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Abstract: A stochastic reaction–diffusion model was developed to describe the binding of labeled
monoclonal antibodies (mAbs) to CD4 receptors on the surface of T cells. The mAbs diffused to,
adsorbed on, and underwent monovalent and bivalent binding to CD4 receptors on the cell surface.
The model predicted the time-dependent nature of all populations involved in the labeling process.
At large time, the populations reached equilibrium values, giving the number of antibodies bound to
the T cell (ABC) defined as the sum of monovalently and bivalently bound mAbs. The predicted
coefficient of variation (CV%) of the (ABC) values translated directly to a corresponding CV% of the
measured mean fluorescence intensity (MFI). The predicted CV% was about 0.2% from the intrinsic
fluctuations of the stochastic reaction process, about 5% after inclusion of the known fluctuations
in the number of available CD4 receptors, and about 11% when fluctuations in bivalent binding
affinity were included. The fluorescence detection process is expected to contribute approximately
7%. The abovementioned contributions to CV% sum up to approximately 13%. Work is underway to
reconcile the predicted values and the measured values of 17% to 22%.

Keywords: stochastic simulation; CD4+ T cells; labeling reaction; monovalent; bivalent; CV%;
flow cytometer; antibodies bound per cell

1. Introduction

Flow cytometers measure mean fluorescence intensity (MFI) emitted from cells with antibodies
that contain conjugated fluorophores. The antibodies bind to specific receptors on the surface of the
cell, and, with proper calibration, the MFI signal can yield the number of antibodies bound to the cell
(ABC) [1]. Another property of the observed fluorescence signals is the coefficient of variation (CV),
defined as the standard deviation (SD) of the fluorescence signals divided by the MFI. The CV has not
been used to obtain additional information about the cell. This work attempts to provide a basis for
interpreting the CV in terms of relevant biological information such as variety of CD4+ T-cell subtypes
present in a constantly adapting immune system.

Motivated by the many possible sources of signal fluctuations, this work utilizes a stochastic
reaction-diffusion model to guide the estimate of possible fluctuations and, thus, guide the interpretation
of the CV. Uncertainty due to instrument factors such as electronic gain is decreased because the
CV is a ratio based on the same set of fluorescence measurements. In keeping with tradition to
represent the SD as a percentage of the MFI, the CV is multiplied by 100 and denoted by CV%.
T cells are an important component of the immune system [2] and play an important role in new
immunotherapy [3]. Recently, T cells have also become prime candidates for standardizing quantitative
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flow cytometer measurements [4]. This is primarily because the number of CD4 receptors on the
surface of T cells is reasonably constant for all normal people [5], and thus can serve as convenient
standard for quantification of flow cytometer measurements. Characterizing CD4+ T cells is critical for
the development of flow cytometer standards. Of special concern is the variability of the process of
labeling T cells with monoclonal antibodies (mAbs) for the CD4 receptor. This manuscript describes
a model for the labeling process of T cells. The model starts with a description of the initial step during
which the mAbs in the labeling suspension are transported to the vicinity of the cell surface, where the
mAbs interact with adsorption sites on the surface of the cell. The model then describes the binding
reaction between the adsorbed mAbs and the receptors (Rs) on the cell surface. The analysis suggests
that the fluctuations in the number of mAb receptors on the T cell contribute about 5% to the CV% of
MFI. Including fluctuations in the bivalent binding constant, kbp, this leads to a larger CV% of 11%.
Fluorescence detection fluctuations add another 7% for a CV% value of 13%. This is less than the
observed CV% of 17% to 22%.

2. Results

2.1. Measurement of CV% of T Cells Labeled with mAb Fluorophore Conjugates

The model presented below describes the time evolution of the number of mAbs bound on the
surface of cells during the incubation period. Sufficient elapsed time was allowed in the model,
to ensure that a binding equilibrium was reached. The results of the stochastic simulation were
compared to the measurements of CV% of MFI shown in Figure 1, which gives CV% as a function
of label load on the T cells, as given by MFI. Figure 1a,b represents CV% measurements for mAb
conjugated with fluorescein isothiocyanate (FITC) and allophycocyanin (APC), respectively. The data
in Figure 1a,b show a dependence of CV% on MFI for three independent measurements for each label.
Clearly the curves in Figure 1a,b are similar but different in detail. The values of CV% at low MFI
were all different in the case of FITC label and merged to a value of 22 ± 1 at large MFI. Two of the
curves (open and full circles) in Figure 1b were similar, while the curve with triangle symbols deviated
significantly from the pair. It is important to note that all three curves in Figure 1b merged to a CV%
value of 17 ± 1 at large values of MFI. The common CV% value at large MFI suggests that, at saturating
label concentrations, the measured CV% is representative of the T-cell population.

The lack of reproducibility in the CV% vs. MFI dependence at low values of MFI is troubling and
is clearly due to uncontrolled factors. Most likely the dependence of CV% shown in Figure 1a,b is
dominated by fluctuations in the mass transport during the labeling process. The cells were incubated
in a small test tube for about half an hour, without any mixing. Sedimentation can occur, and cells on
top can prevent diffusion of mAbs to cells on the bottom. The blocking can lead to a large heterogeneity
in label load, especially at the lowest concentrations of mAbs. However, there may be other causes,
and it may be useful to understand the nature of this variability. The focus of this paper is the constant
value of CV% at higher values of MFI, which suggests that the SD is proportional to MFI. The value of
CV% will be related to a property of the cell, e.g., fluctuations in the number of bound labeled mAbs.
The stochastic simulation was undertaken to understand the contribution of the labeling reaction to
observed values of CV%, 22 ± 1 for FITC, and 17 ± 1 for APC, as shown in Figure 1a,b, respectively.
In this manuscript, we are only considering cellular and molecular effects on the reaction dynamics
and diffusion, but we are currently modeling effects of noise and gain in the measurement system,
as well. The two stochastic models should allow the extraction of useful biological information from
the CV% data.
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Figure 1. Dependence of CV% on mean fluorescence intensity (MFI) for peripheral blood 
mononuclear cells (PBMCs) labeled with fluorescein isothiocyanate (FITC) and allophycocyanin 
(APC). Graphs (a) and (b) show results for three repetitions of the same series of measurements for 
each label. The large variation in FITC-CV% at small MFI is most likely due to cell settling in the 
labeling solution. The CV% approaches a reproducible value at large values of MFI, where the 
monoclonal antibody (mAb) concentration in the labeling solution is much higher. 

