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Characterizing the genetic basis of bacterial
phenotypes using genome-wide association
studies: a new direction for bacteriology
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Abstract

Genome-wide association studies (GWASs) have become an increasingly important approach for eukaryotic geneticists,
facilitating the identification of hundreds of genetic polymorphisms that are responsible for inherited diseases. Despite
the relative simplicity of bacterial genomes, the application of GWASs to identify polymorphisms responsible for
important bacterial phenotypes has only recently been made possible through advances in genome sequencing
technologies. Bacterial GWASs are now about to come of age thanks to the availability of massive datasets, and because
of the potential to bridge genomics and traditional genetic approaches that is provided by improving validation
strategies. A small number of pioneering GWASs in bacteria have been published in the past 2 years, examining from 75
to more than 3,000 strains. The experimental designs have been diverse, taking advantage of different processes in
bacteria for generating variation. Analysis of data from bacterial GWASs can, to some extent, be performed using software
developed for eukaryotic systems, but there are important differences in genome evolution that must be considered. The
greatest experimental advantage of bacterial GWASs is the potential to perform downstream validation of causality and
dissection of mechanism. We review the recent advances and remaining challenges in this field and propose strategies to

improve the validation of bacterial GWASs.

Introduction

Genome-wide association studies (GWASs) involve testing
large numbers of genetic variants, usually single nucleotide
polymorphisms (SNPs) or insertions and deletions (indels),
within a population of individual organisms for statistically
significant associations with a given phenotype [1]. The first
successful GWAS in humans, published in 2005, examined
a set of 96 patients with age-related macular degeneration,
a condition that leads to loss of vision in older adults, and
50 matched controls [2]. Out of 116,204 SNPs tested, two
were statistically significantly associated with the condition.
One of the SNPs was found in the complement factor H
gene, encoding a protein integral to host immunity, and the
condition has since then been linked to autoimmunity [3].
Although there is some controversy about specific aspects
of the approach [4], many GWASs have now been
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published, making hundreds of associations between SNPs
and important human diseases [5].

GWASs are clearly an important tool for genetic analysis
but their use in microbiological research has been relatively
slow to emerge [6]. Smaller-scale genetic association studies
in bacteria have been performed for a number of years. Early
research used PCR and limited sequence data (for example,
data from multi-locus sequence typing [7]) or comparative
genome hybridization [8] to link bacterial phenotypes with
the presence or absence of specific genes or with the clonal
background of an isolate [9-14]. In human genetics, high-
throughput genotyping of panels of common SNPs using
microarrays and bead-based assays have been a mainstay for
GWASs for the past 10 years [15]. The creation of SNP-
typing panels is, however, generally associated with high
fixed costs and so few platforms were custom-designed for
bacterial species. Those that were designed for bacteria were
practically limited to species with low nucleotide diversity
(such as Bacillus anthracis [16]). This reality began to
change in 2010 with the advent of large-scale genome se-
quencing using affordable and accurate data produced by
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[lumina HiSeq and MiSeq instruments. These instruments
made generation of the whole genome sequence of 50 or
more bacterial strains a routine experiment and opened the
door for bacterial GWASs (Figure 1).

The first successful application of a GWAS to bacteria
using shotgun sequence data was published in 2013 [17]
(see Table 1). Sheppard et al. [17] used a novel association
approach to probe the genetic factors responsible for host
adaptation in 192 shotgun-sequenced Campylobacter
jejuni and C. coli strains. In another publication in the
same year, mutations in Mycobacterium tuberculosis genes
responsible for resistance to anti-tuberculosis drugs were
detected on the basis of their recurrent appearance in re-
sistant lineages of a whole-genome phylogenetic tree [18].
Three studies published in 2014 have extended the use of
GWASs on bacterial shotgun data. Laabei et al. [19] stud-
ied a collection of 90 methicillin-resistant Staphylococcus
aureus clinical isolates and identified more than 100 poly-
morphisms that associated with the ability of the bacteria
to lyse human cells. Alam et al. [20], also studying S. aur-
eus, used a GWAS to determine mutations in the RNA
polymerase rpoB gene that are significantly associated
with the clinically important vancomycin-intermediate-
resistant phenotype. The first GWAS to use a number of
cases and controls on the scale commonly seen in human
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Figure 1 Growth in the cumulative number of next-generation
sequencing runs in public databases for three important bacterial
pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus
pneumoniae. The data were acquired by querying the National Center
for Biotechnology Information Short Read Archive database and excluding
datasets linked to RNA-seq experiments.
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genetic research was recently published by Chewapreecha
et al. [21]; these researchers sequenced 3,701 Streptococcus
pneumoniae isolates to identify polymorphisms associated
with beta-lactam resistance.

