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Skin cancers are highly prevalent malignancies that affect millions of people worldwide.
These include melanomas and nonmelanoma skin cancers. Melanomas are among the
most dangerous cancers, while nonmelanoma skin cancers generally exhibit a more
benign clinical pattern; however, they may sometimes be aggressive and metastatic.
Melanomas typically appear in body regions exposed to the sun, although they may also
appear in areas that do not usually get sun exposure. Thus, their development is
multifactorial, comprising endogenous and exogenous risk factors. The management of
skin cancer depends on the type; it is usually based on surgery, chemotherapy,
immunotherapy, and targeted therapy. In this respect, oncological treatments have
demonstrated some progress in the last years; however, current therapies still present
various disadvantages such as little cell specificity, recurrent relapses, high toxicity, and
increased costs. Furthermore, the pursuit of novel medications is expensive, and the
authorization for their clinical utilization may take 10–15 years. Thus, repositioning of drugs
previously approved and utilized for other diseases has emerged as an excellent
alternative. In this mini-review, we aimed to provide an updated overview of drugs’
repurposing to treat skin cancer and discuss future perspectives.
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INTRODUCTION

Skin cancers are highly prevalent malignancies worldwide, ranked at the twentieth place of
incidence (1, 2). There were an estimated 100,000 new melanoma cases in the United States
during 2020, with the approximate death of 6,850 people. The prevalence is higher in men, and the
incidence varies according to the geographic region and by country (3). Skin cancers include
melanomas and nonmelanoma skin cancers (NMSC). Melanomas are tumors that develop in
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melanocytes, and these may appear in diverse body regions.
Specialists consider melanoma one of the most dangerous
cancers (4). Patients in advanced stages commonly have a
discouraging prognosis, and the five-year survival in those
patients is <5%. Remarkably, patients without treatment
exhibit a median survival between six and nine months (5).
The main types of NMSC include basal cell carcinoma (BCC)
and squamous cell carcinoma (SCC). NMSCs have a higher
occurrence than melanoma, but they are less lethal, especially if
diagnosed early (6). BBCs are skin tumors produced by the
abnormal growth of basal cells. It is the most frequent type of
skin cancer (7), and they are curable in many cases when
detected timely. On the other hand, SCC is the second most
frequent skin cancer type; it develops in the squamous cells
located in the epidermis (8). SCC generally exhibits a benign
clinical pattern; notwithstanding, it may sometimes be aggressive
and metastatic (9).

Skin cancers develop more frequently in body regions
exposed to the sun; however, they may also appear in areas
that do not usually get sun exposure. Thus, their development is
multifactorial, comprising endogenous (skin type and genetic
factors) and exogenous (degree of sun exposure and sun
protection conduct) risk factors (10). Among exogenous
aspects, ultraviolet radiation (UVR) is the most notable risk
factor. UVR can produce DNA damage, mutations,
inflammatory responses, and oxidative stress, leading to skin
cancer development (11). Among the UVR types, ultraviolet A
(UVA) penetrates deeper into the skin, producing more
considerable skin damage than the ultraviolet B (UVB).
Nevertheless, UVB is mostly related to inflammatory responses
and DNA damage as a critical tumor-promoting event (12).

Skin cancer management depends on the type; it is usually
based on surgery, chemotherapy, immunotherapy, and targeted
therapy (7, 9, 13, 14). In this respect, oncological treatments have
demonstrated some progress in the last years; however, current
therapies still present various disadvantages such as little cell
specificity, recurrent relapses, high toxicity, and increased costs
(14). Furthermore, the pursuit of novel medications is expensive,
and the authorization for their clinical utilization may take 10–15
years (15). Thus, repositioning drugs previously approved and
utilized for other diseases has emerged as an excellent alternative
(16). In this mini-review, we aimed to provide an updated
overview of drugs’ repurposing to treat skin cancer and discuss
future perspectives.
DRUG REPURPOSING FOR SKIN CANCER

Drug repurposing is the process of giving new applications for
existing drugs; it may considerably diminish development costs
(and times) to search for effective strategies to treat skin cancer
(17). Repurposing drugs possess various advantages, including
data availability about clinical tests, chemical composition, and
possible toxicity, which can accelerate their application in clinical
trials (18). Although various drugs have been proposed for their
repurposing in skin cancer (Table 1), most of them have only
been evaluated in preclinical studies, and extensive clinical trials
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are needed before their approval for skin cancer treatment.
Nonetheless, these drugs represent a promising alternative
because almost all are cheap and without significant adverse
effects on therapeutic doses. Drugs that have been suggested for
repositioning in skin cancer are discussed in the next sections in
alphabetical order as an example of the most prominent
proposals to date.

