent samplings of 250 paths from the ground truth. In Fig 6B we show the

average W2 error over 5 resamplings of 250 paths, from which we note that StationaryOT with

entropic or quadratic OT yields results that are close to the baseline in W2 error when ε was

chosen to be optimal. On the other hand, picking ε to be too large leads to a higher error for

both methods, but with entropic OT performing significantly worse than quadratic OT.

Simulated data—Non-conservative dynamics

Now we consider the case where the drift v(x) is no longer the gradient of a potential land-

scape, i.e. there is a curl component. In this case, the underlying process is no longer identifi-

able from only sampled spatial locations [18, 23], and it is necessary to have additional velocity

estimates in order to estimate cellular trajectories.

Simulation setup and parameters. To illustrate this, we consider a process with a drift

field given by the sum of a potential-driven term and a non-conservative vector field, i.e.

vðxÞ ¼ � rCðxÞ þ f ðxÞ: ð18Þ

Again, we work in X ¼ R10 and we take

CðxÞ ¼ exp �
x2

1
þ x2

2

h2

� �

þ
1

2
ðx2

1
þ x2

2
Þ þ 10

X10

i¼3

x2

i ð19Þ

f ðx1; x2Þ ¼ 10 exp �
x2

1
þ x2

2

h2

� � cosðyÞ � sinðyÞ

sinðyÞ cosðyÞ

" # x1

x2

" #

: ð20Þ

We pick h = 0.5, controlling how rapidly the field f decays and the location of the potential

well inC. In the first two dimensions of X , particles can be thought of as diffusing on a radially

symmetric potential field with a ring of wells located about the origin, and subject to a super-

imposed anticlockwise vector field that decays away from the origin. We show a surface plot of

C(x) and a vector field plot of f(x) in Fig 7A.

We initialise particles following the initial distribution X0 � 0:01N ð0; 1Þ that are then sub-

ject to the drift-diffusion process with diffusivity σ2 = 0.1. The minimum of the circular poten-

tial well is located along a cylinder of radius 0.721 about the origin in the first two dimensions
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of X , and we treat all points outside this cylinder as a sink region, in which particles are

removed at exponential rate 5. We sample 500 particles from this process and designate cells

found within a ball of radius 0.1 about the origin to be source cells, and cells located in the sink

region to be sink cells. Sink cells were assigned a flux rate Ri = −5, and source cells were

assigned a uniform flux rate so that ∑i Ri = 0, as in the previous example. We illustrate in Fig

7B some example trajectories from this simulation, and in Fig 7C we display the sampled snap-

shot r̂eq along with the flux rates.

StationaryOT with and without velocity data. For each sampled cell xi, we obtain veloc-

ity estimates by evaluating the drift vector field v(xi) at its location. We then formed two cost

matrices: Ceuc, the matrix of squared Euclidean distances, and Cvelo the matrix of cosine simi-

larities as defined in Eq (13). Both matrices were normalised to have unit mean. Note here that

this normalisation is purely an empirical choice, and no corresponding normalisation of the

cost was performed in the potential-driven case because of the theoretical motivation in the

potential-driven case.

Fig 7. Non-conservative simulation. (a) Illustration of potential-driven (C) and non-conservative (f) components of the overall drift v. (b) Examples of

simulated particle trajectories XðiÞt following the drift-diffusion process. (c) Snapshot samples shown in the first two dimensions of X , with source (R> 0)

and sink (R< 0) regions indicated. (d) Comparison of fate probabilities towards the sinks in the first quadrant. (e). Correlation of estimated fate

probabilities to ground truth fates with (λ = 0.25) and without incorporation of velocity data (λ = 0). (f) Summary of fate probability correlation as a

function of λ 2 [0, 1].

https://doi.org/10.1371/journal.pcbi.1009466.g007
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We constructed the optimal transport cost matrix to be a convex combination of the

Euclidean and velocity cost matrices:

