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Abstract

Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in various plastic compounds, such as polyvinyl chloride
(PVC), and products including baby toys, packaging films and sheets, medical tubing, and blood storage bags.
Epidemiological data suggest that phthalates increase the risk of the nervous system disorders; however, the impact of
DEHP on the brain cells and the mechanisms of its action have not been clarified. The aim of the present study was to
investigate the effects of DEHP on production of reactive oxygen species (ROS) and aryl hydrocarbon receptor (AhR),
as well as Cyplal and Cyplbl mRNA and protein expression in primary mouse cortical neurons and glial cells in the in
vitro mono-cultures. Our experiments showed that DEHP stimulated ROS production in both types of mouse neocortical
cells. Moreover, the results strongly support involvement of the AhR/Cypl Al signaling pathway in the action of DEHP
in neurons and glial cells. However, the effects of DEHP acting on the AhR signaling pathways in these two types of
neocortical cells were different. In neurons, AZR mRNA expression did not change, but AhR protein expression de-
creased in response to DEHP. A similar trend was observed for Cyplal and Cypl/bl mRNA and protein expression.
Failure to induce Cyplal in neurons was confirmed by EROD assay. In primary glial cells, a decrease in AhR protein
level was accompanied by a decrease in AR mRNA expression. In glial cells, mRNA and protein expression of Cyplal
as well as Cyplal-related EROD activity were significantly increased. As for Cyplbl, both in neurons and glial cells
Cyplbl mRNA expression did not significantly change, whereas Cyp1b1 protein level were decreased. We postulate that
developmental exposure to DEHP which dysregulates AhR/Cyplal may disrupt defense processes in brain neocortical
cells that could increase their susceptibility to environmental toxins.
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Due to the unbound nature of the polymer, DEHP can easily
leach from products (Pearson and Trissel 1993). DEHP pol-
lutes the environment and is detected in samples from soil,
indoor air, water, plants, and human foods (Tran et al. 2017,
Wowkonowicz and Kijenska 2017). For the human popula-
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2013). DEHP and its metabolite, mono-(2-ethylhexyl)-phthal-
ate (MEHP), can be detected in human tissues and bodily
fluids, such as amniotic fluid, blood, milk, or urine (Silva et
al. 2004; Sakhi et al. 2017). After single oral application of
500 uM/kg DEHP to marmosets, high concentration of DEHP
maintain in blood by approximately 6 h (Rhodes et al. 1986).
However, we should remember that people have chronic con-
tact with this compound through lifetime. Typical human ex-
posure is estimated to be 4-30 ug DEHP kg ' day ', but some
individuals have substantially greater exposure resulting from
different DEHP-plasticized medical devices (Doull et al.
1999; Moore et al. 2001). DEHP and MEHP have been re-
ported to easily pass through biological barriers, such as the
placental barrier or blood-brain barrier, and can affect devel-
opment and proper nervous system function (Shin et al. 2014;
Linetal. 2015a; Komada et al. 2016). DEHP levels were 1.15
+0.81 pg mL " in maternal plasma and 2.05+ 1.47 pg mL ™"
in the cord plasma (Tanida et al. 2009; Lin et al. 2015a). To
date, in utero exposure to DEHP (1500 mg kg ') was found to
cause metabolic disturbance of lipid metabolome in the fetal
brain (Xu et al. 2007). Moreover, DEHP exposure prenatally
has been demonstrated to affect neurons in the sexual differ-
entiation area of rat brains and subsequently lead to neurode-
generation (Moore et al. 2001; Dhanya et al. 2003).
Furthermore, postnatal exposure to DEHP causes motor hy-
peractivity and a strongly reduced number of dopaminergic
neurons (Masuo et al. 2004; Tanida et al. 2009). Although
there is an increasing body of evidence that shows the delete-
rious effects of DEHP on the nervous system, little is known
about its mechanism of action on mammalian cerebral cells.
Aryl hydrocarbon receptor (AhR) is a ligand activated tran-
scription factor and is a nuclear xenobiotic receptor that plays
a crucial role in cellular cytochrome expression (Beischlag et
al. 2008; Lindsey and Papoutsakis 2012). In addition, activa-
tion of AhR inhibits cells from differentiating into astrocytes
but promotes differentiation into neurons (Takanaga et al.
2004; Akahoshi et al. 2006). The main genes that AhR targets
are the cytochrome P450 enzymes (CYP), such as Cyplal
and Cyplbl (Guengerich et al. 2003). Cyplal and Cyplbl
are responsible for the metabolism of hydrophobic polycyclic
aromatic hydrocarbons (PAHs) and polyhalogenated aromatic
hydrocarbons (PHAHSs), such as dioxin-like compounds and
polychlorinated biphenyls (PCBs) (Nebert et al. 2004; Nebert
and Dalton 2006). However, the role of AhR signaling in the
response of cerebral cells to DEHP has not been reported.
DEHP has been reported to induce Azr and CyplbI mRNA
in the cerebellum of Coturnix japonica (quail) (Du et al.
2017). AhR activation increased the production of reactive
oxygen species (ROS) due to a decrease in superoxide dismut-
ase (SOD) activity and/or an increase in Cyplal activity (He
et al. 2013; Szychowski et al. 2016). ROS are known to dam-
age lipids, proteins and DNA, which ultimately leads to apo-
ptotic or necrotic cell death (Mittler 2017). However, the
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elevated ROS level is also a signaling pathway that is neces-
sary for maintaining certain physiological processes (Schieber
and Chandel 2014). In Caenorhabditis elegans, DEHP is able
to induce toxicity and affect locomotive and thermotactic be-
haviors through oxidative stress (Tseng et al. 2013).

