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Despite advances in critical care medicine, infection remains a significant problem that
continues to be complicated with the challenge of antibiotic resistance.
Immunocompromised patients are highly susceptible to development of severe
infection which often progresses to the life-threatening condition of sepsis. Thus,
immunotherapies aimed at boosting host immune defenses are highly attractive
strategies to ward off infection and protect patients. Recently there has been mounting
evidence that activation of the innate immune system can confer long-term functional
reprogramming whereby innate leukocytes mount more robust responses upon
secondary exposure to a pathogen for more efficient clearance and host protection,
termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have
been shown to trigger the phenomenon of trained immunity through metabolic
reprogramming and epigenetic modifications which drive profound augmentation of
antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as
vaccine adjuvants. This review provides an overview on TLR signaling and our current
understanding of TLR agonists which show promise as immunotherapeutic agents for
combating infection. A brief discussion on our current understanding of underlying
mechanisms is also provided. Although an evolving field, TLR agonists hold strong
therapeutic potential as immunomodulators and merit further investigation for
clinical translation.
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INTRODUCTION

Nosocomial infections, or healthcare associated infections
(HCAI), represent a significant cause of global morbidity and
mortality, and the United States is no exception. Each year,
approximately one out of 25 hospitalized patients in the United
States is diagnosed with at least one infection related to hospital
care (1). Infection leading to sepsis remains one of the leading
causes of death in U.S. hospitals, affecting more than 1.7 million
and causing 270,000 deaths annually. Sepsis is also a major
contributor to re-hospitalizations and is one of the most
expensive conditions treated in U.S. hospitals, costing more
than $2 billion per year (2–4). The overall 30-day mortality
rate for patients in the intensive care unit (ICU) is approximately
20%, and for patients with sepsis and accompanying organ
dysfunction this statistic is 30%–50% (5). Despite advancements
in healthcare overall, this clinical outcome has not improved over
the past 25 years (6).

Critically ill patients are at a significantly increased risk of
infection due to injury- or illness-induced immune dysfunction
and pathogen exposure through invasive life-saving procedures
in the healthcare setting (7). Further complicating the risk of
HCAI is the continuing rise of antibiotic-resistant pathogens.
Infections secondary to resistant pathogens are one of the most
critical threats to modern medicine, and this situation is being
exacerbated by dwindling effective treatment options (8). The
United States has more than 2.8 million antibiotic-resistant
infections annually, resulting in more than 35,000 deaths (1).
Solely focusing on the development of new antibiotics is not a
permanent solution as pathogens will continue to evolve and
become resistant to new drugs (9). Thus, immunomodulatory
therapies that boost host immune responses and protect
immunocompromised patients against infections are a highly
attractive strategy.

One promising approach to restore immune responses relies
on the induction of innate immune memory, also termed trained
immunity. Classically, the role of the innate immune system is to
recognize a pathogen and mount a broad and rapid response
with immunological memory being considered specific to the
adaptive immune system. Recent evidence demonstrates that
innate immune cells also display long-term adaptive
characteristics after initial challenge with pathogens or their
products, which results in enhanced capacity to eliminate
infections upon subsequent challenge (10, 11). Trained
immunity refers to the phenomenon of activating the innate
immune system through exposure to pathogen associated
molecular patterns (PAMPs), triggering long-term functional
reprogramming by which innate leukocytes mount an
enhanced antimicrobial response upon exposure to a
secondary microbial pathogen (12). This protection is broad
whereby the host is resistant to an array of pathogens for weeks
to months once the altered functional state of innate immune
training is initiated. Important to note, the terminology referring
to different adaptive programs of innate immunity has evolved
with the field. Although used somewhat interchangeably in the
literature, a consensus has recently been made to clearly
differentiate between the four different adaptive programs:
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differentiation, priming, tolerance, and training (13). Trained
immunity specifically refers to the phenomenon in which the
activation status of innate cells returns to baseline after primary
stimulation prior to the secondary stimulation. Nevertheless, this
active new field of research is rapidly evolving, an arm of which is
aimed at taking advantage of trained immunity as an innovative
strategy to combat infection (14).