What is made clear by even these few early studies is
that a GWAS is a powerful first step towards character-
izing a phenotype at a population level. It is an unbiased
screening approach to discover new loci that correlate
with a specific phenotype. GWASs can form the basis of
studies of the functionality of regulatory pathways and
expression mechanisms and, when performed robustly,
can be used to build predictive tools for the translation
of genomic data into the clinical microbiology setting.
Bridging the gap between genomics and traditional mo-
lecular genetics has the potential to uncover untapped
levels of detail on how bacteria survive and cause dis-
ease. Discoveries could be used to personalize medicine
so that treatments can be tailored for individual patients
on the basis of the genome sequence of the infecting mi-
crobe. In this review, we discuss what should be taken
into account when planning a bacterial GWAS, how to
improve the validation of GWASs, how these studies are
likely to impact on clinical microbiology in the future
and what challenges remain.

Design considerations for bacterial GWASs
Bacterial GWAS is a brand new field. It is increasingly
easy to generate genomic data, but there are challenges in
identifying optimum GWASs strategies. Some of these
challenges are also shared with eukaryotic GWASs, and,
although there are many experiences and tools that can be
drawn from eukaryotic studies (Table 2), caution should
be used when translating approaches developed for differ-
ent domains of life.

There are several prerequisites for a successful bacterial
GWAS. There must be a testable phenotype and a set of
bacterial strains with whole-genome sequences. Experi-
menters need to choose a statistical analysis strategy and
perform power calculations to ensure that there are enough
strains in their study to have a reasonable chance of suc-
cessful association. None of these prerequisites are truly in-
dependent of one another.

Phenotypes

It is necessary to consider whether the phenotype to be
tested by the GWAS is a continuously varying quantitative
phenotype or a binary case versus control trait. A continu-
ous phenotype can be subdivided into discrete categories,
for instance using accepted breakpoints for antibiotic sen-
sitivity to resistance [20]. Phenotypes for bacterial GWASs
(such as host species, infection type, severity, or outcome)
can be gleaned from metadata collected at the time of iso-
lation of the strain or obtained by experimentation. It is
important to make assessments about the consistency of
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Table 1 Early bacterial genome-wide association studies based on whole-genome shotgun data

Organism Sample  Phenotype Finding Genome-wide Reference
size association study
(isolates) program used
Campylobacter jejuni and 192 Host adaptation Vitamin B5 biosynthesis is important 30 bp ‘word’ searching [17]
C. coli (7]
Mycobacterium 123 Antibiotic 39 novel resistance-associated loci PhyC [18] [18]
tuberculosis resistance
Staphylococcus aureus 75 Antibiotic Novel associated single nucleotide polymorphism in ROADTRIPS [50] [20]
resistance rpoB gene
S. aureus 90 Virulence 121 novel associated loci PLINK [49] [19]
Streptococcus pneumoniae 3,701 Antibiotic Multiple novel associated loci PLINK [49] [21]
resistance

the annotation, especially when the data come from mul-
tiple sources. In the case of experimental phenotypes, the
need to perform the assays on very large numbers of strains
will tend to limit experiments to those phenotypes that can
be assayed in a simple and relatively inexpensive way. For
these reasons, the early studies have concentrated on phe-
notypes such as antibiotic resistance [18,20,21] and in vitro
toxicity [19].

In considering the genetic basis of the phenotype, it is
important to have an idea of the effect sizes: a measure
of the correlation of the variant with the phenotype. Ef-
fect sizes vary from O to 1, with 1 meaning that the
phenotype is completely explained by the variant. Many
bacterial variants (such as antibiotic-resistance muta-
tions) are assumed to have very large effects, akin to a
Mendelian trait in eukaryotes, because they are neces-
sary for the survival of the cell. However, bacterial phe-
notypes that are influenced mainly by low-effect
variants surely exist, and the use of GWASs is probably
the only feasible approach to determining their genetic
basis.