Digoxin
Digoxin is a compound utilized to treat arrhythmia and heart
failure symptoms. Its mechanism of action includes inhibition of
the hypoxia-inducible factor-1a (HIF-1a) (42), which
contributes to angiogenesis, metastasis, and tumor resistance in
many cancers (43). Concerning this, Eskiocak et al. (21)
suggested a therapeutic effect of digoxin against melanoma.
The authors reported that digoxin exhibited low cytotoxic
activity in mice xenografted with metastatic melanomas
derived from patients. However, the authors found a
synergistic beneficial effect when simultaneously administered
with a MEK inhibitor, extending experimental mice’s survival.
The possible mechanism of action included acidification of
cytoplasm, rises in mitochondrial Ca2+ levels, depletion of
ATP, and mitochondrial function reduction. Likewise, the
combination of digoxin and DMXAA (an anti-vascular agent)
inhibited tumors’ regrowth in mice harboring B16F10 melanoma
tumors (44). The enhancement in the efficacy may be explained
by the inhibition of HIF-1a and stimulation of the immune
function. Concerning human studies, a recent clinical trial
explored the effects of parallel administration of digoxin and
trametinib on BRAF wild-type metastatic melanoma patients
(45). The results exposed a reasonable rate of control of disease in
those patients for up ten months. Thus, this approach could be
useful in metastatic melanoma patients refractory or intolerant
of immunotherapy; nonetheless, additional clinical trials with a
higher number of patients will be crucial.

Doxycycline
Doxycycline is a broad-spectrum tetracycline antibiotic (46).
Some studies reported that doxycycline might inhibit several
matrix metalloproteinases that participate in diverse cancers’
metastasis (47). Thus, it has been suggested that this drug could
be repositioned as an anti-cancer treatment (48). An interesting
study demonstrated that doxycycline inhibited the growth of
melanoma cells (49). The anti-tumor effects might be mediated
by various mechanisms, including inhibition of the NF-ĸB
pathway, decrease of antiapoptotic proteins, cytochrome C
release, and activation of caspase-8 (50). Likewise, doxycycline
inhibited the adhesion and migration of a melanoma cell line,
with subsequent apoptosis induction (51). This activity appeared
to be mediated by inhibition of focal adhesion kinase, which
participates in migration and cell adhesion regulation. Likewise,
a very recent study showed that doxycycline diminished the
viability and proliferation of a melanoma cell line (COLO829
cells) by decreasing intracellular levels of reduced thiols and
impairing the homeostasis of the cells (22). Finally, a recently
finished clinical trial found that the concomitant administration
of doxycycline, temozolomide, and ipilimumab produced no
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TABLE 1 | Drugs proposed for chemoprevention and treatment of skin cancer.

Drug Other uses Study model Mechanism of action Reference

Albendazole Useful for giardiasis, trichuriasis, filariasis,
neurocysticercosis, among other diseases

A375 and A2058
metastatic melanoma
cells lines

Induction of DNA damage and cells arrest in the G2/M phase of
the cell cycle, sensitizes them to radiation therapy

(19)

Desmopressin Synthetic hormone commonly used for
nocturia and enuresis

Mice xenografted with
B16-F0 melanoma cells

Modulation of proteolysis and coagulation (20)

Digoxin Antiarrhythmic agent used in heart failure,
and other heart disorders such as atrial
fibrillation

Primary melanocytes
(hMEL1) or melanoma
cells derived from
patients

Inhibits the ATP1A1 Na þ/K þ pump, which is highly expressed by
melanoma

(21)

Doxycycline Antibiotic used to treat infections such as
skin infections and rosacea. It can also be
used to prevent malaria

Human (A2058 and
A375) and mouse
(B16F10) melanoma cells

Inhibition of the MMP-2 and MMP-9 metalloproteinases activity,
activation of apoptosis signal-regulated kinase 1, c-Jun N-terminal
kinase, and caspases, which induces apoptosis

(22, 23)

Fenofibrate Used with other medications to reduce
fatty substances such as cholesterol and
triglycerides

