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MicroRNAs (miRNAs) are small non-coding RNAs that have been demonstrated to be
related to numerous complex human diseases. Considerable studies have suggested
that miRNAs affect many complicated bioprocesses. Hence, the investigation of
disease-related miRNAs by utilizing computational methods is warranted. In this study,
we presented an improved label propagation for miRNA–disease association prediction
(ILPMDA) method to observe disease-related miRNAs. First, we utilized similarity
kernel fusion to integrate different types of biological information for generating miRNA
and disease similarity networks. Second, we applied the weighted k-nearest known
neighbor algorithm to update verified miRNA–disease association data. Third, we
utilized improved label propagation in disease and miRNA similarity networks to make
association prediction. Furthermore, we obtained final prediction scores by adopting an
average ensemble method to integrate the two kinds of prediction results. To evaluate
the prediction performance of ILPMDA, two types of cross-validation methods and
case studies on three significant human diseases were implemented to determine the
accuracy and effectiveness of ILPMDA. All results demonstrated that ILPMDA had the
ability to discover potential miRNA–disease associations.

Keywords: miRNA, disease, similarity kernel fusion, improved label propagation, miRNA–disease association

INTRODUCTION

MicroRNAs (miRNAs) are a class of short non-coding RNA (∼22 nt) molecules encoded by
endogenous genes (Ambros, 2001; Bartel, 2004; He and Hannon, 2004; Ribeiro et al., 2014). Since
their initial discovery 20 years ago, many miRNAs have been revealed (Wightman et al., 1993;
Jopling et al., 2005; Ana and Sam, 2014). Increasing numbers of miRNAs are confirmed to play
important roles in critical biological processes (Meola et al., 2009), such as cell growth, proliferation,
metabolism, apoptosis, and signal transduction (Xu et al., 2004; Cheng et al., 2005; Karp and
Ambros, 2005; Miska, 2005; Alshalalfa and Alhajj, 2013). Studies have shown that the emergence
and development of various human diseases are closely related to miRNAs (Samira et al., 2013;
Yanaihara et al., 2013). Importantly, disease-related miRNAs are regarded as potential biomarkers
that could significantly contribute to understanding the mechanisms of various complex human
diseases and enable their prevention, detection, diagnosis, and treatment (Lynam-Lennon et al.,
2009; Meola et al., 2009; Ye et al., 2016). Numerous traditional experiments have been conducted
to predict the unknown relationship between miRNAs and diseases, but only few miRNA–disease
associations have been confirmed (Thomson et al., 2007; Han et al., 2014). In addition, traditional
methods are generally time-consuming and expensive. In order to overcome the shortcomings of
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traditional methods, considerable computational models have
been proposed to predict disease-related miRNAs. These
computational models could obtain more accurate prediction
results, which may make future development in the field of
biological research more convenient.

In the past few years, several prediction models have been
proposed based on the theory that functionally similar miRNAs
tend to be related to phenotypically similar diseases, and vice
versa (Zeng et al., 2016; You et al., 2017). Jiang et al. (2010)
established a new computation-based model that identified
potential miRNA–disease connections by employing the
hypergeometric distribution; however, the similarity information
applied in this model excluded similarity scores. To predict
possible disease-related miRNAs, Li et al. (2011) constructed
a novel model that employed a functional consistency score
between target and disease genes. Søren et al. (2014) constructed
an miPRD model to infer miRNA–protein and disease–protein
connections. These connections were then exploited to predict
the relationship between miRNAs and diseases. In addition, a
new framework named ranking-based k-nearest neighbor for
miRNA–disease association prediction (RKNNMDA) employed
the k-nearest neighbor (KNN) algorithm to obtain the neighbors
of miRNAs and diseases (Chen et al., 2016). RKNNMDA also
involved the support vector machine (SVM) ranking model
to obtain the ranking results of the KNNs. Then, RKNNMDA
implemented weighted voting on the ranking results to obtain
all possible miRNA–disease connections. Moreover, this model
could demonstrate possible unverified connections between
miRNAs and diseases. The Jaccard similarity between miRNAs
and diseases was introduced by Chen et al. (2018a) in the
bipartite local models and hubness-aware regression for miRNA–
disease association prediction (BLHARMDA) model, which
also took advantage of a bipartite local model with a KNN
framework for improving the prediction efficiency. Chen et al.
(2019a) proposed a computational framework, MDVSI, to
predict potential miRNA–disease connections by integrating
different miRNA similarities (miRNA functional and topological
similarity). MDVSI employed the linear weight method to
integrate miRNA similarities and then used the recommendation
method to infer unknown relationships between miRNAs and
diseases. Furthermore, Zhou et al. (2020) utilized gradient
boosting decision tree and logistic regression analysis to predict
disease-associated miRNAs. The gradient boosting decision tree
method was used to extract miRNA and disease features; then,
the logistic regression method used these new features to obtain
a final miRNA–disease association score.