C ¼ ð1 � lÞCeuc þ lCvelo;

and we took λ = 0.25, 0, respectively corresponding to StationaryOT with and without velocity

information. Both entropic and quadratic OT were used to solve for couplings, with ε = 0.05

and ε = 0.5 respectively. Since the setting of this simulation is rotationally invariant in the first

two dimensions, we choose to summarise our results in terms of the absorption probabilities

for cells entering the region

S ¼ fxi : YðxiÞ 2 ½0; p=2� and Ri < 0g;

i.e. the set of sink cells in the first quadrant in (x1, x2). As shown in Fig 7D, the ground truth

fate probabilities clearly capture the rotational component of drift, with the set of cells fated

towards S forming a curled shape. We observe that StationaryOT with velocity data produces

results qualitatively capturing this effect, whilst neglecting velocity information leads to a sym-

metric fate profile that reflects only the potential-driven component as expected. To quantita-

tively compare fates, we computed as previously the Pearson correlation between the

estimated fate probabilities and the ground truth. We show this in Fig 7E, from which we

observe that StationaryOT with velocity data produces a markedly improved fate correlation

(r = 0.953) compared to StationaryOT without velocity data (r = 0.631). Finally, in Fig 7F we

show the fate correlation r as a function of the parameter λ 2 [0, 1] that controls the composi-

tion of the cost matrix C. The correlation improves rapidly as λ is increased from 0 and attains

a maximum before it declines slowly as λ is further increased towards 1. We conclude that

even relatively small choices of λ can greatly improve the accuracy of the inferred fate

probabilities.

Laws on paths. As in the case of the potential-driven system, we may examine sample

paths from the ground truth process as well as the estimates output by StationaryOT. We sam-

ple trajectories with the initial condition

p0 ¼ fxi : YðxiÞ 2 ð� p=6; p=6Þ and kxik 2 ð0:25; 0:5Þg:

We illustrate these in Fig 8 in the first two dimensions of X . Again, we observe that incor-

poration of velocity estimates yields results that clearly reflect the rotational trajectories in the

ground truth. On the other hand, without using velocity information, we observe sample paths

consistent with only the potential-driven component. Additionally, for either choice of regu-

larisation we observe that StationaryOT overestimates the rotational drift as cells settle into the

potential well. This effect can be attributed to the fact that the cosine similarity cost of Eq (13)

depends only on the orientation of the rotational field, and thus is unaware of its decay as cells

drift towards the well. In this situation, we can only expect to capture the rotational field quali-

tatively rather than quantitatively. We suggest that possible remedies for this effect may

include weighting entries of Cvelo by velocity magnitudes or using an alternative velocity cost

that is based on squared Euclidean distances.

Sensitivity to noise. Finally, are interested in investigating the behaviour of StationaryOT

when the provided velocity estimates are subject to additive noise, that is

v̂ðxiÞ ¼ v0ðxiÞ þ aZN ð0; IÞ

where α is a scale constant chosen such that v0/α has order 1, i.e. the noise term is on the same

order as the signal. We pick a ¼ Exi
kv0ðxiÞk. We applied StationaryOT using both entropic
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and quadratic OT for values of η 2 [0, 2] and choices of regularisation ε chosen in the range

10−2 − 100 (logarithmic) for entropic OT and 0.5 − 10 (linear) for quadratic OT.

For additional comparison, for each noise level η we also computed a transition matrix

based solely on cosine similarities of velocity estimates to k-nearest neighbour (k-NN) graph

edges using the scVelo package [20] in which the transition law for each cell xi is

P½XDt ¼ xjjX0 ¼ xi� / expðkcosffðxj � xi; viÞÞ; xj 2 neighboursðxiÞ: ð21Þ

In the above, κ is a scale parameter controlling the level of directedness in the resulting transi-

tion law, with larger κ corresponding to increased directedness in the transition law. We used

κ in the range 2.5–25 and all other parameters were taken to be defaults.

In each case, performance was summarised as we did previously in terms of the fate correla-

tion for the set S. We show results summarised over 10 independent repeats in Fig 9A and we

observe that, as expected, performance degrades for all methods as the level of noise increases.