Recently, Wu et al. (2014) reported that 1 nM DEHP sig-
nificantly increased ROS production in neuron-astrocyte co-
cultures isolated from Balb/c mice and postulated what the
cell-dependent effects were (Wu et al. 2014). Because of the
interactions between ROS and AhR signaling in neuronal cells
(Szychowski et al. 2016), the present study aimed to investi-
gate the effects of DEHP on ROS production; AhR, Cyplal
and Cyplbl mRNA, and protein expression; and Cyplal-
related EROD activity in mouse cortical neurons and glial
cells in vitro.

Materials and Methods
Reagents

DMEM/F12 without phenol red (D2906), trypsin (T8003),
charcoal/dextran-treated fetal bovine serum (FBS) (F6765),
penicillin-streptomycin (P4333), L-glutamine (G3126),
glycerol (G5516), Trizma base (T1503), HEPES (H3375),
CHAPS (C9426), dithiothreitol (DTT) (D0632),
Nonidet NP-40 (21-3277), sodium dodecyl sulfate (SDS)
(L3771), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
(CRM981), EDTA (798681), Tween 20 (P1379), 2',7'-
dichlorodihydrofluorescein diacetate (H,DCFDA) (D6883),
bromophenol blue (B0126), staurosporine (S5921),
phosphatebuffered saline (PBS) (P5368), DEHP (67261), an
anti-P-actin antibody (A2066), and dimethyl sulfoxide
(DMSO) (D2650) were purchased from Sigma—Aldrich (St.
Louis, MO, USA). B27 without antioxidants (B27-A0),
serum-free supplement (10889-038), neurobasal-A (12349-
015) without phenol red and TagMan probes corresponding
to specific genes encoding for Gapdh (Mm99999915 gl),
Ahr MmO01291777_m1l), Cyplal (Mm00487218 ml), and
Cyplbl (MmO00487229 ml) were purchased from Thermo
Fisher Scientific (Forest City, CA, USA). The substrate for
caspase-3 (235400) was purchased from Merck (Darmstadt,
Germany). The cytotoxicity detection kit (LDH)
(11644793001) was purchased from Roche Applied Science
(Mannheim, Germany). Anti-AhR antibody, anti-Cyplal an-
tibody, anti-Cyp1b1 antibody, and Luminol Reagent (sc-8088,
sc-9828, sc-32882, and sc-2048, respectively) were purchased
from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA).
Reagents for measuring protein concentration using the
BioRad Protein Assay (5000006) were purchased from
BioRad Laboratories (Munich, Germany). Stock solutions of
these test compounds were prepared in DMSO and were
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added to neurobasal or DMEM/F12 medium. The final con-
centration of DMSO in the culture medium was always 0.1%.