Genetic variation and population structure in

bacterial strains

GWASs are dependent for their success on the way the
genetic variants to be tested (for example, SNPs) are dis-
tributed among the genomes of the subject population.
There are distinct differences in the dynamics of genetic
variation between humans (and other higher diploids) and
bacteria. In humans, genetic recombination and chromo-
some segregation, necessary for shuffling alleles, occurs
each generation. A newly occurring mutation will be gen-
etically linked to neighboring alleles as part of the same
haplotype until a recombination event occurs to break the
linkage. The extent that any two alleles within a popula-
tion are on the same ancestral ‘haplotype block’ of DNA is
termed their linkage disequilibrium (LD) and usually de-
creases with genetic distance on the chromosome. This
mixing of alleles between different genetic backgrounds is
important for distinguishing causal loci from passively
linked mutations. Asexual bacterial reproduction does not
offer the opportunity to exchange genetic information this
frequently. There are instead three natural mechanisms

Table 2 Similarities and differences between bacterial and eukaryotic genome-wide association study approaches

Feature

Bacteria

Eukaryote

Ploidy

Genetic re-assortment

Accessory (non-core)
genes

Linkage disequilibrium

Population structure

Confounders in genome-
wide association studies

How to move from
association to causality

Current burden of proof
for causality

Haploid

Infrequent short gene conversion and horizontal
gene transfer events

Variable numbers in different species

Variable across the genome and between species

Asexual, generally highly structured, except for
relatively rare homologous recombination events

Population structure

Genetic reconstruction of mutations in laboratory
strains, transposon mutant screens

Molecular Koch's Postulates

Diploid

Homologous recombination and chromosome segregation linked to
reproduction

Rare

Variable across the genome

Sexual, variable allele frequencies in subpopulations owing to non-
random mating, ancestral divergence, drift

Population structure

Forward genetics in animal models or cultured tissue systems; linkage
to known genetic diseases; large monogenic association studies

Combined genetic and experimental evidence
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that generate the variability needed for GWASs: gene
acquisition through horizontal gene transfer (HGT) and
non-homologous recombination, gene conversion through
homologous recombination, and recurrent mutation
(Figure 2). In each case, these processes can create homo-
plasy, which is the presence of a similar genetic locus
(SNPs, indels, genes and so on) on different branches of
the phylogeny.

Insertion of complete genes as a result of HGT can gener-
ate diversity for association testing in bacteria (Figure 2a)
[22]. The three classical mechanisms of HGT are transduc-
tion by bacteriophages, transformation of DNA segments,
and plasmid-mediated conjugation. Genome sequencing of
multiple isolates within bacterial species has given rise to
the concept of a ‘pan-genome’ [23], which consists of a core
of genes present in every strain and all of the accessory
genes (defined as those found in some but not all members
of the sequenced population). Depending on the bacterial
species, accessory genes may encode virulence factors, anti-
biotic resistance determinants, or other loci that contribute
to the adaptation of the bacterium to its environment [24].
Ideally for GWASs, these genes should be acquired mul-
tiple times by different lineages. Deletion of accessory genes
is a process that is effectively the reverse of HGT in

R Horizontal gene transfer: the movement of
mobile genetic elements, via conjugation,
transformation or transduction from one
lineage to another, or the acquisition of
genetic elements by distinct lineages
independently from a common donor.

Recombination: DNA from a distant relative
enters a cell via transduction, conjugation or
transformation, and by homologous
recombination replaces the existing DNA.

Recurrent mutation: the same mutation
evolves independently in distinct lineages.

Figure 2 Natural mechanisms for introducing homoplasious
mutations into the genomes of bacterial populations. Homoplasious
mutations are necessary for association studies. The figure represents
three mechanisms for forming an identical genetic variant (red star) on
different lineages of a hypothetical phylogenetic tree of bacterial strains:
(a) horizontal gene transfer, (b) recombination and (c) recurrent mutation.
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creating the variable presence of accessory genes across
strains and lineages of a species [25].