However, StationaryOT with either entropic or quadratic regularisation consistently produces

more accurate fate estimates compared to the scVelo method. We argue that this effect reflects

the fact that StationaryOT is a global method and solves for transition laws that best agree with

the inputs across the dataset. On the other hand, the scheme described by Eq (21) is local in

Fig 8. Inferred dynamics in the space of paths for non-conservative system. Collections of 100 sample paths drawn from the ground truth process Eq (1), as well as

StationaryOT output with and without velocity estimates for both entropic and quadratic OT. We indicate the initial condition π0 as dots.

https://doi.org/10.1371/journal.pcbi.1009466.g008
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that the transition law for a single cell can be determined by only considering a single velocity

vector and a few neighbouring locations.

Additionally, for moderate levels of noise (η 2 [0, 1]), we observe that the quadratic regular-

isation outperforms the entropic regularisation. Roughly speaking, we suspect that this results

from the fact that the transition laws recovered by quadratic OT are concentrated on a sparse

subset of cells, limiting the effect that an error in any single velocity estimate can have on the

overall Markov chain. On the other hand, since entropic regularisation yields dense transition

laws, errors can be propagated across the full support of �X .

In Fig 9B we examine the sensitivity of StationaryOT performance on the choice of the reg-

ularisation ε. As we observed in the potential-driven setting, the entropic regularisation

appears to depend strongly on the choice of ε whereas a quadratic regularisation behaves simi-

larly across the values of ε used.

Arabidopsis thaliana root tip scRNA-seq data

Overview. We now apply StationaryOT to the scRNA-seq atlas dataset generated by Sha-

han et al. [42], which comprises of gene expression data from 1.1 × 105 cells from the first 0.5

cm of the Arabidopsis thaliana root tip. Stem cells occur close to the tip of the root and differ-

entiate into ten distinct lineages (see Fig 10), with cells becoming increasingly differentiated as

they increase in distance from the stem cells. Additionally, the terminal 0.5 cm of the root cap-

tures all tissue developmental zones, including the root cap, meristem, elongation zone, and

part of the maturation zone. While new cells are constantly produced in the meristem, the bot-

tom 0.5 cm is expected to be in equilibrium as cell division and elongation push existing differ-

entiated cells out of the 0.5 cm section of interest, preserving a constant profile of cell types as

illustrated in Fig 10A. Lineages and developmental zones are shown anatomically on the bot-

tom 0.5 cm of the root in Fig 10B as well as on a UMAP embedding of the dataset in Fig 11.

Application of StationaryOT. For each cell xi, daily growth rates gi were estimated from

imaging data of the growing meristem over a week-long period [43]. Using these growth rates

and the proportion of cells expected to be actively dividing, we estimated that roughly 5% of

the cells in each lineage would be replaced in a 6-hour period (Δt = 0.25) and selected the 5%

of most differentiated cells from each lineage as sinks, as defined by pseudotime. For these

sink cells we set gi = 0, i.e. they are completely removed over the time interval. The remaining

Fig 9. Effect of parameter choices on inference for non-conservative system. (a) Correlation of estimated fate probabilities to ground truth as a function

of noise η. (b) Sensitivity of entropic and quadratic regularisations to the choice of ε.

https://doi.org/10.1371/journal.pcbi.1009466.g009

PLOS COMPUTATIONAL BIOLOGY Optimal transport analysis reveals trajectories in steady-state systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009466 December 3, 2021 19 / 29

https://doi.org/10.1371/journal.pcbi.1009466.g009
https://doi.org/10.1371/journal.pcbi.1009466


cells were assigned a flux rate Ri chosen to agree with the biological growth estimates, i.e. for

each cell xi we take Ri such that exp(Ri) = gi.
We applied StationaryOT using both entropic and quadratic regularisations with parame-

ters ε ¼ 0:025�C and ε ¼ 2:5�C respectively, where the scale factor �C is taken as the mean value

of the squared Euclidean cost matrix C. We found our results to be robust to changes of a

Fig 10. The Arabidopsis root tip system. (a) While individual cells divide (green), elongate (blue), and are displaced from the bottom 0.5 cm (red) as the root grows, cell

populations remain in equilibrium. (b) The structure of the Arabidopsis thaliana root tip by developmental zone (left) and lineage (right) (Illustrations modified from

the Plant Illustration repository [44]).

https://doi.org/10.1371/journal.pcbi.1009466.g010

Fig 11. Arabidopsis atlas cell annotations and StationaryOT output. Developmental zone (left) and lineage annotations (centre) shown on a UMAP embedding.