2.2. Description of the Stochastic Model 

Application of stochastic reaction–diffusion models is an active research field with numerous 
recent developments [6]. There are several approaches and methods used to employ reaction–
diffusion models and construct solutions to them [7]. While there are sometimes difficulties when 
employing such models because of irregularity of the noise terms that perturb the equation, such 
noise terms can quantify the lack of knowledge of certain parameters, finite-size effects, and/or 
fluctuations occurring due to external perturbations. In the present model, both the diffusion and the 
surface reactions are modeled as stochastic processes, using the Gillespie formalism [8,9], expanded 
to include diffusive mass transport [10]. During the labeling process, the mAbs in solution execute 
random walks and eventually encounter the surface of the cell where the mAbs are adsorbed and 

Figure 1. Dependence of CV% on mean fluorescence intensity (MFI) for peripheral blood
mononuclear cells (PBMCs) labeled with fluorescein isothiocyanate (FITC) and allophycocyanin
(APC). Graphs (a,b) show results for three repetitions of the same series of measurements for each label.
The large variation in FITC-CV% at small MFI is most likely due to cell settling in the labeling solution.
The CV% approaches a reproducible value at large values of MFI, where the monoclonal antibody
(mAb) concentration in the labeling solution is much higher.

2.2. Description of the Stochastic Model

Application of stochastic reaction–diffusion models is an active research field with numerous
recent developments [6]. There are several approaches and methods used to employ reaction–diffusion
models and construct solutions to them [7]. While there are sometimes difficulties when employing
such models because of irregularity of the noise terms that perturb the equation, such noise terms can
quantify the lack of knowledge of certain parameters, finite-size effects, and/or fluctuations occurring
due to external perturbations. In the present model, both the diffusion and the surface reactions are
modeled as stochastic processes, using the Gillespie formalism [8,9], expanded to include diffusive
mass transport [10]. During the labeling process, the mAbs in solution execute random walks and
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eventually encounter the surface of the cell where the mAbs are adsorbed and proceed to react with
surface bound receptors. It is not practical to track the fluctuating spatial positions of thousands of
mAbs, to estimate the times of their arrival at the surface of the cell. A practical method by which
diffusion can be incorporated into the stochastic reaction algorithm was described in Reference [10].
In short, the space around the cell is partitioned into spherical thin shells, and the rate of transfer of
one mAb between two contiguous spherical shells is given by D/h2, where D is the diffusion coefficient
in unbound solution, and h is the thickness of the shell. In the current version of the model, all shells
are 3.75 µm thick, about the average radius of the T cell. The solid blue circle in Figure 2 shows an
idealized spherical cell with three surrounding spherical shells delineated by three solid curves. In the
following, the spherical shells are referred to as layers.
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Figure 2. Geometry of the compartments used in the model. The surface of the cell is separated from
the solution by three named layers. The “cell layer” contacts the surface of the cell and contains a layer
of ions that neutralize the ions on the surface of the cell, the “boundary layer” defines the extent of the
cell’s influence on solution bulk flow which is assumed to be zero, and the “transition layer” provides
the initial condition for mass transport from bulk solution to the surface of the cell.

In the current model, the bulk flow in the labeling solution is assumed to be zero so that the
three layers simply provide a diffusive path for mAbs to reach the cell surface. However, the three
layers serve as convenient placeholders for enhancements in the model. The layer bordering the cell,
called the cell layer, hc, contains the counterions at the surface of the cell which shield the charged
groups on the surface of the cell from the rest of the suspension. Once the mAbs enter the vicinity
of the cell surface, the charged groups on the mAbs start to experience electrostatic interaction with
the charged groups on the cell. Other int eractions may also occur as mAbs near the surface of the
cell, resulting in nonspecific adsorption on the cell surface. The cell layer is the natural location for
enhancements to the description of the absorption process. Adjacent to the cell layer, and further
from the cell surface, lies the “boundary” layer in which any flow present in the bulk solution is
influenced strongly by the presence of the cell. The boundary layer is a natural location to insert
a phenomenological description of hydrodynamic mixing. The outermost layer is called the “transition”
layer; it defines the initial conditions for mass transport from bulk suspension to the surface of the cell.
In addition, the transition layer is a placeholder for extensions of the model to lower concentrations of
labeling mAbs. In the current model, the number of mAbs in the transition layer is set to a constant
value derived from the large concentration of mAbs in the bulk suspension. The large concentration is
needed to ensure saturation of binding and ensure that the concentration of mAbs in the suspension
does not change appreciably during the labeling process. In case of a smaller initial mAb concentration
in the labeling suspension, a feedback loop is needed to adjust, downward, the number of mAbs in
the transition layer, to reflect the decrease in suspension concentration due to the binding of mAbs to
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receptors on the surface of T cells. In the present model, the mass transfer between the three layers is
diffusive, resulting in the smallest possible mass transfer to the surface of the cell.

The mAb binding process starts with the transport of mAbs to the surface of the cell. The relevant
dynamic variables are the number of mAbs in each of the layers and on the surface of the cell.
The number of mAbs in the transition layer is represented by the symbol (As), where the subscript “s”
is a reminder that the transition layer properties are those of the labeling suspension. The number
of mAbs in the boundary layer is represented by (Ab), and the symbol (Ac) stands for the number
of mAbs in the layer adjacent to the cell surface. The dynamic variable called (Ao) represents the
number of mAbs adsorbed on the cell surface via nonspecific interactions. The specific reaction
between the adsorbed mAbs and CD4 surface receptors, denoted by (R), is described by the dynamic
variables (AR) and (ARR) which represent the number of mAb bound to one and two CD4 receptors,
respectively. The symbol (R) represents the number of unbound CD4 receptors on the cell surface.
It was assumed that, at the start of the binding reaction, there were 100,000 unbound receptors on
the cell [5]. The model’s conceptual framework is represented below by the five transitions/reactions
which describe the motion of mAbs from solution to the cell surface and then to the complexes (AR)
and (ARR). In all, there are ten sequential reactions, i.e., five forward and five backward, as shown in
the list below.

(As)� (Ab) diffusion between transition and boundary layers
(Ab)� (Ac) diffusion between boundary and cell layers
(Ac)� (Ao) nonspecific adsorption—cell layer to surface
(Ao) (R)� (AR) monovalent binding of mAb and receptor on surface
(AR) (R)� (ARR) bivalent binding of (R) and (AR) on surface

The first column in Table 1 gives the values of the reaction parameters associated with the ten
reactions. The second column describes the reaction associated with the reaction parameter. The symbol
D represents the mAb diffusion coefficient, which is approximately 0.5 × 10−10 [11]. The symbols hc, hb,
and ht give the thickness of the cell layer, boundary layer, and transition layer, respectively. The reaction
rate constants, starting with Row 5 in Table 1, are given in units of 1/s and can be interpreted as the
probability that a single molecule will undergo the event associated with the reaction in an infinitesimal
time interval. The reaction rate constants describing diffusion are obtained by dividing the solution
diffusion coefficient by the square of the dimension of the layer from which the molecule is diffusing.