Cell Culture Preparation

Experiments were performed on cultured mouse neurons and
glial cells. The cell cultures were prepared from the embryos of
15 pregnant female Swiss mice. Brain tissues were collected
from mouse embryos on day 17/18 of gestation. Pregnant fe-
males were anesthetized with CO, vapor and killed by cervical
dislocation. Animal care followed official governmental guide-
lines, and all efforts were made to minimize the number and
suffering of animals used. All procedures were performed in
accordance with the National Institutes of Health Guidelines
for the Care and Use of Laboratory Animals and were approved
by the Bioethics Commission (No. 83/2012), as compliant with
Polish law. Brains were removed from the embryos, and the
cortical tissues were dissected. The dissected tissues were
minced into small pieces and then gently digested with trypsin.

Neuronal Cell Culture

After tissue digestion, the cells were centrifuged, and the pel-
let was suspended in phenol red-free neurobasal medium sup-
plemented with 5% charcoal/dextran-treated FBS and B2-AO
supplement. The cells were plated onto poly-L-ornithine-coat-
ed (0.01 mg mL ") multi-well plates. Two days after plating,
the culture medium was changed to a neurobasal medium
supplemented with B27-A0 (2 uL mL™'), glutamine
(2 mM), 10 U mL " penicillin, and 0.01 mg mL ™" streptomy-
cin, which is recommended for primary neuronal cultures
(Brewer 1995; Kajta et al. 2005). The cells were cultured at
a density 1.8 x 10° cells/cm? for experimental purposes. This
procedure typically yields cultures that contain approximately
90% neurons and 10% glial cells (Brewer et al. 1993; Brewer
1995). The cultures were maintained at 37 °C in a humidified
incubator containing 5% CO, and were allowed to grow for
7 days prior to the experiment. After the experiment, the cul-
ture medium was changed before the cultures were treated
with the selected compounds.

Glial Cell Culture

After tissue digestion, the cells were centrifuged, and the pellet
was suspended in phenol red-free DMEM/F12 medium sup-
plemented with 10% fetal bovine serum (FBS), 2 mM gluta-
mine, 100 U mL™" penicillin, 0.10 mg/mL streptomycin and
250 ng/mL amphotericin B. This modified a previously de-
scribed method (Wang et al. 1998; Blomstrand and Giaume
2006; Vitvitsky et al. 2006), and there are different glial culture
media and techniques reviewed by Saura (2007). The cells
were seeded at a density of 20 x 10° cells/75 cm? in culture
flasks. Cultured glial cells were maintained at 37 °C in a

humidified atmosphere containing 5% CO,. After one passage,
cells that were in the logarithmic phase were collected for sub-
sequent experiments. This technique provides a culture that is
almost purely glial cells, culture contained > 90% astrocyte cell
culture without any neurons (Wang et al. 1998; Blomstrand and
Giaume 2006; Vitvitsky et al. 2006; Saura 2007). Cells were
trypsinized with 0.25% trypsin/0.05% EDTA and passaged on-
to the experimental plates. The culture medium was changed
prior to treating cells with the selected compound. Our isolation
and culture method of cortical glial cells, resulted in an astro-
cyte purity of greater than 98%, was revealed using the anti-
body against the GFAP protein immunofluorescent staining
(Szychowski et al. 2018; Electronic suplementary data).

Measurement of Reactive Oxygen Species Production

The fluorogenic dye H,DCFDA was used to detect intracellu-
lar reactive oxygen species (ROS). After diffusion into the
cell, H,DCFDA is deacetylated by cellular esterases into a
non-fluorescent compound that is subsequently oxidized by
ROS into 2',7'-dichlorofluorescein (DCF) (Gomes et al.
2005). To measure the generation of ROS, the cells were
seeded onto black-sided, clear-bottomed, 96-well plates in
densities described above then exposed to DEHP. Five micro-
molars of H,DCFDA was applied to determine DEHP’s abil-
ity to induce ROS production in neurons and glial cells. The
cells were incubated in H,DCFDA in serum-free and phenol
red-free medium for 45 min before DEHP treatment. After 1,
3, 6, and 24 h of incubating the cells with DEHP (5% CO, at
37 °C), DCF fluorescence have been measured. The interac-
tion between DEHP and H,DCFDA was tested in a cell-free
condition before any experiments took place, according to
concerns previously described by Szychowski and
Wojtowicz (2016). Hydrogen peroxide (H,O,) was used as a
positive control (data not shown). DCF fluorescence was de-
tected using a microplate reader (FilterMax F5) at maximum
excitation and emission spectra of 485 and 535 nm,
respectively.