Human (SkMell88) and
mouse (B16F10)
melanoma cells

Anti-metastatic activity involving down-regulation of Akt
phosphorylation

(24)

Flubendazole Anthelmintic drug used in parasitic
infestations

A375, BOWES, and
RPMI-7951 cells

Anti-melanoma activity related to enhanced transcription of p53
and NF-ĸB, as well as phosphorylation of JNK

(25)

Haloprogin Antifungal drug used to treat skin
infections such as athlete’s foot

Mouse B16F10 skin
melanoma tumor model

In combination with RAPTA-T, shown to be a profitable candidate
for its use as a melanoma growth inhibitor through cancer cell
death induction

(26)

Itraconazole Used to treat fungal infections as
aspergillosis, blastomycosis, and
coccidioidomycosis

SK-MEL-28 and A375
human melanoma cells

Inhibits the proliferation and colony formation through the Hh, Wnt,
and PI3K/mTOR signaling pathways blockade

(27)

Leflunomide Used in active moderate-to-severe
rheumatoid arthritis and psoriatic arthritis

Human melanoma cell
lines

A selective inhibitor of de novo pyrimidine synthesis, blocking the
synthesis of DNA and RNA; reduces cell proliferation and causes
cells to arrest in G1 of the cell cycle.

(28)

Lidocaine Local anesthetic and antiarrhythmic Human keratinocytes It induces membrane permeability and excessive production of
reactive oxygen species (ROS).

(29)

Mebendazole Used to treat parasitic worm infestations
as ascariasis, worm infections, and
giardia, among others

Human melanoma cell
lines

Bcl-2 phosphorylation in melanoma cells, avoiding its interaction
with pro-apoptotic Bax, through apoptosis induction

(30)

Metformin Commonly used to treatment of type 2
diabetes, also used in the treatment of
polycystic ovary syndrome

Human melanoma cell
lines

Induces cell cycle arrest in the G0-G1 phase, and it´s responsible
for autophagy and apoptosis induction

(31, 32)

Naproxen Used to treat pain, menstrual cramps,
inflammatory diseases such as
rheumatoid arthritis, and fever

Mice irradiated with UVB Reduction in the incidence of tumor lesions by naproxen may be
due to its ability to increase TNF-a levels and decrease PGE2.

(33)

Niclosamide Anti-helminthic drug, has been used to
treat tapeworm infection

In vitro: human and
mouse melanoma cell
lines.
In vivo: a mouse
xenograft model of A375
cell line

Induces cell apoptosis via the mitochondrial-mediated apoptotic
pathway, also inhibits tumor growth by decreasing the expression
of p-STAT3, MMP-2, and MMP-9

(34)

Nicotinamide Treatment and prevention of niacin
deficiency and certain conditions related
such as pellagra

Human keratinocytes Chemopreventive effects, replenishes cellular ATP after UV
irradiation, and enhancement of DNA repair in UV-irradiated
human skin

(35)

Pimozide Decreasing the activity of a natural
substance (dopamine) in the brain,
Tourette syndrome patients

B16 cell-bearing mice Antitumor activity via the regulation of proliferation, apoptosis, and
migration

(36)

Piroxicam Used to the treatment of rheumatoid
arthritis and osteoarthritis, acute
musculoskeletal disorders, and
dysmenorrhea

Patients affected by
Actinic keratoses

A non-selective NSAID* that inhibits the activity of COX-1 and
COX-2, inducing apoptosis and inhibit recruitment and production
of growth factors and other carcinogenetic mediators

(37, 38)

Propranolol b-blocker commonly used for high blood
pressure

Patients with melanoma Inhibition of angiogenesis and migration of cancer cells (39)

Rafoxanide Anthelmictic used mainly for the treatment
of fasciola hepatica

A375 and A431 cells and
mice xenografted with
those cells

Inhibition of CDK4/6, increase of cell apoptosis, and arrest of cell
cycle

(40)

Telmisartan Angiotensin receptor 1 inhibitor widely
used as an antihypertensive drug

Human melanoma cells
A375, 518a2, and
HTB140

Induction of apoptosis, generation of reactive oxygen species, and
alteration of cell bioenergetics

(41)
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significant clinical improvement in patients with melanoma
(NCT01590082). Although this finding could appear
disappointing, preclinical studies suggest a therapeutic
usefulness of doxycycline and warrant further clinical trials.