Table 1. Values of parameters and reaction rate constants used in the model.

hc = 3.75 × 0−6 layer adjacent to cell surface, m

hb = 3.75 × 10−6 boundary layer, m

ht = 3.75 × 10−6 transition layer, m

D = 0.5 × 10−10 diffusion coefficient, m2/s

k2p = D/ht
2 from transition to boundary layer, 1/s

k2n = D/hb
2 from boundary to transition layer, 1/s

k1p = D/hc
2 from boundary layer to cell layer, 1/s

k1n = D/hd
2 from cell layer to boundary layer, 1/s

kon = D/hc
2 from cell layer to surface adsorption, 1/s

koff = (0.5) × kon desorb from surface to cell layer, 1/s

kmp = 1.0 × 10−4 from A and R to AR complex, 1/s

kmn = 1.0 × 10−6 from AR complex to A and R, 1/s

kbp = 2.0 × 10−6 from AR and R to ARR complex, 1/s

kbn = 1.0 × 10−8 from ARR complex to AR and R, 1/s
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It is important to point out that the adsorption process in Table 1 is simplified. The reaction
constant kon in Table 1, is simply the diffusion rate, meaning that every molecule that comes to the
surface is adsorbed by the surface and there is no reflection. The rate constant koff was set to 0.5 × kon,
to ensure that the number of unoccupied adsorption sites remained reasonably constant during the
labeling process and that there was always an ample number of adsorbed mAbs. (The current model
assumes that the number of nonspecific adsorption sites on the surface of the T cell is very large,
so that it does not have to be explicitly considered as a dynamic variable.) The values of the reaction
constants, kmp, kmn, kbp, and kbn, were chosen to yield a reasonable time variation of the variables
(R), (AR), and (ARR) in the labeling process. The values of the four reaction constants were changed
in the calculations below, to describe special cases dominated by monovalent or bivalent binding.
The value of (A0) controls the reaction rate of monovalent binding, so a larger (A0) results in more
(AR), which in turn depletes the number of adsorbed mAbs and allows more mAbs to enter the
adsorption state from the cell layer. At equilibrium, the number of adsorbed mAbs is equal to about
6000 = (kon/koff) × (Ac) = 2 × (Ac). At equilibrium, the cell layer, the boundary layer, and the transition
layer all contain about 3000 mAbs, on the average (calculated by multiplying the volume of the
transition layer (4.76 × 1015 m3) by the concentration of mAb in the bulk suspension (1 µmol/m3) and
Avogadro number; the result is rounded to 3000).

For reactions between two molecules, the reaction rate constant is the probability that a pair
of molecules will undergo the event associated with the reaction in an infinitesimal time interval.
In practice, there are many pairs of molecules in each of the states described in Figure 2. The total
reaction rate (called the propensity function) can be found by multiplying the reaction rate constant
given in Table 1 by the number of pairs undergoing the reaction. The result is shown in Table 2,
where the symbol α stands for propensity function, as defined in Table 2, and the subscripts identify
the specific reaction, which is described in the rightmost column of Table 2.

Table 2. Values of ten reaction propensity functions used in the model.

α2p = k2p × (As) from transition to boundary layer

α2n = k2n × (Ab) from boundary to transition layer

α1p = k1p × (Ab) from boundary layer to cell layer

α1n = k1n × (Ac) from cell layer to boundary layer

αon = kon × (Ac) from cell layer to surface adsorption

αoff = (0.5) × kon × (Ao) desorbs from surface to cell layer

αmp = kmp × (Ao)(R) production of AR complex

αmn = kmn × (AR) degradation of AR complex to A and R

αbp = kbp × (AR)(R) production of ARR complex

αbn = kbn × (ARR) degradation of ARR complex to AR and R

The stochastic nature of the model is evident in the method by which the time of occurrence of
any one of the ten reactions is chosen, and the method is given by the Gillespie algorithm [8]. In short,
for any one of the reactions given in Table 2, the probability that the reaction will take place at time
t + τ + dτ, if it did not occur by time t + τ, is given by the following:

exp(−kA(t)τ) = exp(−α(t) · τ)

where A(t) is the number of molecules at time (t), and dτ is an infinitesimal time interval. Let r1 be
a random number chosen uniformly between 0 and 1, and then the time at which the reaction occurs
is given by τ = (1⁄α(t)) · ln (1⁄r1), where τ is distributed uniformly between 0 and∞. The probability
that any one of the ten reactions in Table 2 occurs at t + τ + dτ can be written as exp (−(

∑
αi (t)) · τ),
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where it is assumed that the numbers of all molecules are known at time, t. In that case, the time of
occurrence of any one of the ten reactions is given by Equation (1).

τ = (1⁄
∑
αi (t)) · ln (1⁄r1). (1)

The occurrence of a specific reaction is found by examining the fractions αj(t)⁄
∑
αi (t). The sum of

all the fractions is equal to 1. It is useful to visualize the probability of the occurrence of a reaction at
t + τ by a line segment of length 1; the likelihood of any specific reaction is given by the line segment
of length equal to the fraction associated with that reaction. Therefore, the reaction can be selected by
choosing a random number distributed uniformly from 0 to 1 and determining into which line segment
it falls. When the reaction occurs, all relevant variables change value by one. The “change” matrix is
defined in Table 3. The first column is the variable vector containing the numbers of the six named
variables, and the first horizontal row gives the reaction name denoted by the reaction rate constant.
Each column of the change matrix is a vector which is added to the variable vector to give an updated
variable vector after the reaction takes place. For example, if reaction kmp occurs, then variables (Ao)
and (R) decrease by one, and variable (AR) increases by one.

Table 3. Variable change matrix.

Variable Change Matrix
k2p k2n k1p k1n kon koff kmp kmn kbp kbn

(Ab) 1 −1 −1 1 0 0 0 0 0 0
(Ac) 0 0 1 −1 −1 1 0 0 0 0
(Ao) 0 0 0 0 1 −1 −1 1 0 0
(AR) 0 0 0 0 0 0 1 −1 −1 1

(ARR) 0 0 0 0 0 0 0 0 1 −1
(R) 0 0 0 0 0 0 −1 1 −1 1

The diffusion in the stochastic model involves the transfer of one mAb between two adjacent
layers; for example, for reaction k1p, one mAb goes from boundary layer to cell layer. There are many
mAbs in each layer, and each mAb is constantly executing a random walk, and, on occasion, an mAb
will stray into a neighboring layer. That event is called a “reaction”. Note that the “reactions” k2p and
k2n describe diffusion between the transition and boundary layers, and the population of transition
layer is set to 3000. The stochastic model is implemented as follows. At a given time, all the propensity
functions, α, shown in Table 2, are calculated. A random number, r1, is used to calculate the time of
occurrence of the next reaction by Equation (1). The reaction that occurred is determined by choosing
a random number, r2, and finding where, as determined by αj(t)⁄

∑
αi (t), it falls in (0,1). Finally,

the column of the change matrix associated with the reaction is added to the variable vector. Lastly,
time is incremented by the value τ given by Equation (1). Upon completion, the entire cycle is repeated.
The following section describes the results of applying the model to the reaction between labeled mAbs
and CD4 receptors on the surface of T cells.