Putative fate probabilities from StationaryOT with entropic regularisation are visualised on the right, where each cell is coloured by putative fate and its saturation based

on the magnitude of that probability. For over 80% of cells the putative fate matched the annotation, with the magnitude of the probability increasing later in

development.

https://doi.org/10.1371/journal.pcbi.1009466.g011

PLOS COMPUTATIONAL BIOLOGY Optimal transport analysis reveals trajectories in steady-state systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009466 December 3, 2021 20 / 29

https://doi.org/10.1371/journal.pcbi.1009466.g010
https://doi.org/10.1371/journal.pcbi.1009466.g011
https://doi.org/10.1371/journal.pcbi.1009466


factor of two in the number of sinks, the time step size, and ε. Due to computational limita-

tions of the standard implementation of the method, we applied StationaryOT to a subset of

10,000 cells sampled from the full dataset, though we also demonstrate two methods to scale

the analysis to the full atlas. For completeness, we display in UMAP coordinates fate probabili-

ties for each lineage in S3 Fig.

In Arabidopsis root development, cell lineage is fixed early in development [43]. Thus, for

each cell xi we may regard the lineage j corresponding to the largest fate probability, i.e. arg-

maxj pij as its putative fate. We checked whether these putative fates matched the manually

curated atlas annotation, and used the magnitude of the corresponding fate probability, 0� pij
� 1, as a measure of the confidence of prediction. StationaryOT with quadratic and entropic

regularisation performed similarly in terms of the percentage of cells where the putative fate

matched the atlas annotation, matching 81% and 80% of cells respectively (see Fig 12). Both

regularisations also performed similarly in terms of the magnitudes of the putative fates, with

the entropic regularisation achieving an average of 69%, increasing from an average of 40% for

cells in the meristem to an average of 84% for cells in the maturation zone and quadratic

achieving an average of 65%, ranging from 38% in the meristem to 80% in the maturation

zone (see S2 Fig). This trend can also be seen clearly by visualising the maximum fate probabil-

ity of each cell on the UMAP (see Fig 13). As in many cases external estimates of growth are

not available, we created alternate growth rates based on cell cycle genes. Despite differences

between the estimates, StationaryOT performed similarly matching 79% and 78% of cells for

entropic and quadratic regularisation respectively (see S1 Appendix).

Both choices of regularisation performed well on nine of the ten lineages, struggling only

with mature procambium cells, as shown in Fig 12. We believe this is due to an inconsistency

between the pseudotime and developmental zone annotations, where cells in the elongation

zone received higher pseudotimes than cells in the maturation zone, resulting in them being

incorrectly set as terminal states (see S1 Fig). Both regularisations were robust to changes in

parameters, where the percentage of cells whose putative fate matched the annotation changed

Fig 12. Comparison of StationaryOT performance to other methods. Proportion of cells where the maximum probability matches the annotation by

developmental zone and lineage.

https://doi.org/10.1371/journal.pcbi.1009466.g012
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by no more than 2% when changing a parameter by a factor of two. StationaryOT with qua-

dratic regularisation was particularly robust, with performance degrading by no more than 2%

when multiple parameters were changed by up to a factor of five (see S1 Appendix).