Ethoxyresorufin-O-Deethylase Assay

Activity of the Cyplal enzyme was analyzed using the fluo-
rometric ethoxyresorufin-O-deethylase (EROD) assay. The
fluorescent EROD assay for Cyplal activity was performed
in 6-well plates according to the method described by
Kennedy et al. (1993). The total protein concentration in each
well was measured using fluorescamine according to the
method described by Kennedy and Jones (1994). The mea-
surement of Cyplal activity was performed after 24 and 48 h
of exposure to 1 to 100 nM and 1 to 100 uM DEHP or TCDD
as a positive control. The EROD assays were carried out in
multiwell plates, and the fluorescent product, resorufin, and
the total amount of protein were quantified within the same
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wells using a fluorescence plate reader (Bio-Tek Instruments,
Biokom). The ethoxyresorufin metabolite, resorufin, was
measured using an excitation wavelength of 530 nm and an
emission wavelength of 590 nm. Protein concentrations were
measured using fluorescamine at an excitation wavelength of
400 nm and an emission wavelength of 460 nm.

Real-Time PCR Analysis of mRNA

Cells were seeded onto 6-well plates to be used for real-time
PCR. After 3 or 6 h of exposure to 10 uM DEHP, samples
were collected and total RNA was extracted from neocortical
neurons using a Qiagen RNeasy mini kit according to the
manufacturer’s protocol based on the previously described
method (Kajta et al. 2014). The quantity of RNA was deter-
mined using a spectrophotometer at 260 and 280 nm (ND/
1000 UV/Vis; Thermo Fisher NanoDrop, USA). Two-step
real-time reverse transcription (RT)-PCR was conducted.
Both the RT reaction and quantitative polymerase chain reac-
tion (QPCR) were run in a CFX96 Real-Time System
(BioRad, USA). The RT reaction was performed at a final
volume of 20 uL with 300 ng of RNA (as a cDNA template)
using a cDNA reverse transcription kit according to the man-
ufacturer’s protocol. Products of the RT reaction were ampli-
fied using a TagMan Gene Expression Master Mix (Life
Technologies Applied Biosystems, USA) kit using the
TagMan probes as primers for the specific genes coding for
Gadph, Ahr, Cyplal, and Cyplbl. Amplification was per-
formed with a total mixture volume of 20 pL containing 1x
TagMan Gene Expression Master Mix and 1 puL of RT prod-
uct used as the PCR template. The standard qPCR steps were
as follows: 2 min at 50 °C and 10 min at 95 °C followed by
40 cycles of 15 s at 95 °C and 1 min at 60 °C. The threshold
value (Ct) for each sample was set during the exponential
phase, and the AA Ct method was used for data analysis.
Gapdh was used as a reference gene.

Western Blot Analysis

Cells were seeded on 6-well plates for western blot analysis.
After 1, 3, 6, 24, or 48 h of exposure to 10 uM DEHP, western
blot samples were collected. For immunoblotting, the cells
were lysed in 100 pL of ice-cold lysis buffer containing
100 mM NaCl, 50 mM Tris HCI1 (pH 7.5), 0.5% Na-
deoxycholate, 0.5% Nonidet NP-40, and 0.5% SDS. The ly-
sates were then sonicated and clarified by centrifuging at 4 °C
and 15,000xg for 20 min. The supernatant was collected and
stored at — 80 °C until it was analyzed. The protein concen-
trations of the supernatants were determined using the
Bradford method (Bradford 1976) with bovine serum albumin
(BSA) as the standard. From the whole cell lysates, 20 pg of
total protein were reconstituted in the appropriate amount of
sample buffer, consisting of 125 mM Tris (pH 6.8), 4% SDS,
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25% glycerol, 4 mM EDTA, 20 mM DTT, and 0.01%
bromophenol blue. The samples were separated by 7.5%
SDS-polyacrylamide gel electrophoresis in a Bio-Rad Mini-
protean II Electrophoresis Cell. The protein was then trans-
ferred to nitrocellulose membranes using a Bio-Rad Mini
Trans-Blot apparatus. Following the transfer, the membranes
were washed and blocked with 5% dried milk and 0.2%
Tween 20 in 0.02 M TBS for 2 h to prevent any nonspecific
binding. The membranes were then incubated overnight with
anti-AhR, anti-Cyplal, and anti-Cyp1b1 antibodies at a dilu-
tion of 1:200 in TBS/Tween at 4 °C. After incubation with
primary antibody, the membranes were washed with TBS and
0.02% Tween 20 then incubated for 2 h with horseradish
peroxidase-conjugated secondary antibodies diluted at
1:1000 in TBS/Tween. To control for the amount of protein
that was loaded onto the gel, an anti-3-actin antibody diluted
at 1:1000 in TBS/Tween (secondary antibody diluted at
1:5000 in TBS/Tween) was used. Signals were detected by
chemiluminescence (ECL) using a Western Blotting
Luminol Reagent and visualized with a FujiLas 4000
Phosphorlmager. Immunoreactive band intensities were quan-
tified by densitometry using an image analyzer with Image]
1.47v software (National Institute of Health, USA).