2.3. Characteristics of the Results from the Stochastic Model Calculation

Figure 3a,b shows results of stochastic model calculation for initial conditions (R) = 100,000,
(At) = 3000, and all other variables set to 0. The reaction constants, kmp = 10−4, kmn = 10−6,
kbp = 2 × 10−6, and kbn = 10−8, were chosen to yield comparable values of (AR) and (ARR) at
equilibrium. All the other reaction parameters were those given in Table 1. Figure 3a shows the
time dependence of mAb populations on the cell surface. The trace labeled (R) gives the total
number of unreacted CD4 receptors on the T cell. As expected, it decreases as the labeling reaction
proceeds. The labeling reaction on the surface leads to (AR) (monovalently bound mAb) and (ARR)
(bivalently bound mAb). The time dependence of these populations is shown by the blue and red
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curves labeled (AR) and (ARR). At some point, the receptors are consumed and (R) = 0. At this point,
the curves (AR) and (ARR) flatten.
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Figure 3. (a) The labeled traces show the time dependence of the surface-bound populations in the
labeling reaction. These include (R), the surface unbound receptors, and (AR) and (ARR), the monovalent
and bivalent complexes of R and A. (b) The labeled traces show the time dependence of the mAb
populations of layers surrounding the cell and providing a path for the transport of mAbs to the surface
of the cell. The layers are defined in Figure 2.

Figure 3b shows the time dependence of populations involved in mass transport of mAbs to the
cell surface. The trace labeled “boundary layer” shows the number of mAb molecules in the boundary
layer surrounding the cell. The boundary layer exchanges mAb molecules with the transition layer and
the cell layer via diffusion. The transition layer provides the initial condition for mass transport to the
cell surface, and, in this version of the model, the number of mAbs in the transition layer is constant.

After a rapid growth during the first 1 s, the number of mAbs in the boundary layer undergoes
a very slow growth because a slightly larger number of mAbs diffuse into the boundary layer from the
transition layer than diffuse out of the boundary layer and into the cell layer. The label (Ac), shown by
the red trace, gives the number of mAbs in the cell layer. Finally, the number of mAbs adsorbed on the
cell surface is given by the blue trace labeled ”adsorbed”. The numbers of mAbs in the boundary layer
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and the cell layer reach a new equilibrium value at about 25 s. This time marks the transition to labeling
equilibrium, where the total number of bound receptors is given by (AR) + 2∗(ARR), which should
equal the initial number of unbound receptors (R) set to 100,000 [12]. Though 140,000 CD4 receptors on
cryopreserved peripheral blood mononuclear cells (PBMCs) were quantified by using quantitative mass
spectrometry [5], not all of these receptors are accessible for affinity binding by mAbs, as demonstrated
by flow cytometry measurements. The stochastic model calculation produces a large file containing
times at which the individual reactions occurred. The time intervals between consecutive reactions
can be used to make a histogram. The time intervals between reactions range between 0.1 ns and
10 ms, and there is an indication of two clusters in the histogram of time intervals. The clusters may
be assigned to specific reaction groups, but, at present, there is no practical way to measure the time
intervals between reactions. Of great practical interest is the course of the post-labeling reaction after
the labeled mAbs have been separated from the labeling solution and resuspended in a buffer without
any mAb. Figure 4a shows the model calculation with the initial values of the variables set to the final
values of the variables from the calculation shown in Figure 3a. The reaction parameters were the same
as in Figure 3a.
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Note the large difference in the time scale of the horizontal axis in Figure 4a, as compared to
the time scale in Figure 3a. The forward reaction, shown in Figure 3a, reached equilibrium in 25 s,
while the backward reaction, shown in Figure 4a, goes to 3 × 104 s, without reaching an equilibrium.
Of greatest interest is that (AR) and (ARR) populations exchange mAbs very readily between themselves,
resulting in a quasi-constant value of the total bound mAb, (ABC) = (AR) + (ARR). The calculation
indicates that, even after 2 h (7200 s), the number of bound mAb, remains close to the initial value at
the end of the labeling process. This means that the washing and resuspension of labeled cells may not
have a significant impact on the measured MFI, which is determined by the value of (ABC). The large
time scale of the decrease in the (AR) and (ARR) populations, and the nearly linear behavior of the
decrease, may permit measurement of the two populations over time, determination of the slopes of the
two curves, and extrapolation to initial time to obtain the numbers of the two populations at the end of
the labeling process. These populations would permit the conversion of ABC to a quantity proportional
to bound receptors given by (AR) + 2 × (ARR). However, the result of the model calculation may
not be generally valid for all mAb binding reactions. Figure 4b shows the histogram of time interval
data for the calculation in Figure 4a. A histogram formed by using data at the start of the calculation
was dominated by time intervals between 10−6 and 10−4 s, whereas histograms formed by using time
intervals from the end of the calculation were dominated by time intervals around 2 s. At the beginning
of the calculation, the main reactions were those of mAbs desorbing from the surface and diffusing
to the boundary layer and subsequently to the solution. Time intervals at the end of the calculation
were dominated by the slow backward reactions involving (R), (AR), and (ARR). The histogram in
Figure 4b suggests that the algorithm is effective at selecting the sequence of reactions during the
post-labeling process (and hence also during the labeling process). Calculations were also performed
with rate constants tailored to maximize the production of (AR) or the production of (ARR). In both
cases, the predicted reduction in bound mAb after washing and resuspension was minimal.

2.4. Results of Calculations with Different Sets of Model Parameters

The stochastic model, described in Sections 2.2 and 2.3, was used to estimate the CV% of (ABC)
for various reaction conditions. For each set of reaction conditions, the calculation was repeated
25 times, and the CV% was obtained from the mean and the standard deviation of the 25 (ABC)
values. The number 25 was a compromise between achieving a reasonable estimate of CV% and
keeping the calculations to a manageable period of time. Section 2.4.1. gives the results of calculations
with a constant set of reaction parameters. This CV% reflects the fluctuations associated with the
random selection of reaction sequence. In Section 2.4.2., the number of CD4 receptors varies for each
of the 25 calculations, appropriate for a cell population with varying number of receptors on each
cell. Section 2.4.3 gives the results of calculations with varying values of bivalent reaction constant,
and finally with varying values of both the bivalent reaction constant and the number of receptors on
the cell. As expected, the CV% of (ABC) increases as the number of fluctuating reaction properties
increases. Section 3 discusses the selection of the most relevant set of fluctuating properties to include
in the stochastic model describing mAb binding to CD4 receptors on the surface of T cells.

2.4.1. CV% for Reactions under Constant Conditions

The first estimate of CV% for (ABC) was performed with constant reaction conditions. A set of
25 calculations was performed, fixing the number of receptors on the cell surface at 100,000, and the
reaction constants given in Table 4. This was appropriate for a comparable mix of monovalent and
bivalent binding. The results of 25 calculations are summarized in Table 4.
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Table 4. Results of 25 calculations with constant initial value of (R) and fixed reaction constants.