Comparison to PBA. Since population balance analysis (PBA) [18] addresses the same

problem as StationaryOT, it is natural to evaluate its performance on the Arabidopsis root

dataset. We show results for 1% sinks, Δt = 0.25 (6-hour time step), diffusivity D = 2.5, and

k = 10 for the k-NN graph. These parameters were found to yield the best results over a param-

eter sweep (see S1 Appendix). PBA was on par with the StationaryOT methods, with 81% of

putative fates matching the annotation, compared to 80% and 81% for the StationaryOT analy-

ses (see Fig 12). Average fate probabilities were also similar, with PBA achieving an average of

64% compared to 65% and 69% for the StationaryOT methods (see S2 Fig). Like StationaryOT,

the average fate probabilities increased as the tissue matured (see Fig 13). Given that PBA and

StationaryOT are methodologically distinct, the fact that they perform similarly is a strong

indication that the results reflect the underlying biology, rather than artefacts from the respec-

tive models.

In general however, we found PBA to be more sensitive to parameter values than Stationar-

yOT. Assigning 5% of cells in each lineage as sinks for a 6-hour time step (Δt = 0.25) is

Fig 13. Comparison of fate probabilities found by StationaryOT to other methods. Fate probabilities for StationaryOT with entropic and quadratic

regularisations compared to the annotation, as well as PBA and CellRank output. The colour indicates the maximum fate probability (putative fate) of each

cell and the colour saturation shows the magnitude of the fate probability.

https://doi.org/10.1371/journal.pcbi.1009466.g013
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biologically motivated in order to balance the number of cells created due to growth with the

number of sinks. Using this sink selection scheme, PBA was found to perform poorly for the

columella lineage, incorrectly assigning all columella cells a putative fate of lateral root cap.

This lowered the overall percentage of putative fates that matched the annotation to 72% (see

S1 Appendix). Only through an extensive parameter sweep did we find the combination of

parameters that resulted in columella cells receiving the correct putative fate. We found PBA

to be generally more sensitive to other parameter changes, matching 7% fewer cells to the

annotation when a single parameter was changed by a factor of two compared to only 2% for

the StationaryOT methods (see S1 Appendix). This may be of concern, since in many applica-

tions there may not be sufficient prior biological knowledge to distinguish between good and

bad parameter choices.

Comparison to CellRank. CellRank is a trajectory inference method that uses both tran-

scriptomic similarity and RNA velocity data to estimate transition laws for cells [22]. The

method consists of three key steps: computing cell state transition probabilities, inferring

macrostates from the resulting Markov chain, and computing fate probabilities to these

macrostates. For ease of comparison between other methods discussed here, our summary will

focus mostly on the computation of transition probabilities.

CellRank computes a transition matrix from a k-NN graph using a combination of tran-

scriptomic similarity and RNA velocity data. First, a k-NN graph is computed using cell tran-

scriptomic similarities and then symmetrised. Edge weights are assigned based on similarity

estimates between neighbouring cell states. The resulting graph is then converted into a matrix

containing similarity estimates between neighbours. For each cell, transition probabilities are

calculated from RNA velocity data by considering the correlation of the RNA velocity vector

with displacement vectors corresponding to edges in the k-NN graph. These correlations are

used to create a categorical distribution on the neighbours of the cell, giving transition proba-

bilities. To better account for noise in the velocity data, the final transition probabilities are

taken to be a linear combination of velocity-based probabilities and similarity-based

probabilities.

We applied CellRank to the same 10,000 cell subset of the Arabidopsis dataset used for the

StationaryOT and PBA analyses. Using the output transition matrix, we computed fate proba-

bilities and assigned putative fates as previously described. In terms of putative fates, we found

that CellRank matched 73% of cells to the atlas annotation, compared to 80% and 81%

achieved by the StationaryOT analyses. The main differences occurred in the lateral root cap

and xylem tissues (see Fig 12). CellRank also had less confidence in fate prediction, having an

average fate probability of 45% compared to greater than 60% for all other methods (see S2

Fig) and probabilities remained low through the elongation zone (see Fig 13). Finally, we note

that CellRank uses a mixture of a directed transition matrix derived from RNA velocity and an

undirected transition matrix computed from expression similarity.