Staining with Calcein AM

Calcein AM staining was performed to measure the intracel-
lular esterase activity and to show cell morphology in neuron
and glial cell cultures 24 h after an initial treatment with
10 uM of DEHP. This staining method was used to indicate
metabolic activity and cell viability, according to a previously
described protocol (Szychowski et al. 2015). Briefly, the cells
grown on glass cover slips were then incubated in 4 uM
calcein AM in PBS at 37 °C in an atmosphere of 5% CO,
for 10 min. Cells with light-green cytoplasm were identified as
living cells using NIKON Eclipse 80i, (NIKON Instruments
Inc., Melville, New York, USA) equipped with a camera with
the BCAM Viewer© Basler AG software. A quantitative as-
sessment of cell viability based on fluorescence measurement
was performed as the separate experiment. The cells plated on
96-well plates were cultured in the presence of 10 uM of
DEHP for 24 h. Then calcein AM solution was added to each
well and incubated for 30 min at 37 °C. The measurement of
the intracellular esterase activity was conducted with a fluo-
rescence plate reader (Bio-Tek Instruments, Biokom) with
485 nm of excitation and 538 nm of emission wavelengths.

Statistical Analysis

The data are presented as the mean =+ standard deviation (SD)
of four independent experiments. Each treatment was repeated
eight times (n=8) and run in triplicate; therefore, the total
number of replicates was 24. The average of the quadruplicate
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samples was used for the statistical calculations. The data was
analyzed using Multi-Mode Analysis software and was nor-
malized to the fluorescence in a vehicle-treated control (% of
control). The data were analyzed by one-way analysis of var-
iance (ANOVA) followed by Tukey’s multiple comparison
procedure. Differences between the control and experimental
groups were marked probability (p) value as follows: #p <

0.05, *%p <0.01, and **xp <0.001.

Results
Reactive Oxygen Species Production

After neurons were exposed for 1 h to 1 nM—100 uM DEHP,
any changes in ROS production were noted. After 3 h of
exposure to DEHP, only the highest (100 uM) concentration
increased ROS production by 15.55% compared with con-
trols. After 6 h of exposure, 50 and 100 uM DEHP increased
ROS production by 22.17 and 31.33%, respectively. In neu-
rons exposed to DEHP for 24 h, we observed an increase in
ROS production at concentrations of 10, 50, and 100 uM
(increases of 25.50, 62.27, and 86.05%, respectively)
(Fig. 1a).
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Following 1 and 3 h of exposing glial cells to 1 nM—
100 uM DEHP we observed an increase in ROS production
from a range of 50 nM to 100 uM (increase from 21.82 to
64.58% compared with vehicle controls). However, after 6 h
of exposure to DEHP only the high uM concentrations (10—
100 uM) increased ROS production (increased by 33.95 to
62.64% compared with controls). After 24 h of exposure to
DEHP, the ROS production increased in range from 1 to
100 uM (increases of 47.10 to 34.17% compared with vehicle
controls) (Fig. 1b).

EROD Activity

After 24 and 48 h of exposing neurons to 1 nM-100 uM
DEHP, any changes in EROD activity were noted. TCDD
was used as a positive control and caused an increase in
EROD activity after both 24 and 48 h (increases of 36.84
and 40.62%, respectively, compared with controls)
(Fig. 2a).