Fenofibrate
Fenofibrate is an agonist of the peroxisome proliferator-activated
receptor-a; it is indicated for managing mixed dyslipidemia and
hypertriglyceridemia (52). A variety of studies have reported that
fenofibrate exerts anti-tumor activities in several cancers (53, 54),
including melanoma (55, 56). Panigraphy et al. (56) exposed that
fenofibrate significantly inhibited the proliferation of melanoma
cells (B16-F10 cells) and suppressed primary tumors’ growth in
vivo in a murine model. Those effects were mediated by the
inhibition of inflammation and angiogenesis in the surrounding
host tissue. Additionally, fenofibrate significantly decreased
melanoma metastases when administered via oral in mice,
suggesting that this compound possesses chemopreventive
activity (55). Interestingly, a down-regulation in the
phosphorylation of Akt might explain this anti-metastatic
effect (24). Finally, a very recent study proposed that the effects
of fenofibrate on growth and metastases of melanoma could be
produced by inhibiting the TLR4-dependent signaling pathway
(57). Despite the studies suggesting beneficial effects of
fenofibrate in melanoma, currently, there are no ongoing
clinical trials; thus, this drug perhaps requires additional
studies in animal models before its evaluation in patients.

Flubendazole
Flubendazole is an anthelmintic compound (58); its mechanism
of action depends on the disruption of microtubules’ structure
and function. This activity attracted considerable interest in the
drug as a possible anti-cancer treatment (59); thus, recent studies
explored the therapeutic potential of flubendazole against skin
cancer (25, 60). For example, a pioneering study conducted by
Čáňová et al. (25) demonstrated inhibition of cell growth and
proliferation in three distinct types of melanoma cell lines (A375,
BOWES, and RPMI-7951), finally leading to caspase-dependent
apoptosis. A subsequent report demonstrated that these effects
were related to enhanced transcription of p53 and NF-ĸB and
phosphorylation of JNK, eventually producing cell cycle arrest
and disturbances of the microtubules network (61). Likewise,
another study reported that flubendazole suppressed tumor
growth and prevented metastasis in mice with xenografts of
human melanoma cells (60). According to the authors, those
anti-tumor activities were produced by a decrease in STAT3 and
PD-1 levels. This drug is not being evaluated in any clinical trial,
so its application may need further evaluations in cellular and
animal models.

Itraconazole
Itraconazole is an antimycotic drug commonly utilized
worldwide, which has demonstrated the therapeutic potential
for skin cancer treatment. In this regard, Kim et al. (62) revealed
that itraconazole suppressed the growth of BCC in mice by
inhibiting the Hedgehog signaling pathway. This exciting finding
provided the foundation for a subsequent Phase II clinical trial in
Frontiers in Oncology | www.frontiersin.org 4
BCC patients (63). The research revealed that the administration
of itraconazole via oral reduced cell proliferation and tumor area;
thus, the authors concluded that itraconazole possesses beneficial
effects against BCC in humans. Also, Liang et al. (27) reported
that itraconazole inhibited the proliferation of human melanoma
cells (A735 and SK-MEL-28 cells) in vitro. Interestingly, the drug
also suppressed the melanoma growth in vivo in a xenograft mice
model. Further experiments revealed that the effects were
mediated by suppressing Wnt, Hedgehog, and PI3K/mTOR
signaling pathways. All these studies provided the basis for
clinical trials. In this regard, three clinical trials are studying
the effects of itraconazole in patients with skin cancer. Two of
them are focused on the molecular effects of locally applied
itraconazole on the growth of BCC (NCT02120677 and
NCT02735356), whereas the other one is assessing the efficacy
and safety of orally administered itraconazole in patients with
BBC (NCT02354261).