As artificial intelligence technology has developed, machine
learning-based models have been increasingly employed to
predict the accuracy of miRNA–disease associations. Chen and
Yan (2014) adopted semi-supervised learning in the regularized
least squares for miRNA–disease association (RLSMDA) model
to efficiently predict feasible miRNA–disease relationships.
RLSMDA could calculate accuracy correlation scores between
miRNAs and diseases, with the advantage that the model
could avoid using negative samples. Xu et al. (2014) acquired
disease-associated miRNAs by the miRNA target-dysregulated
network (MTDN) model. To achieve more accurate prediction

results, they utilized the feature obtained by network topology
information and an SVM classifier to identify positive miRNA–
disease connections from negative samples; however, negative
samples were difficult to obtain. Chen et al. (2015) first employed
the restricted Boltzmann machine for multiple types of miRNA–
disease association prediction (RBMMMDA) models to make
predictions. The miRNA–disease relationships in RBMMMDA
were represented by a two-layer undirected graph that contained
a visible and hidden layer. The advantage of this model was
its ability to facilitate understanding of the mechanisms of
diseases according to the miRNAs. Li et al. (2017) sought
to avoid utilizing negative samples so as to achieve accurate
prediction results in matrix completion for miRNA–disease
association prediction (MCMDA). The model could employ
validated miRNA–disease connections to determine unknown
connections. Furthermore, Chen et al. (2017a) utilized ensemble
learning and link prediction to infer feasible miRNA–disease
relationships. Based on global similarity measures, ranking
results that were obtained from three traditional methods
of similarity measurement were integrated by the ensemble
learning method to improve the accuracy of the prediction
results. The probabilistic matrix factorization (PMF) algorithm
was used to infer unknown miRNA–disease interactions (Xu
et al., 2019). The PMF algorithm is a machine learning technique
that is widely used in recommender systems; thus, it could
effectively apply all information to recommend miRNAs that are
related to the disease in question. Peng et al. (2019) proposed
the miRNA–disease association-convolutional neural network
(MDA-CNN) model for identifying miRNA–disease interactions.
The miRNA–disease interaction features were first captured by
a three-layer network. Then, an autoencoder was employed to
identify obvious miRNA–disease feature combinations. After
these feature representations were reduced, a CNN was employed
to obtain the ultimate prediction performance. Li et al. (2020)
proposed a new method of neural inductive matrix completion
with graph convolutional network, named NIMCGCN, to predict
potential miRNA–disease associations. The miRNA and disease
latent feature representations were extracted from the miRNA
and disease similarity networks by graph convolutional networks
in NIMCGCN. Then, the learned latent feature representations
were input into the neural inductive matrix completion model
to complete the missing miRNA–disease associations. Guo
et al. (2021) presented a novel model, MLPMDA, which
implemented multilayer linear projection to predict miRNA–
disease interactions. They utilized the top nearest neighbors
of entities to process miRNA–disease interaction information;
the updated miRNA–disease interaction and disease similarity
constituted a heterogeneous matrix. The multilayer projection
and layer stacking strategy were used on the heterogeneous
matrix to make predictions. However, MLPMDA requires high-
quality biological data to achieve reliable and stable performance.
A novel method of neural multiple-category miRNA–disease
association prediction named NMCMDA was proposed by Wang
et al. (2021) to observe the unknown disease-related miRNAs.
The two main components in NMCMDA were encoder and
decoder. The encoder was implemented on the heterogeneous
network of miRNA–disease and used graph neural network to
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extract miRNA and disease latent features. The decoder applied
these latent features to obtain miRNA–disease association scores.
Different kinds of encoders and decoders were put forward for
NMCMDA. Ultimately, the combination of relational graph
convolutional network encoder and neural multirelational
decoder in NMCMDA reached the best prediction performance.
Huang et al. (2021) presented a new tensor decomposition-
based model, named TDRC, which integrates the data of
miRNA–miRNA similarity and disease–disease similarity as
decomposition constraints. Experimental results demonstrated
that TDRC further improved prediction performance by
comparing it with previous tensor decomposition models. Zhang
et al. (2021) presented a novel method of fast linear neighborhood
similarity-based network link inference (FLNSNLI) to predict
unverified associations of miRNA–disease. FLNSNLI first
formulated the verified miRNA–disease associations as
a bipartite network and expressed miRNAs (diseases) as
association profile. Then, association profiles and fast linear
neighborhood similarity measure were used to calculate miRNA–
miRNA similarity and disease–disease similarity. Furthermore,
FLNSNLI implemented label propagation method to score
candidate miRNA–disease associations based on miRNA–
miRNA similarity and disease–disease similarity, respectively.
The two results were integrated by the weighted average strategy
to observe unknown miRNA–disease associations.

In this study, we presented a novel model named improved
label propagation for miRNA–disease association prediction
(ILPMDA) to infer potential associations between miRNAs and
diseases. We utilized SKF to fuse different disease similarity
matrices (disease semantic similarity, disease functional
similarity, and disease Gaussian interaction profile kernel
similarity) and miRNA similarity matrices (miRNA functional
similarity, miRNA sequence similarity, and miRNA Gaussian
interaction profile kernel similarity) for generating reliable
disease and miRNA similarity networks. We also used WKNKN
to update the unknown miRNA–disease association matrix
to reduce its sparsity. Improved label propagation was then
conducted on two types of similarity networks to predict
the miRNA–disease association scores. We integrated these
two correlation score matrices to obtain the final prediction
results. The global leave-one-out cross-validation (LOOCV)
and fivefold cross-validation (5-CV) were used to evaluate
our model. Consequently, ILPMDA individually achieved area
under the receiver operating characteristic (ROC) curve (AUC)
values of 0.9751 and 0.9501 for LOOCV and 5-CV, respectively.
Furthermore, two kinds of case studies on colon neoplasms,
prostate neoplasms, and breast neoplasms further demonstrated
that ILPMDA could be an effective method for discovering
unverified miRNA–disease associations.