In glial cells exposed to 1 nM—-100 uM DEHP for 24 h,
we observed an increase in EROD activity in a range of
100 nM to 100 uM (increases of 18.19 to 50.00% com-
pared with vehicle controls). However, after 48 h of ex-
posure, only the 100-uM DEHP increased EROD activity
by 38.70%. TCDD strongly increased EROD activity after
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24 and 48 h (increases of 50.00 and 72.72%, respectively,
compared with controls) (Fig. 2b).

Expression of Ahr, Cyplal, and Cyp71b1 mRNA

After 3 h of exposure to 10 uM DEHP the neocortical neurons
showed a decrease in expression of Cyplal mRNA by
25.57% compared with the vehicle control (Fig. 3a).
However, in glial cells 10 uM DEHP decreased the expression
of Ahr mRNA by 22.05% compared with vehicle controls
(Fig. 3¢).

After 6 h of exposure to 10 uM, DEHP neurons showed no
change in gene expression (Fig. 3b). In contrast, after 6 h of
exposure to 10 uM DEHP glial cells displayed an increase in
Cyplal mRNA expression of 100.00% compared with vehi-
cle controls (Fig. 3d).

Fig. 2 Effects on EROD activity a

Expression of AhR, Cyp1a1, and Cyp1b1 Protein

In neurons, immunoblot analyses quantified by densitometry
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(Fig. 4).
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Fig. 3 The effects of exposure to 10 uM DEHP on mRNA ahr, cyplal,
and ¢yplbl gene expression in mouse primary neurons after 3 h (a) and
6 h (b) and glial cells after 3 h (¢) and 6 h (d) in vitro. The data are

respectively). An increase in Cyplal protein expression was
observed after 6, 24, and 48 h (increased by 50.05, 68.01, and
301.21%, respectively). Cyp1bl protein expression decreased
by 47.38% after 48 h compared with the control (Fig. 5).

Calcein AM Staining

In the control cultures, predominant healthy neurons as well as
glial cells with the light green-fluorescence cytoplasm were pre-
sented. A reduction in living neurons and the increase in glial
cells number were observed under the influence of DEHP
(10 uM) (Fig. 6a). The fluorescence measurement confirmed
that 10 uM of DEHP affected the viability/cells number. In neu-
rons exposed to 10 uM DEHP for 24 h, we observed a decrease
in calcein AM by 27.74%, compared with control. In glial cells
exposed to 10 uM DEHP for 24 h, we observed an increase in
calcein AM by 14.59%, compared with control (Fig. 6b).

Discussion

Our experiments showed for the first time that DEHP stimu-
lates ROS production in mouse neocortical cells, both in
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neuronal and glial cell cultures. In neocortical neurons, the
highest concentration of DEHP (100 uM) increased ROS pro-
duction after 3, 6, or 24 h of exposure. After the longer period
of time of 24 h, the lower concentrations (10 and 50 uM) of
DEHP also caused an increase in ROS production in mouse
neurons. In primary glial cell cultures DEHP strongly stimu-
lated ROS production after 1 and 3 h of exposure at a broad
range of concentrations (from 50 nM to 100 uM).
Nevertheless, after 6 and 24 h of exposure, similar to neurons,
only the highest DEHP concentrations significantly increased
ROS production in primary glial cells. DEHP-dependent ROS
production is well-described in different culture models, main-
ly in relation to the reproductive system. Our data can be
compared with the only relevant paper in which DEHP-
dependent ROS production in in vitro neuron-astrocyte co-
cultures has been studied (Wu et al. 2014). The data presented
by Wu et al. (2014) demonstrated that even 1 nM DEHP
caused a significant increase in ROS concentrations, indicat-
ing that neuronal-astrocyte co-cultures are more sensitive to
DEHP than cerebral cell mono-cultures, as is also evident in
our experiments. Additionally, in the mentioned study, astro-
cyte proliferation was initiated in response to DEHP, suggest-
ing a mechanism of neuroprotection (Wu et al. 2014). Similar,
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Fig. 4 The effects of 10 uM DEHP on protein expression of Ahr,
Cyplal, and Cyplbl after 1, 3, 6, 24, and 48 h in mouse primary
neurons (a) in vitro. Protein bands were quantified by densitometry.
The results are shown as the percentage of Ahr (b), Cyplal (c), and
Cyplbl (d) proteins relative to the control protein levels. Each column
represents the mean = SD of three independent experiments. The blots
were stripped and reprobed with an anti-{3-actin antibody to control for
the amounts of protein loaded onto the gel. *#p <0.01 and #=xp < 0.001
versus the control
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Fig.5 The effect of 10 uM DEHP on protein expression of Ahr, Cyplal,
and Cyplbl after 1, 3, 6, 24, and 48 h in mouse primary glial cells (a) in
vitro. Protein bands were quantified by densitometry. The results are
shown as the percentage of Ahr (b), Cyplal (¢), and Cyplbl (d)
proteins relative to the control protein levels. Each column represents
the mean + SD of three independent experiments. The blots were
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amounts of protein loaded onto the gel. sx#p < 0.001 versus the control
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Fig. 6 The effect of DEHP (10 uM) on mouse primary neocortical neu-
rons and glial cells in vitro cultured at 7 DIV, examined 24 h post-treat-
ment. Images of mouse primary neurons and glial cells cultures in vitro
and stained with calcein AM. Cells with a light-colored cytoplasm were
identified as viable cells (a); control neurons and neurons treated with
10 uM DEHP (left column). Control glial cells and glial cells treated with
10 uM DEHP (right column). The scale bar is at 50 pm. The results of
calcein AM fluorescence measurement were performed using microplate
fluorescence reader. The statistical data are expressed as the means + SD
of three independent experiments, each of which consisted of eight rep-
licates per treatment group. #p <0.05 and #*%#p <0.001 versus control
cells (b)