(AR) and (ARR) Similar

kmp = 10−4 kmn = 10−6 kbp = 2 × 10−6 kbn = 10−8

Total (R) (AR) (ARR) Total (A)
mean 100,000 38,350 30,825 69,174

SD 0 115 58 57
CV% 0 0.30 0.19 0.08

The value of CV% for (AR) + (ARR) = Total(A) is negligible, in contrast to much larger values
of CV% for (AR) and (ARR) separately. The reason for this curious behavior is that, at equilibrium,
(AR) and (ARR) are correlated through the constraint 100,000 = (AR) + 2∗(ARR). The steps in the
stochastic model ensure this underlying constraint is satisfied because the reaction rates to produce
(ARR) and (AR) depend on (R); thus, the reaction, which uses up the last free receptor, stops the
other reaction from continuing. At saturation ((R) = 0), (AR) and (ARR) are inversely proportional;
that is, if (AR) increases, then (ARR) must decrease, and vice versa. The conclusion is that the intrinsic
reaction dynamics contribute little to the CV% of (ABC) = (AR) + (ARR) and can be neglected. Figure 5
demonstrates this behavior.
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Figure 5. Equilibrium values of (AR) + (ARR) at the end of 25 calculations of the stochastic model.
The values (AR) and (ARR) are correlated to yield a very small CV% for (ARR) + (AR). The CV% for
(AR) and CV% for (ARR), taken individually, are much larger.

The value of (AR) + (ARR) in Figure 5 ranges from 69,050 to 69,300, with a CV% of about 0.1%.
Note that the scale of the y-axis in Figure 5 is very fine, i.e., 50 units per gradation.

Both monovalent and bivalent binding yield one bound mAb on the surface of the cell.
However, bivalent binding consumes two receptors, while monovalent binding uses a single receptor.
Consequently, for a fixed number of receptors on the surface of the cell, bivalent binding yields (ABC)
value, which is half of the value obtained for monovalent binding. If both types of bindings are present
in comparable amount, the resulting (ABC) is between the (ABC) values obtained for monovalent and
bivalent binding. Therefore, it is important to determine the mix of monovalent and bivalent binding
in a population of cells. Recent modeling of the labeling of FITC-mAb and APC-mAb to CD4 receptors
on T cells suggested that, while FITC-mAb binding was mostly monovalent, that of APC-mAb was
mostly bivalent [13]. In this case, it was observed that the concentration of labels needed to reach
saturation was much higher in the case of FITC-mAb than in APC-mAb. If the cells in the population
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have a different mix of monovalent and bivalent binding, the (ABC) values for that population would
exhibit an increased CV%. This would be a significant contribution to CV% caused by intrinsic reaction
dynamics. It is investigated in Section 2.4.3., but first we look at the CV% of (ABC) for a population of
cells with a variable number of receptors (but fixed values of all reaction constants).

2.4.2. CV% due to Fluctuating Number of Receptors on the Surface of the Cells

The CV% of the number of bound mAbs for a cell population may vary due to fluctuation in the
number of accessible CD4 receptors on the T-cell surface. Calculations were performed for a series of
cells with CD4 receptor numbers chosen from a normal distribution with a mean of 100,000 and a CV%
of 6%. The results of the calculations are summarized in Table 5. The mean and standard deviation
(SD) for the three cases were obtained from 25 calculations each.

Table 5. Summary of model results for various reaction conditions and varying values of initial (R).

(AR) and (ARR) Similar

kmp = 10−4 kmn = 10−6 kbp = 2 × 10−6 kbn = 10−8

Total (R) (AR) (ARR) Total (A)
mean 100,808 38,328 31,240 69,568

SD 7000 314 3368 3632
CV% 6.9 0.61 8.86 5.2

(AR) Dominates

kmp = 2 × 10−4 kmn = 10−6 kbp = 10−7 kbn = 10−9

Total (R) (AR) (ARR) Total (A)
mean 99,747 90,696 4525 95,222

SD 6242 4803 725 5522
CV% 6.26 5.29 16.07 5.80

(ARR) Dominates

kmp = 10−4 kmn = 10−6 kbp = 2 × 10−4 kbn = 10−8

Total (R) (AR) (ARR) Total (A)
mean 98,223 1726 48,248 49,975

SD 7862 35 3931 3931
CV% 8.01 2.04 8.15 7.87

The solid circles in Figure 6 show the results of 25 model calculations for the case where (AR)
and (ARR) have similar populations at equilibrium but the cells have varying number of receptors
(first entry in Table 5). Each solid circle represents the result of a single calculation, and the diameter of
the solid circle gives the intrinsic fluctuation for (ABC) = (AR) + (ARR) due to the stochastic process
(shown in Table 4). The values of (ABC) in Figure 6 depend linearly on the values of (R), shown on the
horizontal axis, and the points cluster around the mean value of 70,000, which is equal to the sum of
the means of (AR) and (ARR). The distribution of (ABC) on the vertical axis in Figure 6 follows the
distribution of (R) on the horizontal axis. There is an appearance of the y-scale of the plot in Figure 5
expanding and the plot being tilted to the right to yield Figure 6. Clearly, the fluctuations in the
number of receptors on the surface of T cells determine the fluctuation of (ABC) and hence the CV% of
(ABC). Table 5 also shows the CV% of (AR) + (ARR) for the case where monovalent or bivalent binding
dominate separately. In both cases, the CV% is slightly larger than that shown in Figure 6. The average
CV% for the three cases shown in Table 5 is about 6%.
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Figure 6. (AR) + (ARR) equilibrium values for the same calculation as in Figure 5 with the exception
that the initial value of® for each calculation is taken from a normal distribution, with a mean of 100,000
and a CV% of 6%. Note the scale of the y-axis in Figure 6 is much larger (5000 units per gradation) than
the scale of y-axis in Figure 5 (50 units per gradation).

2.4.3. CV% in the Case of Fluctuating Bivalent Binding Affinity and the Number of CD4 Receptors

Reactions between molecules inside cells [14] and on cell surfaces [15] are affected by molecular
crowding caused by the molecular milieu. Molecular crowding could occur if surface receptors cluster
to modulate their response to some signaling event. The mAbs arriving at a cluster of receptors
may undergo monovalent binding to one of the receptors in the cluster. The monovalent binding
in turn facilitates bivalent binding because of the large number of receptors in the vicinity [16]. It is
expected that some of the CD4 receptors on T cells may form clusters, and the extent of clustering
will be different on different T cells. In order to estimate the effect of clustering on measured CV%,
it was assumed that there are two different types of CD4 receptors: those in clusters and those that
are solitary, and each T cell is populated by either solitary or clustered CD4 receptors. This scenario
is extreme, and it only serves to estimate an upper limit for the effect of clustering. In addition, it is
assumed that the bivalent binding to CD4 in clusters is stronger than the bivalent binding for solitary
receptors. In the calculation, kbp is set to 10−6, to describe the bivalent binding in clusters, and set to
10−7, to describe the binding of mAbs to solitary CD4 receptors. The value of kbn remains at 10−9 for
both cases. Such a change in reaction constant is plausible since it represents a decrease in free energy
of only 1.4 kJ/mol [17]. Table 6 shows the results of 25 calculations, where the value of kbp for a given
T cell was chosen randomly to be either 10−7 or 10−6. The number of receptors was held at 100,000,
and the reaction constants were chosen to populate both AR and ARR states.