Computing fates for large datasets

The running time for StationaryOT depends on the number of cells, with the main computa-

tional costs (in the case of the entropic regularisation) arising from (1) Sinkhorn iterations

involving a series of matrix-vector products, and (2) solving a system of linear equations to

compute fate probabilities. Computational cost therefore scales roughly quadratically in the

number of cells (at least for a fixed number of iterations) and we found that datasets of up to

104 cells could be processed directly using a straightforward implementation of the method.

For completeness, we show in S5 Fig the computation time as a function of number of input

cells, on a standard CPU-only Google Colaboratory instance (Intel Xeon, 2.30 GHz x2, 12 GB
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RAM). In order to compute cell fates for datasets with very large numbers of cells we propose

two approaches.

Repeated subsampling. We first randomly partition the dataset of interest into k subsets

of size approximately 104, or such that the computation time for StationaryOT is acceptable.

Fates are computed for each subset, and this procedure is repeated j times with repeated ran-

dom partitioning. We then average the computed fates on a cell-by-cell basis, to produce

aggregated fate probabilities.

We applied this approach to the full 1.1 × 105 cell atlas, partitioning it into 10 subsets and

applying StationaryOT separately to each subset (see Fig 14). This was repeated 10 times to

account for sampling error. Between the fates found directly for each subset and the consensus

fates in the full atlas, 97% of cells shared the same putative fate and the maximum fate values

had a correlation of 0.96. Accounting for all fate values, the correlation rose to 0.99.

Memory-efficient GPU implementation with KeOps. For both entropic and quadratic

regularisations, algorithms for solution of the optimal transport minimisation problem can be

implemented using the KeOps library [45] so as to avoid storing all N ×N matrices in memory.

Along with GPU acceleration, this allows StationaryOT to be applied directly to datasets with

many more cells than can be handled by the standard implementation due to memory

constraints.

In the case of entropy-regularised optimal transport, the Sinkhorn algorithm can be imple-

mented in a straightforward manner so that the transport plan (a matrix of size N × N) is para-

meterised in closed form by two dual variables u and v (vectors each of length N) [31]. From

here, one may construct a linear system to solve for fate probabilities of the form Ax = b where

A is again parameterised by the dual variables (u, v) and thus not explicitly stored in memory.

For quadratically-regularised optimal transport, a similar representation of the problem in

terms of dual variables holds. We provide an implementation of the semi-smooth Newton

method proposed in [41, Algorithm 2] that utilises the KeOps library. As mentioned earlier,

quadratically regularised optimal transport has the property that the transport plans (and

hence the transition laws of cells) will be sparse. In addition to being more interpretable, for

large numbers of cells this means additional computational advantages, especially in terms of

directly storing the entries of the sparse transition matrix, and computing the fate

probabilities.

We applied StationaryOT to the full 1.1 × 105 cell Arabidopsis root dataset using the KeOps

implementation with GPU acceleration, using both entropic and quadratic regularisations.

We found that solution of the optimal transport problem took roughly 15 and 20 minutes

using entropic and quadratic regularisations respectively. We used the same parameter choices

Fig 14. Output of StationaryOT on full atlas dataset. Atlas annotation on the full dataset (1.1 × 105 cells) shown in UMAP coordinates compared to fate probabilities

computed on the full dataset respectively using the subsampling approach (using entropic regularisation for each subproblem) and memory-efficient GPU

implementations of StationaryOT with entropic and quadratic regularisations.

https://doi.org/10.1371/journal.pcbi.1009466.g014
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as used for the subsampled dataset. For an entropic regularisation, the resulting transportation

plan was dense (effectively all entries were nonzero). In contrast, the quadratic regularisation

yielded a very sparse transportation plan as expected (0.17% nonzero entries). Computation of

the fate probabilities for the entropic regularisation was significantly more time-consuming

than for the quadratic regularisation, taking approximately 10 minutes and 2 minutes respec-

tively. We display the fate probabilities for entropic and quadratic regularisations in Fig 14.