in our experiments glial cells treated 10 uM DEHP and next
stained by calcein AM increase in number wile neurons num-
ber decreased.

It is widely accepted that the stimulation of ROS may be an
effect caused by increased expression and activity of Cyplal
(Kopf and Walker 2010). Because of this, we decided to study
AhR, Cyplal, and Cyp1bl expression to potentially elucidate
DEHP’s mechanism of action. AhR and CYP1A1 are robustly
expressed in neural progenitor cells (NPCs) and in various
regions of the brain during critical periods of development
both in neurons and glial cells (Tripathi et al. 2013; Dever et
al. 2016). AhR and AhR-regulated CYP1Al are known to

mediate neuronal cell death in response to environmental pol-
lutants as well as to be important regulators of metabolizing
enzymes, detoxification, cell proliferation, differentiation, and
inflammation (Hankinson 1995).

Our data showed for the first time that in neurons, Ahr
mRNA expression does not change in response to DEHP,
while AhR protein expression decreases. A similar trend was
observed in regard to Cyplal and Cyplbl mRNA and protein
expression. Failure to induce Cyplal was confirmed by the
EROD assay. In primary glial cells, the decrease in AhR pro-
tein levels was accompanied by a decrease in Ahr mRNA
expression. In these cells, both expression of Cyplal
mRNA and protein and Cyplal-related EROD activity signif-
icantly increased. Cyplbl mRNA expression did not change
significantly, and protein expression decreased only after 48 h
of exposure to DEHP.

To date, phthalates have been accepted as exhibiting a
weak potency as agonists of AhR (Mankidy et al. 2013).
However, among the four phthalates studied (DEHP, diethyl
phthalate (DEP), dibutyl phthalate (DBP), and benzyl butyl
phthalate (BBP)), DEHP was the strongest inducer of AhR in
Rattus norvegicus liver hepatoma (H41IE) cells. According to
different studies, ligand binding to AhR resulted in a decrease
in the receptor protein level, which is an effect of proteolytic
degradation of the complex (Song and Pollenz 2002; Filbrandt
et al. 2004). These data support our hypothesis that DEHP-
induced decreases in AhR protein levels in neurons and glial
cells are caused by the activation of AhR.