MATERIALS AND METHODS

Human miRNA–Disease Associations
In this study, we took advantage of miRNA–disease association
data from the HMDD v2.0 database (Yang et al., 2013), which
contained 5,430 verified associations between 495 miRNAs and

383 diseases. For convenient calculation, we constructed an
adjacency matrix A ∈ Rnd×nm to represent the miRNA–disease
relationship. We set nd and nm to represent the number of
diseases and miRNAs, respectively. Specifically, the element
A(i, j) is equal to 1 when disease di is shown to be connected
with miRNA mj; otherwise, it is set to 0. In order to clearly
demonstrate the detailed information of matrix A, we visualized
it in Figure 1. We used white points and black points to denote
known associations and unknown associations, respectively.
According to the distribution of points in Figure 1, number
of known associations is far less than the number of unknown
associations, which means the matrix A can be considered
a sparse matrix.

Disease Semantic and Functional
Similarity
Based on the theory proposed by Wang et al. (2010), disease
similarity can be calculated using semantic information. We used
SD1 ∈ Rnd×nd to denote disease semantic similarity, which could
be obtained by utilizing the disease arborescence attribute in
Mesh database (Lowe and Barnett, 1994). In this database, disease
nodes were labeled in a directed acyclic graph (DAG). Diseases
that relate to the same genes are likely to have similar phenotypes;
as such, disease functional similarity is calculated by the disease–
gene connections (Luo et al., 2017; Jiang L. et al., 2018). In
addition, we adopted disease functional similarity information
from previous literature (Jiang L. et al., 2018) and utilized SD2 ∈

Rnd×nd to denote disease functional similarity. The element
SD2(di, dj) represents the value of similarity between disease di
and disease dj.

miRNA Functional and Sequence
Similarity
MicroRNAs with similar functions have a high probability
of being related to diseases that are similar, and vice versa

FIGURE 1 | Visualization of the miRNA–disease association matrix.
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(Lu et al., 2008) (Goh, Cusick et al., Wang, Zaman et al.,
Lu, Zhang et al. 2008) (Goh, Cusick et al., Sanghamitra,
Bandyopadhyay et al., Lu, Zhang et al. 2008) (Goh,
Cusick et al., Lu, Zhang et al. 2008, Bandyopadhyay,
Mitra et al. 2010)[38-40]. Therefore, we downloaded
the miRNA function similarity information from
http://www.cuilab.cn/files/images/cuilab/misim.zip (Wang
et al., 2010). The miRNA sequence similarity information
was acquired from the miRBase database (Kozomara and
Griffiths-jones, 2013). For convenient and efficient calculation,
we constructed the matrix SM1 ∈ Rnm×nm and SM2 ∈ Rnm×nm
to store the miRNA functional similarity and sequence similarity
data, respectively.

Gaussian Interaction Profile Kernel
Similarity for Diseases and miRNAs
Gaussian interaction profile (GIP) kernel similarity was used
to represent miRNA and disease similarity (Van et al., 2011;
Chen et al., 2017b). First, we denoted vector K

(
di
)

to represent
the interaction profile of disease di in accordance with whether
di had a verified association with each miRNA. Similarly, we
denoted vector K (mi) to represent the interaction profile mi
in accordance with whether mi had a verified association with
each disease. The equation to calculate GIP kernel similarity for
diseases is as follows:

SD3
(
di, dj

)
= exp

(
−ρd ‖ K

(
di
)
− K

(
dj
)
‖

2) (1)

where SD3
(
di, dj

)
indicates the GIP kernel similarity between

disease di and disease dj, ρd is applied to control kernel
bandwidth. ρd is obtained by normalizing the original bandwidth
ρ′d to the average number of verified associations with miRNAs
per disease, as follows:

ρd = ρ′d/

 1
nd

nd∑
i=1

|| |K
(
di
)
| ||

2

 (2)

Similarly, the equations to calculate GIP kernel similarity for
miRNAs are as follows:

SM3
(
mi,mj

)
= exp

(
−ρm‖ K (mi)− K

(
mj
)
‖

2
)

(3)

ρm = ρ′m/

(
1
nm

nm∑
i=1

‖ |K (mi)| ‖
2

)
(4)

where SM3
(
mi,mj

)
indicates the GIP kernel similarity between

miRNA mi and miRNA mj; ρm is also employed to control
kernel bandwidth.

Similarity Kernel Fusion
A flow chart of ILPMDA is shown in Figure 2. After we obtained
disease semantic similarity, disease functional similarity, and
disease GIP kernel similarity, the similarity kernel fusion
(Jiang L. et al., 2018; Jiang et al., 2019) was implemented
to integrate them into ultimate disease similarity. Similarly,

FIGURE 2 | Flow chart of ILPMDA to predict unknown associations based on the known associations in the HMDD v2.0 database.
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miRNA functional similarity, miRNA sequence similarity, and
miRNA GIP kernel similarity were integrated into ultimate
miRNA similarity by implementing the SKF method. The specific
integration process of disease similarity matrices is described in
the following discussion.