Table 6. Model calculation results for fluctuating bivalent binding.

(R) Fixed, kbp Varies

Reaction Constants kmp = 10−4 kmn = 10−6 kbp = 10−7 − 10−6 kbn = 10−9

population Total (R) (AR) (ARR) Total (A)
mean 100,000 72,242 13,877 86,119

SD 0 19,120 9563 9558
CV% 0 26.5 68.9 11.1
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The CV% of the total bound mAb population is around 11.1%. The value of (AR) varies between
65,000 and 113,000, while the value of (ARR) jumps between 24,000 and 7400. The CV% for the
individual populations is much larger, 26.5% for (AR) and 69% for (ARR); however, the CV% of the
combined population is only 11%. This occurs because the constant value of (R) for all T cells correlates
with the production of the AR and ARR states. The relationship between (AR) and (ARR) is inversely
proportional. The CV% of 11% was obtained for the extreme case where each T cell had a bivalent
binding constant, kbp, equal to either 10−6 or 10−7. The above scenario may be unlikely; however,
the surface properties of the T cell are complex, and it would be expected that the average reaction
constants vary from cell to cell. The more likely scenario, where the exponent of kbp is distributed
normally with a mean of −6.5, and an SD of 0.5 gives the results shown in Table 7. The CV% of (ABC)
= (AR) + (ARR) is 11%. Figure 7 shows the plot of (ABC) versus (R) for the calculations in Table 7.

Table 7. Model calculation results for fluctuating (R) and fluctuating kbp.

(R) Varies, kbp Varies

Reaction Constants kmp = 10−4 kmn = 10−6 kbp = 10−6.5 ± 0.5 kbn = 10−8

population Total (R) (AR) (ARR) Total (A)
mean 100,522 73,725 13,399 87,124

SD 5240 18,045 9201 9587
CV% 5.2 24.5 68.7 11.0
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Figure 7. Equilibrium values of (AR) + (ARR) for the same calculation as in Figure 6, with the exception
that the value of kbp for each calculation is taken from a normal distribution with a mean of −6.5 and
a CV%. of 8. In addition, the initial value of (R) fluctuates, as shown in Table 6.

Unlike the plot in Figure 6, the values of (ABC) in Figure 7 have a more random distribution,
although there is some clustering of points above and below the dashed trend line shown in Figure 7.
The surfaces of T cells are populated by a varied selection of biomolecules, and it is expected that,
in addition to kbp, other reaction constants will also have varying values for each T cell. It is easy to
devise combinations of varying reaction parameters which give 15% or more for the value of CV% of
(ABC). The chosen parameter variations must be based on known or expected physical properties of
the T-cell surface.
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Fluctuations in cell radius, and hence cell surface area, may also contribute to the measured CV%
of MFI. The diameter of the cells in the PBMC sample was measured at 7.5 ± 0.4 µm [5]. The implied
variation in cell area is 20% and can influence the number of adsorbed mAbs, since the total number of
adsorbed mAbs is expected to be proportionate to the area of the cell. The effect of changing number
of adsorbed mAbs at equilibrium can be estimated by changing the parameter koff in the model.
Larger values of koff signify a greater desorption rate, resulting in less adsorption at equilibrium,
and smaller values of koff will result in greater adsorption. Changes in value of koff from 0.4 to
0.6 result in changes of 1.5% in (ABC) at equilibrium, where equilibrium is defined as the end of the
calculation. Increasing the length of the calculation from 30 to 40 s reduces the changes in (ABC);
hence, the fluctuations in (ABC) depend on closeness to equilibrium. This suggests that changing the
number of adsorbed mAbs changes the time needed to reach equilibrium but does not appreciably
change the value of (ABC) at equilibrium. The time of labeling is 30 min, suggesting that equilibrium
will have been reached for all cells with different radii or different amounts of adsorbed mAb. Thus,
fluctuations in the cell radius are not expected to contribute to fluctuations in (ABC) values.

3. Discussion

The stochastic binding model was created to support the development of standards for flow
cytometer measurements. CD4+ T cells fulfilled the role of a standard because the number of CD4
receptors on CD4+ T cells is reasonably constant for all healthy individuals. In addition, due to their
central role in adaptive immune response, CD4+ T cells have been extensively studied, and CD4+ T-cell
preparations were available commercially. Modern flow cytometers can measure more than 12 different
mAb labels specific to more than 12 different receptors on the surface of the cell. The fluorescence
response from each labeled mAb is measured in one of the different fluorescence channels of the
flow cytometer. To standardize the fluorescence response of the different fluorescence channels,
the antibody specific to CD4 must be labeled with different labels appropriate for the fluorescence
channels. Clearly it is important to have a basis for comparing the binding of CD4 receptors to
mAbs labeled with different dyes. A previous work analyzed the dependence of MFI on the initial
concentration of labeled mAbs in the labeling solution [13] and found that the labeling of mAbs with
APC was dominated by bivalent binding, while the labeling of mAbs with FITC was dominated by
monovalent binding. The stochastic-binding-model calculation indicated that differences in the amount
of monovalent and bivalent binding of the mAbs to the CD4+ T cell lead to significant differences in
the detected MFI. The binding is a complex process which is under intense study due to its central role
in human adaptive immune response, which leans heavily on the ability of T-cell surface receptors to
recognize antigens [17]. Three stages in the binding process have been identified. The first stage starts
with the arrival of the labeled mAbs on the surface of the cell and the start of the sampling of the free
energy landscape. At some point, the mAb arrives at the proximity of the T-cell receptor (to which
it is matched) and experiences a larger negative free energy change. This makes it more likely for
the mAb to remain in the vicinity and continue sampling the local conformations. At some point,
the free energy change is sufficiently negative and stable so that the mAb and the receptor can enter
an “induced fit”, during which their conformations change in a coordinated way, to reach an optimal
negative free energy. The “induced fit” process is intimately coupled to solvation water dynamics [18].
Most likely solvation water dynamics is also involved in the process of “sampling the free energy
landscape” [19,20]. A slightly modified sequence of events describes bivalent binding. To explore the
stability of the ratio between monovalent and bivalent binding, we analyzed the dependence of CV%
on MFI at binding saturation. The CV% was 22 ± 1 for FITC and 17 ± 1 for APC. After subtracting
an assumed contribution of 5.2 due to fluorescence detection (obtained from a stochastic model of
fluorescence response of a flow cytometer with a flat-top laser), the values of binding CV% become
21.5 ± 1 for FITC and 16.1 ± 1 for APC. These values represent the upper bound on the sum of the
CV% for the binding steps described above. The model suggests that the main contribution to the
binding CV% is the fluctuation of the number of receptors on the PBMC, with lesser contributions from
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fluctuations in the binding properties. The large difference in CV% between FITC, a small molecule,
and APC, a large fluorescent protein, suggests that the size of the label might play a role in the binding
process. The difference may help to separate the contributions to CV% due to fluctuations in the
number of mAbs and fluctuations due to their binding properties. However, this hypothesis needs
to be verified by more measurements with dye molecules with different sizes. The development of
CD4+ T-cell-based reference material for calibrating flow cytometer measurements has facilitated
the conversion of the MFI scale to the ABC scale [4]. Thus, in addition to the average value of ABC,
the flow cytometer measurement can also provide the associated SD. The interpretation of the binding
CV% in terms of fluctuations of bound mAb provides an additional tool for the study of fluctuations
of functionality of CAR-T cells similar to the fluctuations observed in CD8+ T cells [21]. This will
help to understand the observed variability of the response to CAR-T-cell therapy. The binding
CV%, along with MFI, will play a role in the applications of flow cytometry to quality control in the
manufacture of CAR-T cells [22].