In bacteria, homologous recombination happens after
unidirectional transfer of DNA sequence into the recipient
via HGT, leading effectively to gene conversion (Figure 2b)
[26]. These events are rare, and generally do not occur at
every generation, even in highly promiscuous bacterial spe-
cies [27]. Exchanged DNA segments tend to be small
(hundreds to a few thousand bp, although rarely larger
events of more than 10 kb have been reported [28]), and
typically create a patchwork of islands of introduced vari-
ation across the genome. Recombination results in a decay
of LD across bacterial genomes that varies in rate in differ-
ent species [29]. Several studies have shown recombination
to be a mechanism used for adaptation. An example of this
involves the mosaic penA allele XXXIV, derived from re-
combination between Neisseria gonorrhoeae and a com-
mensal strain that confers resistance to cephalosporin
antibiotics [30]. The penA XXXIV allele has been intro-
duced by recombination into multiple N. gonorrhoeae line-
ages [31]. In another study that examined natural patterns
of gene conversion, unidirectional transfer of DNA seg-
ments into diverse lineages was also found to be respon-
sible for rapid adaptation to aquatic sub-niches by Vibrio
cyclitrophicus [32].

Recurrent mutation of genetic variants within different
lineages of a species as a response to selection offers a third
way to create homoplasious genetic loci (Figure 2c). This
can happen often in bacteria because of large local popula-
tion sizes (sometimes billions of cells within a single infec-
tion). One example of a recurrent mutation is that which
causes the H481Y codon change in the rpoB gene; this mu-
tation has occurred in multiple S. aureus lineages and con-
fers intermediate levels of resistance to vancomycin [20].

Bacterial species differ considerably in genetic diversity
and show characteristic historical rates of recombination,
HGT and recurrent mutation [26,27,29]. Many bacterial
species are highly clonal, and exchange DNA through hom-
ologous recombination infrequently. In these species, recur-
rent mutation will be very important for genetic association
[18]. M. tuberculosis, the causative agent of tuberculosis, is
a classic example of a near-clonal species, with only 1.1%
homoplasic SNPs within its core genome [33]. Rates of re-
combination (as measured by fixed events) also vary be-
tween species [27,34]. In one example, the Gram-negative
pathogen Chlamydia trachomatis, gene conversion fre-
quencies have been found to be higher in hotspots such as
the OmpA major outer member protein gene [35], which is
under diversifying selection for immune evasion. In S
aureus, horizontally transferred genes and regions sur-
rounding them recombine at higher frequency than the
core genome [36,37].

Another important aspect to consider when designing
a bacterial GWAS is population structure. Populations
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of a species are considered to be structured if they con-
tain a non-random distribution of alleles within subpop-
ulations. Population structure in humans can occur
through mechanisms such as genetic drift, ancestral di-
vergence [38] and non-random mating within subpopu-
lations [39]. The stratification of human populations is
reflected in complex patterns of LD in different parts of
the chromosome and in different subgroups [40]. Im-
portantly, population structure may confound GWASs,
especially if it is not recognized, by causing the appear-
ance of higher than expected allele frequencies within
certain members of the study set [41]. Problems relating
to structured genetic variation would be expected to be
worse in bacterial strains than in human populations as
bacteria are haploid and asexual. In the absence of re-
combination, all fixed genetic variants will be passed on
to descendants and be in LD with other mutations that
occur in that lineage. The separation of causative vari-
ants from passive linked loci is potentially a difficult
problem.

The problem of population structure has been addressed
in bacteriall GWASs by using phylogenetic approaches
[18,21], by using clustering followed by permutation [19],
and by using databases of known variation to identify com-
mon mutations [20]. For future experimental design, it
should also be possible not only to study variation in
naturally occurring populations but also to utilize
laboratory-induced mutation and recombination tech-
niques to generate banks of strains that have artificial
homoplasies [42].