First, three different disease similarities were treated as
original disease similarity kernels, which were defined as SDn,
n = 1, 2, 3 in the above sections. The similarity of each disease
was normalized using the following equation:

Pn
(
di, dj

)
=

SDn
(
di, dj

)∑
dk∈D SDn

(
dk, dj

) (5)

where Pn indicates the normalized kernel that satisfies the
condition of

∑
dk∈D Pn

(
di, dj

)
= 1, andD = {di}ndi=1 indicates the

set of diseases.
Second, the neighbor-constraint kernel for each original

disease kernel was constructed by the following equation:

Cn
(
di, dj

)
=


SDn(di,dj)∑

dk∈Ni
SDn(di,dk)

if dj ∈ Ni

0 if dj /∈ Ni

(6)

where Cn
(
di, dj

)
denotes a neighbor-constraint kernel that

satisfies the condition of
∑

dk∈D Cn
(
di, dj

)
= 1 and Ni denotes

the collection of all neighbors of disease di, including itself.
Third, the normalized kernels and neighbor-constraint kernels

were integrated as follows:

Pl+1
n = β

(
Cn ×

∑
t 6=n P

l
t

2
× CT

n

)
+ (1− β)

∑
t 6=n P

0
t

2
(7)

where Pl+1
n represents the value of the nth kernel after l+ 1

iterations, P0
t represents the initial value of Pt , and the weight

parameter β ∈ (0, 1) is used to balance the rate. After Pl+1
n , n =

1, 2, 3 is obtained, the overall kernel SD∗ can be calculated by
the following formula:

SD∗ =
1
3

3∑
n=1

Pl+1
n (8)

Fourth, a weighted matrix W is applied to further eliminate noise
in the overall kernel SD∗. The process for constructing W is as
follows:

W
(
di, dj

)
=


1 if di ∈ Nj ∩ dj ∈ Ni

0 if di /∈ Nj ∩ dj /∈ Ni

0.5 otherwise

(9)

Last, the final disease similarity kernel SD ∈ Rnd×nd can be
computed as follows:

SD =W × SD∗ (10)

Similarly, we could obtain the final miRNA similarity kernel as
SM ∈ Rnm×nm.

Weighted k-Nearest Known Neighbors
In order to make the experimental data more accurate and
improve the prediction accuracy, we applied the method of
weighted k-nearest known neighbor (Ezzat et al., 2017) to the
adjacency matrix A ∈ Rnm×nd. A(di) = (Ai1, Ai2, ,Aind) and
A(mj) = (A1j, A2j, ,Anmj) indicate the interaction profiles for
di and mj, respectively. The procedure for using the WKNKN
algorithm included several steps.

First, the similarity between each disease and its k-nearest
verified diseases was employed to construct the interaction
profile. For example, the k interaction profiles between miRNA
dr and its KNNs are represented by AD

(
dr
)
, which is obtained by

the following formula:

AD
(
dr
)
=

1
Nd

K∑
i=1

ρiA(di) (11)

where Nd =
∑

1≤i≤K SD
(
di, dj

)
is the normalization term. The

weight coefficient ρi = ti−1∗SD
(
di, dr

)
is employed to control

the similarity between di and dr , where 0 ≤ t ≤ 1 is the
corresponding balance parameter. Similarly, the k interaction
profiles between disease mr and its KNNs are represented by
AM (mr), which can be obtained as follows:

AM (mr) =
1
Nm

K∑
j=1

ρjA(mj) (12)

Second, the AD and AM are combined to obtain the matrix Amd,
which indicates the new miRNA–disease interaction profile. The
specific process is depicted by the following formula:

Amd = (δ1AD+ δ2AM)/
∑

δi (i = 1, 2) (13)

Last, the matrix Amd is employed to update the original matrix A,
and the corresponding formula is displayed as follows:

A = max(A, Amd) (14)

Improved Label Propagation
When the label propagation (Zhu and Ghahramani, 2002)
method was implemented for the disease similarity network
SD, we applied A(i, :) to represent the initial label of disease
node di, where A(i, :) denotes the ith row of the miRNA–
disease association matrix A. In addition, this label information
is propagated among neighboring nodes in similarity network
SD. Thereafter, the label information of each disease node can
be updated depending on the label information accepted from
the neighboring nodes. However, according to the assumption
that local neighboring nodes with high similarity scores are
more reliable than remote neighboring nodes with low similarity
scores, we employed the KNN algorithm to sort KNNs for
each disease node. Hence, Qi was utilized to denote the nearest
neighboring nodes set of disease node di. Then, its local affinity
could be calculated as follows:

sd
(
di, dj

)
=


SD(di,dj)∑

dk∈Qi

SD
(
di, dk

) if dj ∈ Qi

0 otherwise

(15)
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where sd denotes the local affinity matrix of the disease. Similarly,
we could obtain the miRNA local affinity matrixsm. Thereafter,
we constructed novel disease and miRNA weighted similarity
networks that are more suitable for implementing the label
propagation algorithm.

After obtaining the disease similarity matrix sd ∈ Rnd×nd,
miRNA similarity matrix sm ∈ Rnm×nm, and the miRNA–disease
association matrix A ∈ Rnd×nm, we applied the bidirectional label
propagation algorithm. The implantation of directional label
propagation can be divided into three major steps.