4. Materials and Methods

The measurements used in this manuscript were thoroughly described in a previous work [13].
In short, a 100 µL aliquot of thawed peripheral blood mononuclear cells (PBMCs; Cellular Technology,
Shaker Heights, OH, USA), at approximately 107 cells/mL, was added to a defined volume of labeled
CD4-FITC, SK3 clone (BioLegend cat. no. 344604) or CD4-APC, SK3 clone (BioLegend cat. No. 344614)
mAb solution in a test tube prewetted with Phosphate Buffer Solution (PBS), and 2% Fetal Bovine
Serum (FBS; Sigma-Aldrich, St. Louis, MO, USA). To obtain the MFI curve (Figure 1), we used the
manufacturer’s recommended amount as the initial concentration of mAbs, followed by eight 2-fold
dilutions and one 1.5-fold dilution. The suspension of labeled mAb and cells was vortexed to mix
for a few seconds and then incubated for 30 min, in the dark, at room temperature (22 ◦C), without
additional mixing. After the incubation time, the cells were washed with 2 mL of the PBS and 2% FBS
buffer, centrifuged, and re-suspended in 0.5 mL of the same buffer. The stained PBMCs were analyzed
by using an Aria II flow cytometer within 2 h after the preparation of the sample. The fluorescein
isothiocyanate (FITC) and allophycocyanin (APC) labels were measured, using the FITC and APC
fluorescence channels of the Aria II flow cytometer (BD Biosciences, San Jose, CA, USA). Data were
analyzed by using BD FACS Diva (BD Biosciences, San Jose, CA, USA). The gating of CD4+ lymphocytes
was also confirmed with forward and side scatter and by staining of both CD3 V450 and CD4 FITC or
APC in some cases.

5. Conclusions

A stochastic reaction–diffusion model was developed to describe the binding of labeled monoclonal
antibodies (mAbs) to CD4 receptors on the surface of T cells. The labeled mAb and the T cells were
mixed in a buffer and left to interact for about 30 min. During this period, the mAb diffused to the
surface of the cell, adsorbed on the surface, and proceeded to bind the CD4 receptors. The diffusion
was modeled by introducing three layers between the bulk suspension and the surface of the cell.
The cell surface exhibited perfect absorption, meaning that all mAbs reaching the cell surface were
adsorbed. The desorption rate was set of 0.5 of the absorption rate, to give a reasonable number of
adsorbed mAbs and, at the same time, ensure that the adsorption sites on the surface of the cell were
not significantly depleted, in accordance with the model assumption. The adsorbed mAb interacted
with the CD4 receptors forming monovalent, (AR), and bivalent, (ARR), complexes. The MFI measured
by the flow cytometer was proportional to the total number of mAbs, given by (AR) + (ARR) = (ABC).
The fluctuations in the number of bound mAb on the surface of the cell contributed directly to the
CV% of the measured MFI. The analysis presented above suggests that the fluctuations in the number
of mAb receptors on the T cell contribute about 6% to the CV% of MFI (Table 5). Including fluctuations
in the bivalent binding constant, kbp, we get a larger CV% of 11% (Table 6). Given the complexity of
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the T-cell surface, it is expected that other reaction constants, e.g., kmp, will also exhibit fluctuating
values on different T cells and contribute to the CV% of (ABC) and MFI.

Experience gained in the initial modeling effort suggests that the observed CV% of 17% to 22%,
shown in Figure 1, can result from fluctuations in the values of reaction constants, fluctuations in the
number of available CD4 receptors on T cells, and fluctuations introduced by fluorescence detection
process. Since the fluorescence detection and the labeling reactions are independent processes,
the square of the measured CV% is equal approximately to the sum of the squares of the CV%
contributions from the fluorescence detection and labeling reaction processes. It is important to identify
the CV% contribution from the fluorescence detection process alone and identify the contribution
from fluctuations associated with the labeling reaction. MFI is proportionate to the laser illumination,
average absorption cross-section, and the average quantum yield of the labels on the cell. Fluctuations in
the value of these factors contribute to the CV% of MFI. Preliminary calculations with a stochastic
model of the fluorescence detection process gave a likely contribution of 7% (for a flow cytometer
equipped with a laser with a gaussian beam) to the total CV% of MFI, implying a 19% contribution
from fluctuations in T-cell reaction properties. The large contribution provides an impetus to identify
and quantify the biological fluctuations.
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Abbreviations

MFI mean fluorescence intensity
ABC antibodies bound per cell
mAb monoclonal antibody
CD4 cluster of differentiation 4
CV% coefficient of variation
FITC fluorescein isothiocyanate
APC Allophycocyanin
(AR) number of mAbs CD4 receptor complexes on T cell
(ARR) number of mAb two CD4 receptor complexes on T cell
(R) number of unbound CD4 receptors on the T cell
PBMC peripheral blood mononuclear cell
PBS phosphate buffer saline
FBS fetal bovine serum
SD Standard deviation

References

1. Wang, L.; Gaigalas, A.; Marti, G.; Hoffman, R. Towards quantitative fluorescence measurements with
multicolor flow cytometry. Cytometry 2008, 73, 279–288. [CrossRef] [PubMed]

2. Zhu, J.; Paul, W.E. CD4 T cells: Fates, functions, and faults. Blood 2008, 112, 1557–1569. [CrossRef] [PubMed]
3. Dai, X.; Mei, Y.; Cai, D.; Han, W. Standardizing CAR-T therapy: Getting it scaled up. Biotechnol. Adv. 2019,

37, 239–245. [CrossRef] [PubMed]
4. Wang, L.; Degheldy, H.; Abbasi, F.; Mostowski, H.; Marti, G.; Bauer, S.; Hoffman, R.; Gaigalas, A. Quantitative

flow cytometry measurements in antibodies bound per cell based on a CD4 reference. Curr. Protoc. Cytom.
2016, 75, 1.29.1–1.29.14. [CrossRef]