The difference in the runtimes reflects the fact that, compared to dense systems, sparse systems

of linear equations can be solved much more efficiently using iterative methods. We compared

the fates found for a 10,000 cell subset to the fates for StationaryOT with both entropic and

quadratic regularisation on the full atlas and found them to perform similarly. For both meth-

ods, 90% of cells shared the same putative fate as the 10,000 subset and both had a 0.97 correla-

tion for fate magnitudes accounting for all fates. With the entropic regularisation, the putative

fate values were slightly higher correlated with the 10,000 cell subset, achieving a correlation of

0.92 compared to 0.87 for quadratic. All computations for the full atlas dataset were done on a

Google Colaboratory instance with a 16GB NVIDIA Tesla V100 GPU.

Discussion

Summary of our contributions

Optimal transport has been shown to be a widely applicable tool to the problem of trajectory

inference in the setting where multiple time points are available [3, 23, 27, 34–36]. We demon-

strate that optimal transport can be applied in a natural way to the stationary setting, where a

single snapshot of a system at steady state is observed. The framework that we develop is theo-

retically justified and is naturally motivated by the Waddington’s landscape analogy. Further-

more, our scheme boils down to a convex optimisation problem for which there are efficient

and well-known methods of solution. The problem can also be generalised to incorporate

additional information such as estimates of velocity. Motivated by these observations, we have

developed a computational method which we call StationaryOT and show that it can scale to

datasets of up to 105 cells.

We demonstrate the efficacy of this method both on both real and simulated data. We find

that in practice our method achieves similar performance to that of Population Balance Analy-

sis (PBA) [18], but StationaryOT appears to be less sensitive to parameter choices and is capa-

ble of handling additional information such as velocity estimates. Since StationaryOT and

PBA are methodologically distinct, the observation that both methods yield similar conclu-

sions is strong evidence that the outputs reflect genuine biological signal, as opposed to arte-

facts of the methodology.

Overall, we have shown optimal transport to be a common framework for trajectory infer-

ence in the setting of both stationary snapshots and non-stationary, time-series data. This pro-

vides a unifying perspective for two problems that have traditionally been approached with

separate methods.

Prospects for future work

In terms of future work, there are many potential avenues for extension of the present work.

One major direction is the development of generative models, which can extrapolate informa-

tion about the potential landscape beyond those cell states measured in experiment. We expect

that the optimal transport perspective will be important for this, both conceptually and practi-

cally. Another relevant problem is that of examining the evolution of systems that are station-

ary on short timescales but nonstationary on large timescales—for instance, developmental

biological systems such as haematopoiesis in humans are stationary on a fast timescale, but
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undergo changes on a slow timescale as individuals age. Finally, one could incorporate line-

age-tracing to improve trajectory inference, as we have recently done in the non-stationary

case [34].

Supporting information

S1 Appendix. Theory and methodology supplement. Supporting theoretical material and

root atlas application details.

(PDF)

S1 Table. Arabidopsis cell cycle signature genes. Genes used to compute cell cycle signature

scores for the Arabidopsis dataset.

(CSV)

S1 Fig. All four methods poorly matched the annotation for maturation procambium cells

(see Fig 12). We believe this occurred due to a disagreement between the pseudotime and

zone annotations, where procambium cells in the elongation zone were given a higher pseudo-

time than those in the maturation zone, resulting in cells from the elongation zone incorrectly

being set as terminal states.

(TIF)

S2 Fig. Average fate probabilities matching the annotation by cell type and zone for both

StationaryOT methods, PBA, and CellRank.

(TIF)

S3 Fig. Lineage annotation compared to cell fate probabilities for both StationaryOT

methods, PBA, and CellRank.

(TIF)

S4 Fig. Terminal states found using automatic detection functionality offered by the CellRank

package, coloured by their corresponding lineage (right). No terminal states were identified

for the phloem and procambium lineages. Additionally, as is clear from pseudotime (left),

some states that are intermediate are miss-classified as terminal.

(TIF)

S5 Fig. Computation time for StationaryOT as a function of number of cells for the Arabi-

dopsis dataset on a standard CPU-only Google Colaboratory instance.

(TIF)
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