In the first step, updating the label information of a specific
disease di is affected by two parts of the labels. This involves
absorbing labels from neighboring nodes and retaining previous
labels. Dt

i is employed to represent the label of disease di after t
rounds of updating; then,Dt

i can be calculated using the following
equation:

Dt
i = γ∗sd

(
di, :

)
× A+ (1− γ)∗Dt−1

i (16)

where γ ∈ [0, 1] is employed to balance the rate between
absorbing labels from neighboring nodes and retaining previous
labels, and D0

i = A (i, :) represents the initial label information
of disease di.

For all disease nodes, we could obtain their label vectors Dt
1,

Dt
2, . . ., Dt

nd after t rounds until convergence. We constructed
the formula Dt

= (Dt
1; Dt

2; . . .; Dt
nd), and Equation (16) could be

rewritten as follows:

Dt
= γ∗sd × A+ (1− γ)∗Dt−1 (17)

The iteration of the above equation can be considered convergent.
As such, when the difference between the last label matrix Dt and
the former label matrix Dt−1 is lower than the predetermined
threshold, the process of iterative updating will stop. Hence, we
assumed that the iterative process stopped after kd rounds of
iterative updating. One miRNA–disease association score matrix
Fd could be obtained by the below formula:

Fd = D0
+ D1

+ . . .+ Dkd (18)

In the second step, for a random miRNA mi, the process of
updating its label information is also affected by absorbing labels
from neighbors with γ probability and remaining previous labels
with 1− γ probability.Mt

i is used to represent the label of miRNA
mi after t rounds of updating and M0

i = A (:, i) denotes the initial
label information of miRNA mi. Then, Mt

i can be calculated using
the following formula:

Mt
i = γ ∗ sm (mi, :)× AT

+ (1− γ) ∗Mt−1
i (19)

In all the miRNA nodes, we could obtain their label vectors Mt
1,

Mt
2, . . ., Mt

nd after t rounds until convergence. We constructed
the formula Mt

= (Mt
1; Mt

2; . . .; Mt
nm), and Equation (19) could

be rewritten as follows:

Mt
= γ ∗ sm× AT

+ (1− γ) ∗Mt−1 (20)

The iteration of the above equation can be considered convergent.
Therefore, when the difference between last label matrix Mt and

the former label matrix Mt−1 is lower than the predetermined
threshold, the process of iterative updating will stop. After km
rounds of iterations, we could obtain another miRNA–disease
association score matrix:

Fm = M0
+M1

+ . . .+Mkm (21)

In the third step, for the purpose of generating accuracy
prediction results, the score matrices Fm and Fd can be integrated
by an average ensemble method to obtain a final miRNA–disease
association score matrix, as follows:

F = α (Fd)+ (1− α) (Fm)T (22)

where hyper-parameter α is set to 0.5, which is employed
to balance the score matrices Fd and Fm. The adjacency
matrix F contains the predictive association score between
miRNAs and diseases.

RESULTS

Performance Evaluation
We utilized global LOOCV and 5-CV to evaluate the prediction
performance of ILPMDA. As cross-validation is currently general
practice in predicting miRNA/circular RNA (circRNA)/long
noncoding RNA (lncRNA)–disease associations, this approach
was selected for evaluation (Shen et al., 2017; Li et al., 2019;
Wang et al., 2020). In the global LOOCV method, each verified
association in the HMDD v2.0 database served as a test sample;
the rest of the verified associations served as training samples, and
the unknown associations were regarded as candidate samples.
Similarly, in the 5-CV method, all verified associations in the
HMDD v2.0 database were randomly divided into five parts in
a random way; one group was treated as test samples, while
the others were treated as training samples. The candidate is
composed of unknown miRNA–disease associations. We applied
repeated segmentations on verified positive samples multiple
times to reduce potential deviations. We then implemented the
model to calculate the score list of all associations and rank the
candidate sample scores with the sample score in both LOOCV
and 5-CV. If the ranking of the test sample was higher than
the given threshold, the model was regarded as a successful
prediction model. In addition, we could draw the ROC curve
by employing the true-positive rate (TPR, sensitivity) against the
false-positive rate (FPR, 1 − specificity). Sensitivity refers to the
percentage of test samples with values higher than the threshold,
and specificity refers to the percentage of negative associations
with values lower than the threshold. The equations used to
calculate FPR and TPR are demonstrated as follows:

FPR =
FP

TN + FP
(23)

TPR =
TP

TP + FN
(24)

where FP indicates the quantity of samples that are negative
samples but are considered as positive samples, TP denotes the
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FIGURE 3 | The influence of different parameters on ILPMDA. (A) The influence of parameter γ. (B) The influence of parameter α.

quantity of samples that are positive samples and are considered
as positive samples, and FN and TN are identified as the opposite
of FP and TP, respectively. Hence, we could utilize the AUC
values between 0 and 1 as evaluative criteria; a greater AUC
indicated that the model had better prediction performance.
Simulation results showed that ILPMDA achieved AUCs of
0.9751 and 0.9501 for the global LOOCV and 5-CV methods,
respectively, demonstrating that ILPMDA achieved excellent
prediction performance.