According to Mankidy et al. (2013), DEHP targeted steroid
biosynthesis pathways and stimulated production of estradiol
(E2) with a simultaneous reduction in testosterone (T) concen-
trations. However, DEHP did not mimic E2 in an MCF-7-
derived (MVLN) cell line as detected by bioluminescence
transactivation assay (Mankidy et al. 2013). Nonetheless, in
a study by Tanay Das et al. (2014) MCF-7 and MDA-MB-231
cell lines demonstrated that DEHP acts partially in an estrogen
receptor alpha (ERx)-dependent manner (Tanay Das et al.
2014). Therefore, DEHP may stimulate E2 production and/
or partially act as a disruptor of E2 signaling. It is widely
accepted that estrogens and xenoestrogens can downregulate
Cyplal expression (Lai et al. 2004; Maradonna et al. 2004;
Wojtowicz et al. 2011; Cocci et al. 2013), and a similar inhib-
itory effect by the estrogenic compound o,p’-DDT in Hepa
cells has been reported by Jeong and Kim (2002). Because
there are no data regarding DEHP action on CYP1A1, we can
only compare our results with studies focused on other factors
exhibiting estrogenic activity and downregulating CYP1A1,
such as estradiol, estriol, 4-nonylphenol, methoxychlor, di-
ortho-substituted polychlorinated biphenyls, and resveratrol
(Ciolino et al. 1998; Jeong et al. 2001; Son et al. 2002; Han
et al. 2007; Jablonska et al. 2011). These studies have shown
that estrogens and estrogen-like compounds can inhibit
CYPIALI activity and/or CYPIA1T mRNA expression in
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Hepa cells, hepatocytes, and MCF7 (Ociepa-Zawal et al.
2007). It has been shown that E, and benzophenone-2 (weak
xenoestrogen) decrease in expression of A4 mRNA in pitui-
tary, thyroid, and uterus female Sprague—Dawley rats
(Schlecht et al. 2004). Similar trend was observed by Lin et
al. (2015b) where combined exposure of the mice to DEHP
and Aroclor 1254 slightly but not significantly decrease ex-
pression of AZR mRNA expression in animal liver (Lin et al.
2015b). Furthermore, DEHP decrease in Cyplal activity in
rat liver (Seo et al. 2004). E2-mediated suppression of Cyplal
production is probably an effect caused by preventing the
AhR complex from binding to the dioxin response element
(DRE) (Lai et al. 2004). It is well documented that
xenoestrogens can downregulate aryl-hydrocarbon receptor
nuclear translocator 2 (ARNT2) mRNA expression in human
breast cancer cells through an ERx-dependent mechanism
(Qin et al. 2011). Similarly, Jeong and Kim (2002) demon-
strated an impairment of the dioxin-response element (DRE)
being able to bind to DNA in o,p’-DDT-treated Hepa cells.
Therefore, it appears that the inhibitory action of estrogenic
compounds on CYP1A1 is universal across different tissues
and may depend on AhR. However, Du et al. (2017) reported
opposite results when they observed DEHP-induced cerebel-
lar toxicity in Coturnix japonica by disrupting the CYP en-
zyme system homeostasis (Du et al. 2017). The authors
showed an increase in both AZR and Cypl/bl mRNA
expression. Similar results were observed in human immortal-
ized granulosa cells (KGN). When the cells were exposed to 5
and 10 uM DEHP, there was an increase in Az mRNA ex-
pression but no effect on CYPIBI mRNA expression (Ernst et
al. 2014). Hwang et al. (2005) demonstrated that humanized
transgenic male mice with human CYP1B1 (hCYP1B1) given
DEHP dose-dependently increased the activity and expression
of mRNA and protein of hCYP1B1 (Hwang et al. 2005).
However, it should be noted that transgenic mice co-
expressing hCYP1B1 may not have the proper gene regula-
tion sites preserved; therefore, the results may not be appro-
priate. Furthermore, several different mechanisms for AhR-
ER crosstalk have been described to date and include compe-
tition for cofactors (ARNT) or competition for promoter bind-
ing sites (Kajta et al. 2007, 2009; Swedenborg and Pongratz
2010; Wojtowicz et al. 2017). Piechota et al. (2017) showed
that neurons have higher levels of ERx than glial cells
(Piechota et al. 2017). Therefore, it is our opinion that
DEHP’s effects are probably tissue specific and are also de-
pendent on the different levels of AhR and ER« receptors in
the studied cells.

Conclusion

Our results showed that DEHP phthalate increases ROS pro-
duction in primary cell cultures of both neurons and glial cells.
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Our data showed for the first time that AZR mRNA expression
in neurons does not change while protein expression of AhR
decreases in response to DEHP. In primary glial cells, the
decrease in AhR protein levels was accompanied by a de-
crease in Ahr mRNA expression. In neurons, DEHP decreased
Cyplal expression but did not change the activity of Cyplal,
while in glial cells DEHP increased Cyplal expression and
activity. However, in both types of cells, DEHP decreased
Cyplbl expression. We propose that the observed effects of
DEHP action were probably cell-specific results.
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