Markers for bacterial GWASs

Whole genes, SNPs, indels or other loci such as mobile
genetic elements [10] can be used as markers in GWASs.
The quality of the DNA sequence data is an important
consideration for experimental design. Because of the
small genome size of bacteria it is now rare for Illumina
shotgun projects to have average coverage (the number of
sequence reads per base) of less than 20. At this level of
redundancy, the confidence of the consensus base-calling
accuracy is high [43,44]. Furthermore, the portion of the
genome represented by multiple sequencing reads is also
high, making the problem of imputation of missing geno-
types small relative to human studies [45]. The increasing
use of single molecule long-read sequencing technologies,
which can produce complete or near-complete genome
sequences following de novo assembly [46], will help to re-
duce the frequency of missing larger loci (such as genes or
intergenic regions) in bacterial genomes.

SNPs are the most common units used as markers in
GWASs. SNPs are commonly detected by comparison to a
reference sequence, which can lead to ascertainment bias:
the strains that are more genetically similar to the reference
tend to have more accurate SNP calls. An alternative
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approach is to use ‘reference-free’ multiple alignment
methods [47,48]. The penalty for these approaches, which
use short sequence words (k-mers) for matching, is that
multiple SNPs that occur in close proximity (less than the
chosen word length) might not get reported. For conveni-
ence, early studies have focused on SNPs found in core re-
gions of the genome (or in accessory genes that are found in
all strains in the comparison set). Developing a strategy for
the treatment of SNPs in accessory genes that are present in
some strains but not in others will be important for bacterial
GWASs. These are not missing data, as encountered in hu-
man projects with low sequence coverage [45]. One possible
approach could be to run an association test for each
accessory gene SNP using just the strains in which it occurs
separate from the core genome GWAS.

An alternative to focusing on SNPs is to use k-mers.
The Campylobacter GWAS by Sheppard et al. [17] used
30 bp ‘words’” extracted from the assembled genome se-
quences as the unit for association, each of which was
tested against the species origin of isolation. The advan-
tage of this approach was that it allowed discovery of
multiple types of variants (SNP, indels and gene inser-
tions) without requiring a genome alignment.

Bacterial GWAS statistical analysis approaches and
software

There are many tools developed for human GWASs
available for porting to bacterial datasets. Some consid-
eration of the differences between bacterial and
eukaryotic genetics will be needed when assigning pa-
rameters (Table 2). The popular PLINK [49] software for
regression-based association of both quantitative and
case versus control studies has been used (Table 1). In
the study by Chewapreecha et al. [21], the Cochran-
Mantel-Haenzel test was used to correct for genetic
background in discovering SNPs that are associated with
beta-lactam resistance in two genetically different S.
pneumoniae population clusters. Alam et al. [20] used
ROADTRIPS [50], a regression-based approach that in-
corporates corrections for both known and inferred
population structure.

Two phylogeny-based approaches for association have
been developed specifically for bacteria. In the Predict
Phenotypes From SNPs package outlined by Hall [51],
SNPs were associated with phenotypic changes inferred in
internal branches of the whole-genome phylogeny. This
method utilized template-free genome assembly and tree
construction based on the kSNP software [47]. The phylo-
genetic convergence or PhyC’ approach [18] looked at
recurrent mutations on the tips and internal nodes of the
phylogenetic tree, assuming that mutations occurred
recently under strong selection. Significance was tested
using a permutation approach to ask whether the number
of times a SNP occurred on branch leading to an
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antibiotic-resistant strain versus an antibiotic-sensitive
strain was unusual in the population.

Calculation of statistical power

Software that estimates statistical power allows researchers
to calculate the number of cases and controls needed to
have a realistic chance of rejecting the null hypothesis (that
there is no association between the variant and the pheno-
type) when the alternative hypothesis is indeed true. For
example, a calculation may yield the number of strains ne-
cessary to have an 80% chance of detecting an association
with an effect size of 0.5 or greater with a P-value threshold
of 0.05. Power calculations have been important in human
GWASs for improving the experimental design to increase
the probability of obtaining a statistically meaningful result
[52], and there are now a myriad of software packages
available to researchers [40,53,54]. Commonly included vari-
ables that tend to increase power include larger effect-size
cutoff, reduced population structure, and increased se-
quence quality [55].