We also optimized two significant parameters γ and α in
the ILPMDA model, which were utilized to balance the rate of
absorbing labels from neighboring nodes and retaining previous
labels and the rate between the score matrix Fd and score matrix
Fm. In order to select the best value of parameter γ, we applied
the AUCs of 5-CV to evaluate γ ∈ {0, 0.1, 0.2, , 1}. According
to the evaluation results demonstrated in Figure 3A, ILPMDA
could obtain the highest AUC score when γ = 0.2. Thus, more
previous label information for the node should be preserved
when updating its label information. In addition, we also applied
the AUCs of 5-CV to evaluate α ∈ {0, 0.1, 0.2, , 1} for selecting
the best value of parameter α. According to the evaluation results
shown in Figure 3B, ILPMDA could obtain the highest AUC
score while α = 0.3. This finding shows that the weight assigned
to score matrix Fd should be greater than that of score matrix
Fm. The reason for this may be related to the number of collected
miRNAs being higher than the number of collected diseases. In
conclusion, the parameters γ and α in ILPMDA were set as 0.2
and 0.3, respectively.

Performance Comparison
We first compared ILPMDA with several recent computational
models [MSCHLMDA (Wu et al., 2020), GRL2,1-NMF (Gao
et al., 2020), ICFMDA (Jiang Y. et al., 2018), and SACMDA
(Shao et al., 2018)] to demonstrate its superior performance
via the global LOOCV and 5-CV methods. Here, multi-
similarity-based combinative hypergraph learning for predicting
miRNA–disease association (MSCHLMDA) applied the KNN
and k-means algorithms to establish different hypergraphs,
which were combined to predict potential miRNA–disease
associations. GRL2,1 − NMF utilized the Laplacian regularized

L2,1-nonnegative matrix factorization method to observe
unknown miRNA–disease associations; ICFMDA incorporated
similarity matrices to improve the collaborative filtering
method for predicting more newer miRNA–disease pairs; and
SACMDA utilized disease and miRNA information to construct
a heterogeneous graph and used short acyclic connections in
the heterogeneous graph to infer miRNA–disease associations.
As illustrated in Figures 4A,B, ILPMDA achieved AUCs of
0.9751 and 0.9501 via global LOOCV and 5-CV, respectively.
Both ranked the highest when compared with MSCHLMDA,
GRL2,1-NMDA, ICFMDA, and SACMDA, which achieved AUCs
of 0.9287, 0.9280, 0.9072, and 0.8777 in global LOOCV and
0.9263, 0.9276, 0.9046, and 0.8773 in 5-CV, respectively.

In addition, we compared ILPMDA with several LP-based
models [MCLPMDA (Yu et al., 2019), HLPMDA (Chen et al.,
2018b), and MDLPMDA (Qu et al., 2019)] to evaluate its
prediction ability in the frameworks of global LOOCV and 5-CV.
Here, MCLPMDA applied the matrix completion method to deal
with similarities. Then, label propagation was applied to novel
miRNA and disease similarity and association matrices to observe
disease-related miRNAs. HLPMDA applied the heterogeneous
label propagation algorithm on a multi-network of miRNAs,
lncRNAs, and diseases to predict unobserved miRNA–disease
interactions. MDLPMDA utilized the matrix decomposition
method to obtain a novel association matrix with less noise
and then applied the label propagation method to common
miRNA and disease similarity matrices and the novel association
matrix to infer unverified miRNA–disease associations. As
illustrated in Table 1, MCLPMDA, HLPMDA, MDLPMDA, and
ILPMDA achieved AUCs of 0.9320, 0.9218, 0.9211, and 0.9501,
respectively, via the 5-CV method. By means of the global
LOOCV method, MCLPMDA, HLPMDA, MDLPMDA, and
ILPMDA achieved AUCs of 0.9410, 0.9232, 0.9222, and 0.9751,
respectively. According to the above analysis, the prediction
performance of ILPMDA is greater than that of previous
computational models.

Moreover, we compared SKF with similarity network fusion
(SNF) (Chen et al., 2019b) and average fusion to verify the
superiority of SKF for integrating biology data. SNF fuses
multiple pieces of complementary data to obtain integrated
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FIGURE 4 | Performance comparisons of ILPMDA with MSCHLMDA, GRL2,1-NMF ICFMDA, and SACMDA in terms of AUC based on (A) global LOOCV and (B)
5-CV.

information, and the AF integrates different data by averaging
multiple similarity matrices. In order to make a fair comparison,
we used SNF and AF to replace SKF to process similarity data,
while the remainder of the model remained unchanged. We also
used the AUC values of 5-CV to evaluate the data integration
capability of SKF, SNF, and AF. As shown in Figure 5, SKF,
SNF, and AF obtained AUCs of 0.9501, 0.9364, and 0.9302,
respectively. These findings demonstrate that SKF performs
better than SNF and AF in terms of integrating different
similarity information.

Furthermore, we also investigated the effect of the WKNKN
algorithm for known miRNA–disease associations on model
performance. We implemented two methods of global LOOCV
and 5-CV, and then plotted the ROC curves, as shown in
Figure 6. In ILPMDA, WKNKN considers the sparsity of the
original association matrix, thereby improving the prediction
performance of the model. By contrast, ILPMDA without
WKNKN disregards the sparsity of the association data; thus,
the predictive performance is also reduced. Based on the results,
the AUC values of ILPMDA based on global LOOCV and 5-CV
were 0.9751 and 0.9501, respectively. On the other hand, the AUC
values of ILPMDA without WKNKN based on global LOOCV
and 5-CV were 0.9494 and 0.9354, respectively. It is apparent
that ILPMDA with WKNKN has higher AUC values compared
to that without WKNKN.