5. Wang, M.; Misakian, M.; He, H.-J.; Bajcsy, P.; Abbasi, F.; Davis, J.M.; Cole, K.D.; Turko, I.V.; Wang, L.
Quantifying CD4 receptor protein in two human CD4+lymphocyte preparations for quantitative flow
cytometry. Clinic. Proteom. 2014, 11, 11–43. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/cyto.a.20507
http://www.ncbi.nlm.nih.gov/pubmed/18163471
http://dx.doi.org/10.1182/blood-2008-05-078154
http://www.ncbi.nlm.nih.gov/pubmed/18725574
http://dx.doi.org/10.1016/j.biotechadv.2018.12.002
http://www.ncbi.nlm.nih.gov/pubmed/30543841
http://dx.doi.org/10.1002/0471142956.cy0129s75
http://dx.doi.org/10.1186/1559-0275-11-43
http://www.ncbi.nlm.nih.gov/pubmed/25593565


Int. J. Mol. Sci. 2020, 21, 6086 18 of 18

6. Protter, P.E. Stochastic Integration and Differential Equations; Springer: Berlin, Heidelberg, 2005; pp. 249–361.
7. Kearsley, A.J.; Gadhyan, Y.; Wallace, W.E. Stochastic regression modeling of chemical spectra. Chemom. Intell.

Lab. Syst. 2014, 139, 26–32. [CrossRef]
8. Gillespie, D.T. Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem. 1977, 81, 2340–2361.

[CrossRef]
9. Gillespie, D.T. Stochastic Simulation of Chemical Reactions. Ann. Rev. Phys. Chem. 2007, 58, 35–55.

[CrossRef]
10. Erban, R.; Chapman, S.J.; Maini, P.K. A Practical Guide to Stochastic Simulations of Reaction-Diffusion

Processes. arXiv 2007, arXiv:0704.1908v2. Available online: https://arxiv.org/abs/0704.1908 (accessed on
23 August 2020).

11. Pero, J.K.; Hass, E.M.; Thompson, N.L. Size Dependence of Protein Diffusion Very Close to Membrane
Surfaces: Measurement by Total Internal Reflection with Fluorescence Correlation Spectroscopy. J. Phys.
Chem. B 2006, 110, 10910–10918. [CrossRef]

12. Davis, K.A.; Abrams, B.; Iyer, S.; Hoffman, R.A.; Bishop, J.E. Determination of CD4 Antigen Density on Cells.
Role of Antibody Valency, Avidity, Clones, and Conjugation. Cytometry 1998, 33, 197–205. [CrossRef]

13. Wang, L.; Gaigalas, A.K.; DeRose, P.C. A Model for the Binding of Fluorescently Labeled Anti-Human CD4
Monoclonal Antibodies to CD4 Receptors on Human Lymphocytes. J. Res. NIST 2018, 123. [CrossRef]

14. Minton, A.P. How can biochemical reactions within cells differ from those in a test tube? J. Cell Sci. 2006, 119,
2863–2869. [CrossRef] [PubMed]

15. Malaspina, D.C.; Longo, G.; Szleifer, I. Behavior of ligand binding assays with crowded surfaces:
Molecular model of antigen capture by antibody-conjugated nanoparticles. PLoS ONE 2017, 12, e0185518.
[CrossRef]

16. Care, B.R.; Soula, H.A. Impact of receptor clustering on ligand binding. BMC Syst. Biol. 2011, 5, 1–13.
[CrossRef]

17. Du, X.; Xia, Y.-L.; Ai, S.-M.; Liang, J.; Sang, P.; Ji, X.-L.; Liu, S.-Q. Insights into Protein-Ligand Interactions:
Mechanisms, Models, and Methods. Int. J. Mol. Sci. 2016, 17, 144. [CrossRef]

18. Dahanayake, J.N.; Mitchell-Kock, K.R. How Does Solvation Layer Mobility Affect Protein Structural
Dynamics? Front. Mol. Biosci. 2018, 5, 65. [CrossRef]

19. Ebbinghaus, S.; Kim, S.J.; Heyden, M.; Yu, X.; Heugen, U.; Gruebele, M.; Leitner, D.M.; Havenith, M.
An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA 2007, 104, 20749–20752.
[CrossRef]

20. Bizzarri, A.R.; Vegh, A.G.; Varo, G.; Cannistraro, S. Interaction Force Fluctuations in Antigen-Antibody
Biorecognition Studies by Atomic Force Spectroscopy. ACS Omega 2019, 4, 3627–3634. [CrossRef]

21. Meyer-Olson, D.; Brady, K.W.; Bartman, M.T.; O’Sullivan, K.M.; Simons, B.C.; Conrad, J.A.; Duncan, S.L.;
Siddique, A.; Draenert, R.; Addo, M.; et al. Fluctuations of functionally distinct CD8+ T-cell clonotypes
demonstrate flexibility of the HIV-specific TCR repertoire. Blood 2006, 107, 2373–2383. [CrossRef]

22. Levine, B.L.; Miskin, J.; Wonnacott, K.; Keir, C. Global Manufacturing of CAR T Cell Therapy. Mol. Ther.
Methods Clin. Dev. 2017, 4, 92–101. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.chemolab.2014.08.002
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104637
https://arxiv.org/abs/0704.1908
http://dx.doi.org/10.1021/jp056990y
http://dx.doi.org/10.1002/(SICI)1097-0320(19981001)33:2&lt;197::AID-CYTO14&gt;3.0.CO;2-P
http://dx.doi.org/10.6028/jres.123.022
http://dx.doi.org/10.1242/jcs.03063
http://www.ncbi.nlm.nih.gov/pubmed/16825427
http://dx.doi.org/10.1371/journal.pone.0185518
http://dx.doi.org/10.1186/1752-0509-5-48
http://dx.doi.org/10.3390/ijms17020144
http://dx.doi.org/10.3389/fmolb.2018.00065
http://dx.doi.org/10.1073/pnas.0709207104
http://dx.doi.org/10.1021/acsomega.8b02993
http://dx.doi.org/10.1182/blood-2005-04-1636
http://dx.doi.org/10.1016/j.omtm.2016.12.006
http://www.ncbi.nlm.nih.gov/pubmed/28344995
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Measurement of CV% of T Cells Labeled with mAb Fluorophore Conjugates 
	Description of the Stochastic Model 
	Characteristics of the Results from the Stochastic Model Calculation 
	Results of Calculations with Different Sets of Model Parameters 
	CV% for Reactions under Constant Conditions 
	CV% due to Fluctuating Number of Receptors on the Surface of the Cells 
	CV% in the Case of Fluctuating Bivalent Binding Affinity and the Number of CD4 Receptors 


	Discussion 
	Materials and Methods 
	Conclusions 
	References