Leflunomide
Leflunomide is a compound utilized for the management of
rheumatoid arthritis (64). This drug inhibits the enzyme
dihydroorotate dehydrogenase (DHODH), which is pivotal in
pyrimidine synthesis (65). Since leflunomide impedes the
replication of dividing cells, it provided a rationale to propose
its use in preclinical cancer studies (66). For example, White et al.
(67) explored the possible benefits of utilizing leflunomide to
treat skin cancer. They found that leflunomide produced a
substantial reduction in melanoma development in vitro
(RPM17951, A375, and Hs.294T cell lines) e in vivo (xenograft
in mice). According to the authors, the inhibition of DHODH
repressed transcription elongation of genes necessary for
melanoma growth such as myc and mitf. More recent studies
have provided more information about molecular targets for
leflunomide. For example, O’Donnell et al. (68) stated that the
anti-proliferative effects of leflunomide on A375 melanoma cells
are dependent on the Aryl Hydrocarbon Receptor. A similar
study found that leflunomide caused cell cycle arrest and
autophagy through the phosphorylation of Ulk1 and AMP-
activated protein kinase (AMPK) in A375 melanoma cells (69).
Finally, another study demonstrated that the combination of
leflunomide and selumetinib (an inhibitor of MEK) had a
synergic effect in reducing BRAFwt and mutant melanoma
cells’ proliferation and growth of melanoma tumors in
xenografted mice (28). Interestingly, a clinical trial intended to
explore the efficacy and safety of the combination of leflunomide
and vemurafenib in patients with V600 mutant metastatic
melanoma was prematurely terminated due to adverse effects
(NCT01611675). Therefore, despite available information about
approved drugs, their possible toxicity can be a critical concern
in drug repurposing when combined with other substances.

Mebendazole
Mebendazole is a drug employed to helminths infestation (70),
which has also been proposed for drug repurposing in skin
cancer (71). A pioneering study exposed that mebendazole
produced apoptosis in melanoma cells (30). The apoptotic
response was promoted by the phosphorylation of B-cell
January 2021 | Volume 10 | Article 605714
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lymphoma 2 (Bcl-2) and the decrease in X-linked inhibitor of
apoptosis (30, 72). Interestingly, the combination of
mebendazole, temozolomide, and Bcl-2 antisense had a
synergistic effect in inhibiting the growth of two melanoma cell
lines (73). Likewise, the combination of mebendazole and
trametinib effectively inhibited the proliferation of melanoma
cells derived from patients carrying NRASmut/BRAFWT and
reduced their growth in xenografted mice (74). Therefore, the
concomitant administration of mebendazole with other
medications could be an alternative for melanoma treatment.
However, this drug has not been assessed in any clinical trial with
patients with skin cancer. Thus, its clinical evaluation could
require further evidence from preclinical studies

Metformin
Metformin is a drug commonly used in type 2 diabetes mellitus;
it reduces serum glucose levels through diverse mechanisms (75).
Notably, melanoma is strongly dependent on glucose
metabolism (76), and several epidemiological studies presented
a relationship between the use of metformin and lower skin
cancer risk (77). Concerning this, an investigation revealed that
metformin inhibited tumor growth in mice xenografted with
SCC cells (A431 cell line); the effect appeared to be caused by the
inhibition of the mTOR and NF-ĸB signaling pathways (78).
Similarly, Tomic et al. showed that metformin decreases the
proliferation of melanoma cells in vitro and reduces tumor
growth in vivo; those effects were mediated by a cell cycle
arrest (31). In comparison, other studies suggested a variety of
molecular mechanisms to explain the anti-melanoma properties
of metformin, including the decrease of protein TRIB3
expression (79), upregulation of miRNAs expression (80), and
induction of immune response in the tumor microenvironment
(81). Furthermore, metformin prevented the development of
metastasis in vitro e in vivo by activating the p53 tumor
suppressor protein and AMPK (82). Besides, metformin
enhanced the anti-proliferative effects of binimetinib (an
inhibitor of MEK) in a model of metastatic melanoma cells
(83). The molecular mechanism involves P-ERK downregulation
and AMPK upregulation. Due to these preclinical pieces of
evidence, various clinical studies have been undertaken.
Remarkably, at least five clinical trials are ongoing exploring
the therapeutic effects of metformin in skin cancer
(NCT01638676, NCT01840007, NCT02143050, NCT03311308,
and NCT04114136). Although metformin is being studied only
as an adjuvant in all the studies.