Case Studies
To demonstrate the prediction ability of ILPMDA, we
implemented two common human diseases (colon neoplasms

TABLE 1 | Comparisons between ILPMDA and LP-based models.

Models AUC of 5-CV AUC of global LOOCV

MCLPMDA 0.9320 0.9410

HLPMDA 0.9218 0.9232

MDLPMDA 0.9211 0.9222

ILPMDA 0.9501 0.9751

and prostate neoplasms) to perform a kind of case study. For
a random disease, known associations of whole diseases in the
HMDD v2.0 database were considered as training samples,
while unknown associations were treated as candidate samples.
We ranked the predicted association score of the candidate
samples after performing ILPMDA; then, the top 50 candidate
associations with the specific disease were selected and confirmed
by the miR2Disease and dbDEMC v2.0 databases (Jiang et al.,
2009; Yang et al., 2016). After we compared the information
of the HMDD v2.0 database with that of the miR2Ddisease
and dbDEMC databases, we found that 232 of the 5,430
verified associations in the HMDD v2.0 database also appeared
in the miR2Disease database; meanwhile, 546 of the 5,430
verified associations in the HMDD v2.0 database also appeared
in the dbDEMC v2.0 database. Furthermore, because only
candidate samples for the specific disease were ranked and
verified, the prediction list had no overlapping miRNAs in the
training samples.

FIGURE 5 | The ROC curves of SKF, SNF, and AF.
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FIGURE 6 | The ROC curves of ILPMDA and ILPMDA without WKNKN: (A) global LOOCV (B) 5-CV.

Colon neoplasms is acknowledged as the third gastrointestinal
disease in the medical field (Torre et al., 2015; Bao et al.,
2017). In addition, several potential miRNA–colon neoplasm
connections have been observed in previous experiments (Hiroko
et al., 2014; Rotelli et al., 2015), including miR-17, miR-21,
and miR-31. These studies have shown that miRNAs can be
utilized as key biomarkers for colon neoplasms. Hence, observing
miRNA–colon neoplasm interactions can contribute to the
diagnosis and treatment of colon neoplasms. After we ranked
the prediction results of our model based on prediction score,
48 of the top 50 miRNAs were confirmed to be related to colon
neoplasms according to the miR2Disease and dbDEMC v2.0
databases (Table 2).

Prostate neoplasms is regarded as the disease with the
highest incidence rate among men; furthermore, these have been
observed to associate with a part of some miRNAs in clinical
experiments (Goto et al., 2015). For example, the expression
of miR-183 in prostate cells and tissues is significantly higher
than that in corresponding normal prostate cells and tissues.
In conclusion, prostate neoplasms can be treated by inhibiting
miR-183 expression (Ueno et al., 2013). After we ranked the
prediction results of ILPMDA according to the prediction score,
46 of the top 50 miRNAs were confirmed to be associated with
prostate neoplasms through the miR2Disease and dbDEMC v2.0
databases (Table 3).

Next, we carried out another case study on breast neoplasms
to illustrate the applicability of ILPMDA to new diseases. Breast
neoplasms are often seen as a common disease in females,
which have great negative effects on women’s health. Several
miRNAs associated with breast neoplasms have been found by
biological experiments in previous years (Fu et al., 2011). For
example, the downregulation of miRNA-140 promoted cancer
stem cell formation in basal-like early stage breast cancer
(Li et al., 2014). In this case study, we deleted all miRNA–
breast neoplasms association information from the HMDD v2.0
database, so breast neoplasms would be considered as a new
disease without related miRNAs. We also used dbDEMC v2.0
and miR2Disease databases to validate predicted miRNAs related

to breast neoplasms that were acquired by operating ILPMDA
model. As shown in Table 4, 48 out of top 50 ranked miRNAs
were verified by dbDEMC v2.0 database and miR2Disease
database. Consequently, ILPMDA could be implemented to
observe unverified miRNA–new disease associations.

TABLE 2 | The top 50 potential miRNAs associated with colon neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-145 m; d hsa-mir-375 d

hsa-mir-126 m; d hsa-mir-137 m; d

hsa-mir-17 m; d hsa-mir-10b m; d

hsa-mir-106a m; d hsa-mir-92a d

hsa-mir-143 m; d hsa-mir-196a m; d

hsa-mir-155 m; d hsa-mir-34a m; d

hsa-mir-21 m; d hsa-mir-223 m; d

hsa-mir-107 m; d hsa-mir-19a m; d

hsa-mir-200c m; d hsa-let-7f m

hsa-mir-16 Unconfirmed hsa-mir-630 d

hsa-mir-31 m; d hsa-let-7e d

hsa-mir-20a m; d hsa-let-7i d

hsa-mir-200b d hsa-mir-622 d

hsa-mir-29a m; d hsa-mir-19b m; d

hsa-mir-18a m; d hsa-mir-15a d

hsa-let-7a m; d hsa-mir-192 m; d

hsa-mir-221 m; d hsa-let-7c d

hsa-mir-486 d hsa-mir-629 d

hsa-mir-125b d hsa-mir-199a Unconfirmed

hsa-mir-133b m; d hsa-mir-148a d

hsa-let-7b m; d hsa-mir-9 m; d

hsa-mir-125a m; d hsa-mir-200a d

hsa-mir-141 m; d hsa-let-7g m; d

hsa-mir-146a d hsa-mir-101 d

hsa-mir-142 d hsa-mir-15b m; d

M, miR2Disease database; d, dbDEMC v2.0 database.
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TABLE 3 | The top 50 potential miRNAs associated with prostate neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-145 m; d hsa-mir-146a m