The number of genetic loci to be tested is an import-
ant variable in statistical power calculations. Multiple
tests of significance increase the chances of false-positive
calls. For example, if 20 randomly selected loci are tested
independently at the standard 0.05 significance thresh-
old, one locus would be expected by chance to be a false
positive. A conservative Bonferroni correction for the
number of hypothesis tests in the study is usually im-
posed in order to reduce false-positive calls. Experimen-
tal designs that reduce the number of genetic variants
tested serve to increase power. One way to reduce the
number of tests is to select a subpopulation of the ori-
ginal set strains with a smaller number of total SNPs.
Other strategies include disregarding low-frequency mu-
tations and/or mutations that cause synonymous muta-
tions or SNPs in intergenic regions, or treating all
individual mutations within a genetic feature (a gene,
intergenic region and so on) as having the same aggre-
gate effect. The risk in removing rare mutations from
the study is that they may be important for the pheno-
type, as has been found in several human diseases. This
was also the case in the Laabei et al study [19] where
four novel toxicity-affecting intergenic loci were identi-
fied and their effect verified by mutagenesis. Permuta-
tion tests using scrambled cases and controls can also be
used to increase statistical power [21,52]. Finally, false
discovery rate could be used as an alternative to signifi-
cance thresholds for identifying candidate loci [56].

Simple power models [52] may have value in offering a
starting point when considering study size. The experience
in human genetics is that the sophistication of power sta-
tistics has increased as knowledge of the population struc-
ture has improved [40]. Because of the immense variation
in bacterial species genetics, empirical calculations using
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simulated genome datasets may be particularly import-
ant for experimental design. A software package for
designing experiments based on recurrent mutations
between matched pairs of cases and controls has re-
cently been developed [57]. From the evidence of the
early bacterial GWASs (Table 1), quite a small number
of cases and controls (n =75) might be required to find
variants associated with phenotype that have a large
effect size. Future GWASs with experimental design in-
formed by basic studies on bacterial species population
structure and involving increasingly large collections of
phenotypically characterized strains may be able to un-
earth larger numbers of small-effect variants.

Validating the results of GWASs: bridging the gap
between genomics and traditional microbial
molecular genetics
GWASs on bacteria has already yielded interesting new loci
that are associated with clinically important phenotypes,
but how can we be confident that these associations are
causative or functionally linked? This question has been ex-
amined in depth in human studies (Table 2). Significance
tests implemented in GWAS software necessarily rely on
assumptions, such as a lack of cryptic population structure
and consistent rates of mutation across evolutionary his-
tory, that may produce higher error rates than the P-values
suggest [41]. Experimental errors in base-calling and phe-
notyping could also contribute to spurious results. We
know from the experience of human GWASs that some
loci found to be associated with a trait can turn out to have
little or no functional significance [58]. Therefore, unless
the associated locus has been previously shown to affect
the phenotype, functional validation is desirable [19]. The
questions that surround the strategy for functional valid-
ation are part of an ongoing dialog between two apparently
diametrically opposed experimental philosophies in modern
microbiology: the ‘top down’” unbiased, genomics-based ap-
proaches (which include GWASs and other experimental
strategies [59-62]), and the ‘bottom-up, gene-by-gene ap-
proach of classical molecular genetics (Figure 3) [6]. The
disconnect is that, on the one hand, we will eventually have
thousands of genome sequences of every bacterial patho-
gen, whereas on the other hand, the current modus oper-
andi of molecular genetics is focused on fine-scale analysis
of individual proteins in a very small number of isolates.
The coming of GWASs will hopefully speed the genesis of
a powerful synthesis between these two approaches.
Traditional molecular genetic approaches have been in-
strumental in carefully dissecting the functions of thou-
sands of bacterial genes, sometimes down to the level of
highly complex interactions between host cells and patho-
gens that lead to disease (such as Type III secretion or
superantigens [63,64]). Typically, researchers seek to de-
sign systems to examine discrete phenotypes, where upon
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Figure 3 Schematic representation of genomics/genome-wide association studies and traditional microbial genetics strategies. The
top-down approach [6] (genomics/genome-wide association studies (GWASs) typically begins with a pool of sequenced genomes and attempts
to discover genes that are associated with a particular phenotype. Bottom-up approaches (molecular genetics) perform experiments to prove or
disprove hypotheses about the function of particular genes or regions of the genome. These approaches can be integrated when knowledge
gained from molecular genetics is used to validate unbiased GWASs- and genomics-based experiments.