Pimozide
Pimozide is an antagonist for dopamine receptors; it is employed
to treat Gilles de la Tourette syndrome and schizophrenia (84).
Additionally, pimozide has shown promising results for
managing several cancers, including skin cancer (36, 85–87).
An early clinical trial showed that pimozide might have
beneficial effects in patients with formerly medicated metastatic
melanoma (86). The possible molecular mechanism for this anti-
metastatic effect could be mediated by inhibition of ARPC2, a
subunit of the Arp2/3 complex involved in migration and
invasion (85). Moreover, preclinical studies demonstrated that
Frontiers in Oncology | www.frontiersin.org 5
the combination of pimozide with other drugs might enhance its
anti-melanoma activity. For example, pimozide’s simultaneous
use and an inhibitor of indoleamine 2,3-dioxygenase (an enzyme
that participates in melanoma tolerance) had a synergistic effect
against melanoma in a mouse xenograft model (36). The authors
indicated that pimozide inhibited STAT3 and STAT5, regulating
tumor immunity. Likewise, Zhao et al. (87) co-administered
pimozide and siRNA targeting PD-1 to mice xenografted with
melanoma cells. Their results revealed an increase in the anti-
tumor effects by inducing apoptosis and enhancing immune
function. Lastly, a cutting edge study explored the anti-cancer
effects of pimozide and a CpG oligodeoxynucleotide (CpG ODN)
on mice xenografted with B16 cells (88). Their results revealed
that the combination of those compounds suppressed the
melanoma growth and extended experimental subjects’
survival. Those findings were due to the induction of
apoptosis, repression of invasion, and enhancement of immune
response. Despite all these findings, there are no clinical trials
with this drug to date. Those studies shall be necessary to support
its repurposing for skin cancer.

Piroxicam
Piroxicam is a non-steroidal anti-inflammatory compound that
blocks the cyclooxygenases-1 and -2 (COX-1 and COX-2)
enzymes (89). Several studies have shown that those enzymes
participate in the development of actinic keratoses and SCC (90,
91); thus, piroxicam could help their prevention and treatment.
In support of this hypothesis, Campione et al. (38) demonstrated
that piroxicam’s topical application (1%) had beneficial effects in
patients with actinic keratoses. Numerous studies combining
piroxicam (0.8%) and sunscreens (SPF 50+) have found very
similar results (92–97), which suggests that piroxicam might
serve as a chemopreventive agent for SCC. On the other hand, a
recent study reported that piroxicam exhibited cytotoxic activity
on SCC cells (A431 cell line), highlighting the drug’s therapeutic
potential (98). Interestingly, piroxicam had no effects on the
proliferation of melanoma A375 cells (99), suggesting that its
anti-cancer activity is specific for SCC. Nevertheless, this drug
has not been assessed in any clinical trial with patients with SCC;
thus, its clinical efficacy has not been proven yet.
CONCLUSION AND PERSPECTIVES

The development of efficacious treatments for skin cancer is
costly and time-consuming; hence, old drugs’ repositioning has
arisen as an affordable approach. This procedure requires a
thorough search through multiple dataset analyses and
structure-based virtual screening to select a suitable compound
for repurposing (13, 100, 101). Moreover, extensive in vitro e in
vivo analyses are necessary before undertaking clinical trials. In
this respect, advances in knowledge of skin cancer cellular and
molecular mechanisms have provided essential information for
drug repurposing. Likewise, although clinical trial execution
usually requires a long time to evidence security and efficacy,
the repositioning of drugs for skin cancer will consume less time
than the development of novel medications.
January 2021 | Volume 10 | Article 605714
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Interestingly, even with the evidence for repositioning old
drugs for skin cancer, to our knowledge, there is limited evidence
from ongoing clinical trials. Possibly, the degree of improvement,
and therefore of clinical relevance, does not support the
commercial profitability of the discoveries, except for
metformin with at least five clinical trial registries, one of them
in phase 2. It is noteworthy that metformin, itraconazole,
leflunomide, and doxycycline have been proposed as adjuvants,
so possibly they would not be one of the primary and first-choice
drugs. Nevertheless, the concurrent use of drugs targeting
different signaling pathways may enhance their anti-cancer
effectiveness, therefore extending the patients’ survival and
reducing the relapse risk. Also, this clinical strategy would allow
lowering costs related to expensivecurrent anti-cancermedications.

Finally, as in other drug strategies for treating cancers,
pharmaceutical technology tools are necessary for adequate
administration and effect at skin cancer’s cellular level. In this
Frontiers in Oncology | www.frontiersin.org 6
respect, several nanoformulations can enhance the efficacy of
drugs to treat cancer; thus, this approach will allow well-known
drugs to be used to treat skin cancer. Although nanosystems for
skin cancer are not commercially available, several formulations
have been proposed as nanocarriers to effectively deliver known
antineoplastic therapeutic agents for skin cancers (102, 103).
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