hsa-mir-125b m; d hsa-let-7c m; d

hsa-mir-99a m; d hsa-mir-199a m; d

hsa-mir-574 Unconfirmed hsa-mir-34c d

hsa-mir-183 m; d hsa-mir-194 d

hsa-mir-141 m; d hsa-let-7d m; d

hsa-mir-100 m; d hsa-mir-34a m; d

hsa-mir-200c d hsa-mir-642a Unconfirmed

hsa-mir-21 m; d hsa-mir-92a d

hsa-mir-200a d hsa-mir-629 d

hsa-mir-375 m; d hsa-mir-155 d

hsa-mir-203 d hsa-let-7a m; d

hsa-mir-20a m; d hsa-mir-133b d

hsa-mir-135b Unconfirmed hsa-mir-130b d

hsa-mir-146b d hsa-mir-429 Unconfirmed

hsa-mir-708 d hsa-mir-378a d

hsa-mir-17 m; d hsa-mir-29c d

hsa-mir-143 m; d hsa-mir-204 d

hsa-mir-205 m; d hsa-mir-148a m; d

hsa-mir-182 m; d hsa-mir-96 m; d

hsa-mir-200b d hsa-mir-193b d

hsa-mir-99b m; d hsa-mir-1 d

hsa-let-7b m; d hsa-mir-27a m; d

hsa-mir-126 m; d hsa-mir-218 m; d

hsa-mir-193a d hsa-mir-486 d

M, miR2Disease database; d, dbDEMC v2.0 database.

According to the above analysis, the case studies of
colon neoplasms and prostate neoplasms further demonstrate
the utility of our model in predicting unknown miRNA–
disease associations.

DISCUSSION

In this paper, we introduced a novel method, i.e., ILPMDA, in
which we employed an improved label propagation algorithm
to predict possible miRNA–disease associations. In this model,
SKF was employed to integrate different disease and miRNA
similarities. After fusion, the final disease and miRNA similarity
networks were obtained, and WKNKN was applied to reduce
the sparsity of the known miRNA–disease association matrix.
We then applied the KNN algorithm to sort k-nearest neighbors
for entity nodes on two types of similarity networks, thereby
ensuring that weighted disease and miRNA networks could be
constructed for appropriately implementing label propagation.
In addition, we implemented the bidirectional label propagation
algorithm on the weighted disease and miRNA similarity
networks to generate different association score matrices, which
were integrated to acquire the ultimate prediction score of each
miRNA–disease pair. In the framework of global LOOCV and 5-
CV, the AUCs of our model were 0.9751 and 0.9501, respectively.
Based on these results, the performance of ILPMDA was superior
to that of various previous prediction models. The case studies on

TABLE 4 | The top 50 potential miRNAs associated with breast neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-1245a d hsa-mir-516a d

hsa-mir-1245b d hsa-mir-103b d

hsa-mir-1323 d hsa-mir-320b d

hsa-mir-1469 d hsa-mir-200 Unconfirmed

hsa-mir-1471 d hsa-mir-1915 d

hsa-mir-181 Unconfirmed hsa-mir-376c d

hsa-mir-2355 d hsa-mir-526a d

hsa-mir-298 d hsa-mir-515 d

hsa-mir-299 d hsa-mir-26a m; d

hsa-mir-3130 d hsa-mir-146b m; d

hsa-mir-3186 d hsa-mir-625 d

hsa-mir-411 d hsa-mir-301b m; d

hsa-mir-4257 d hsa-mir-450b d

hsa-mir-4306 d hsa-mir-139 d

hsa-mir-632 d hsa-mir-129 d

hsa-mir-718 d hsa-mir-506 d

hsa-mir-874 d hsa-mir-26b d

hsa-mir-922 d hsa-mir-510 m; d

hsa-mir-493 d hsa-mir-1258 d

hsa-mir-147a d hsa-mir-128 d

hsa-mir-202 m; d hsa-mir-513a d

hsa-mir-320d d hsa-mir-519d d

hsa-mir-320e d hsa-mir-193a d

hsa-mir-450a d hsa-mir-215 d

hsa-mir-516b d hsa-mir-488 d

m, miR2Disease database; d, dbDEMC v2.0 database.

colon neoplasms, prostate neoplasms, and breast neoplasms also
confirmed the prediction ability of ILPMDA.

The following factors may contribute to the reliable
performance of ILPMDA. First, the SKF algorithm was
implemented to integrate various disease and miRNA
similarities, which provide plentiful biological information
for the experiment. In addition, the label propagation algorithm
can be carried out to construct weighted disease and miRNA
similarity matrices. Furthermore, the principle of bidirectional
label propagation ensured that the labels of candidate entity
nodes were steadily updated, which allowed us to obtain accurate
experimental results.

However, there are certain limitations to ILPMDA. The data
we utilized included verified miRNA–disease associations,
miRNA similarity information, and disease similarity
information, which may lead to the inclusion of noise and
outliers. In addition, ILPMDA was only suitable for diseases and
miRNAs that are hosted on the HMDD v2.0 database. Therefore,
our model should be continuously optimized in the future to
improve its performance.
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