mutation (directed or random), the loss or gain of a
specific phenotype can be efficiently screened or selected.
Depending on the activity of the gene in question, further
specific molecular or cellular experiments follow to
characterize the mechanisms in detail. This approach is
tremendously powerful in manipulating the microorgan-
ism and the environment to test precise hypotheses within
the artificial confines of the laboratory. Since the 1980s,
the dominant paradigm for linking genes to phenotype in
microbiology has been based on the Molecular Koch’s
Postulates, outlined by Falkow [65]. These state that
disruption and reconstruction of the gene under investiga-
tion coupled with loss and regain of the phenotype is
needed for firm proof of a functional role. Molecular
Koch’s Postulates are often used as a stringent standard
for validation, although the original article offered a

nuanced discussion of some of the difficulties in their ap-
plication to all situations [65].

Validation by genetic disruption and reconstruction can
be applied to GWASs results, especially for microorganisms
for which genome-wide transposon mutant libraries are
available, such as S. aureus, Escherichia coli, Streptococcus
pneumoniae, Pseudomonas aeruginosa, Yersinia pseudotu-
berculosis and Salmonella enterica [60,66,67]. Nevertheless,
there can be situations in which laboratory genetics are
more challenging or even impossible, for example when the
identified polymorphism is in an essential gene, or when the
species being studied is not amenable to genetic manipula-
tion. We are also increasingly sampling beyond where the
traditional microbiology laboratory can venture, sequencing
single cells [68], and reconstructing genomes directly from
environmental DNA [69,70]. In these circumstances, it may
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be possible to use a model genetic organism such as E. coli
to test for the phenotypic effect of a mutation, but any result
may not be considered a direct validation under the
Molecular Koch’s Postulates rules.

There is also the problem of potential epistatic interac-
tions between genes and the contribution of non-core,
accessory genes to the phenotype. If a reconstructed mu-
tant strain does not have the expected phenotype, this
could result from the lack of a specific interacting allele in
the host strain, or possibly a missing non-core gene. No
single strain can ever represent a species, but the strains
commonly used for genetic reconstruction may be espe-
cially poor choices because of their long history of labora-
tory adaptation [71]. Laboratory strains are chosen because
they are locally available and have familiar, useful proper-
ties: generally fast growth and easy genetic manipulation.
As a consequence, laboratory strain phenotypes often do
not represent the majority of the species. The quixotic
properties of certain laboratory strains have misled genera-
tions of scientists about the true nature of their subject or-
ganisms. For example, the ubiquitous genetic workhorse,
Bacillus subtilis 168 is a very rare naturally transformable
strain within its species (it is also a non-swarming trypto-
phan auxotroph, amongst other unusual features [72]), and
the S. aureus genetic strain 8325-4 has a mutation in the
sigB locus that causes an enhanced toxic profile [73].

If the one-at-a-time genetic reconstruction method is
unlikely to work for all variants discovered through
GWASs, and in some cases may produce misleading re-
sults because of complex gene interactions, statistical
modeling may also be able to provide an alternative type
of validation. Commonly, machine-learning techniques
such as support vector machines and random forests
[74] can be trained on a reserved portion of the dataset
and then tested on the remainder. Random forests were
used to make reliable predictions of an individual iso-
lates’ level of toxicity and vancomycin-intermediate
phenotype [19,20]. Although a successful model would
not be able to explain the mechanistic contribution of
the loci, it would inform that sufficient information on
the genetic basis of the phenotype for sensitive predic-
tion had been learned.

Ultimately, it is likely that combining molecular genetic
and statistical modeling approaches will be fruitful. In a
hypothetical situation in which GWASs results in more than
200 loci that are significantly associated with a complex
phenotype, validating the effect of the top 20 most import-
ant mutations might allow the statistical model to predict
the phenotype accurately in more than 95% of unknown
strains. There has been interest in developing methods to
prioritize variants discovered in human GWASs [75], and
potentially some of these approaches can be applied to the
bacterial realm. Further on in the future, systems biology
and systems genetics approaches to high dimensional data
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integration may offer an alternative to ‘one gene at a time’
genetic validation [76,77].

How will GWASs affect clinical microbial
diagnostics?

Bacterial GWASs have the potential to deepen our un-
derstanding of phenotypic variation across pathogenic
species. This information will be particularly useful in
the future as we attempt to interpret genome sequences
that are routinely produced by clinical microbiology la-
boratories. There is great interest in the development of
whole-genome sequencing for clinical diagnostics of
pathogens [78-81] because it is possible to envisage gen-
omics technology maturing to the extent that de novo
sequencing becomes a relatively cheap and rapid assay.
Whole-genome sequence data have numerous advan-
tages over the directed PCR-based tests that currently
dominate this arena. Unlike shotgun genomics, PCR re-
lies on the presence of highly conserved DNA sequences
for primer binding and yields false-negative results when
these are mutated, as happened, for example, with a
plasmid-borne marker for C. trachomatis [82]. Import-
antly, the whole-genome sequence also allows unbiased
discovery of other information about the strains that the
clinician may not have considered, such as the unex-
pected presence of antibiotic-resistance genes.

To take advantage of our ability to acquire the genome
sequence of a pathogen rapidly ahead of the results of a
laboratory-based phenotypic test, such as an antibiotic min-
imal inhibitory concentration (MIC) test, we must be able
to not only call drug sensitivity on the basis of the genome
sequence alone but also know the reliability of the assign-
ment. Several schemes for predicting drug resistance have
already been developed, based on knowledge obtained from
early comparative genomics and genetic knockout studies
[83,84]. Further development of these diagnostic tests will
necessitate understanding how the activities of well known
genes are influenced by epistatic interactions within the
pathogen species. For the reasons we have outlined earlier,
GWASs provide the natural training set data to build statis-
tical models that predict phenotypes by integrating genetic
variation across the entire genome. Another advantage of a
test that is based on trained genomic data is that variability
in how the phenotype is measured is no longer a problem.
Many clinically relevant phenotypes are ascertained using a
plethora of different technologies and are variable across
different conditions. MIC, for example, can be determined
by disk diffusion, test strips, spiral plating, or several other
methods. GWASs performed on a genetically diverse set of
strains measured using gold-standard phenotypic assays
could be used to train models that effectively replace much
routine clinical antimicrobial-resistance testing.

Large-scale clinical sequencing could provide a pool of
thousands of new genomes for GWASs that could discover
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variants that have ever-smaller effect. Existing statistical
models could also be tested and refined with the new clin-
ical data. For this feedback cycle to occur, we will need to
improve and make more efficient our collection of metadata
(time and place of isolation, clinical manifestations, pheno-
type tests and so on). Several schema for organizing bacterial
strain metadata have been proposed [85,86]. Even today,
when it is possible to sequence 96 or more strains each day
on a bench-top instrument, it is a feat of organization to
manually gather metadata retrospectively for submission
with the genomes to public databases. For us to keep up
with future throughput, we need systems that facilitate infor-
mation storage at the time of isolation and phenotypic
testing. This will be a challenge, particularly in the high-
throughput, time-pressured environment of the clinical
microbiology laboratory. There is also an issue with access
to collections of sequenced isolates. Many organizations
make sequence data available in public databases, but either
do not maintain the bacterial collections from which the se-
quenced DNA was extracted or are unable to bear the costs
of making large sets of strains available to the research com-
munity. The solution is to have regular accession of large
numbers of sequenced isolates with high-quality metadata
from clinical and academic laboratories into public strain
collections, but this will need new organization and funding.

Conclusions and perspectives

GWAS in bacteria is a new research opportunity that is be-
ing driven forward by advances in genome-sequencing
technology. Although in its infancy, the early studies have
shown it to be not only a reliable method to identify loci
that affect a phenotype but also a powerful tool to uncover
new levels of complexity in the expression of clinically im-
portant bacterial traits. The approaches and tools used to
do this are likely to adapt and develop as we sample ever-
greater numbers of bacterial genomes that are associated
with high-quality metadata. What is clear is that GWASs
represent a versatile and highly productive approach to
maximizing the usefulness of the genomic data available to
us from both laboratory and clinical settings.
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