Emerging evidence suggests that Toll-like receptor (TLR)
agonists are a promising class of immunomodulatory agents
that confer long-term protection against subsequent infectious
challenge via enhanced innate immunity (15, 16). TLRs play a
crucial role in activation of innate immune responses by
recognizing PAMPs which then trigger downstream signaling
pathways and ultimately stimulate the production of
proinflammatory cytokines and type I interferons. Several TLR
agonists are recognized widely for their vaccine adjuvant
properties and several are FDA-approved for this use, but their
ability to induce trained immunity is becoming more recognized.
Here, we review recent progress in our understanding of
mechanisms of TLR agonist-mediated trained immunity and
its strong potential for clinical translation to protect patients
against life-threatening infection.
TOLL-LIKE RECEPTOR SIGNALING
PATHWAYS

As the first line of defense against pathogens, the innate immune
system utilizes pattern recognition receptors (PRRs) to rapidly
detect microbes and deploy antimicrobial responses. TLRs are a
well characterized family of PRRs comprised of 10 members in
humans (TLR1-TLR10) and 12 members in mice (TLR1-9,
TLR11-13) that are expressed in innate immune cells (i.e.
dendritic cells, DCs; and macrophages) and non-immune cells
(i.e. fibroblasts and epithelial cells) (17). These receptors are
synthesized in the endoplasmic reticulum (ER), processed in the
Golgi apparatus, and transported to the plasma membrane or
intracellular compartment depending on the localization of the
PAMP they recognize (18, 19). TLRs detect a wide array of
PAMPs, including Gram negative and positive bacteria, viruses,
flagellin proteins, lipids, nucleic acids, and damage-associated
molecular patterns (DAMPs). This is in part accomplished by
receptor localization to the cell surface or intracellular
compartments (20). TLRs which recognize nucleic acids are
localized to intracellular compartments for decreased risk of
contact with “self” nucleic acids whereas cell surface TLRs largely
recognize microbial membrane compartments and therefore do
not require this protective strategy (21).

TLRs are composed of a horseshoe-like leucine-rich repeat
(LRR) ectodomain which interacts with the respective PAMP or
DAMP, a transmembrane helix domain, and a cytoplasmic Toll/
IL-1 receptor (TIR) domain which is involved in activation of
downstream signaling (22, 23). Upon ligand binding, TLRs
homo- or hetero-dimerize which dictates recruitment of
specific TIR containing adaptor proteins for activation of
downstream signaling. TLRs signal either by recruiting the
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adapter molecule myeloid differentiation primary response
differentiation gene 88 (MyD88) or the MyD88-independent
Toll/IL-1R (TIR) domain-containing adapter producing
interferon-b (TRIF) signaling. Initiation of MyD88- or TRIF-
dependent signaling activates mitogen-activated protein kinases
(MAPKs) and IkB kinases (IKKs) that then activate transcription
factors to regulate the expression of pro-inflammatory cytokines
and chemokines as well as type I interferons (Figure 1).
Therefore, these pathways trigger unique antimicrobial
defenses to confer protection against diverse pathogens.
MyD88- and TRIF-dependent signaling cascades are important
to consider in the understanding and application of TLR-
mediated trained immunity.

MyD88-Dependent Signaling Cascades
Upon ligand binding, all TLRs except TLR3 initiate downstream
signaling by recruiting adaptor protein MyD88 either directly
(TLR9, TLR11, TLR13, TLR7/TLR8, and TLR2/TLR10) or
indirectly via the sorting adaptor TIR domain containing
adaptor protein (TIRAP; also termed MyD88-adaptor-like,
MAL; TLR4, TLR5, TLR2/TLR1, and TLR2/TLR6) (18, 24).
TIRAP binds with different lipids depending on TLR
localization which mediates assembly of kinases (IRAK4 and
either IRAK2 or IRAK1) termed the “Myddosome” (17, 25, 26).
Through formation of this oligomeric signaling complex, the
kinase domains of IL-1 receptor-associated kinases (IRAKs) are
phosphorylated. Activated IRAK1 associates with TRAF6 and
the TAK1 protein kinase complex which culminates in activation
of the transcription factors nuclear factor-kB (NF-kB) and
activator protein-1 (AP-1) via IKKs and MAPK, respectively.
Thus, MyD88-dependent TLR signaling results in translocation
of NF-kB and AP-1 to the nucleus for production of pro-
inflammatory mediators, playing a critical role in triggering an
inflammatory response for defense against an invading pathogen.

Beyond its role in stimulating inflammation, MyD88 is a key
regulator of phagocytosis of bacteria by macrophages (27) and DCs
(28) via IRAK4 and p38MAPK (29) which lead to the expression of
scavenger receptors. This pathway also influences phagocytosis via
NADPH oxidase assembly and thus superoxide production for
bacterial killing (30). Upon TLR4 stimulation by lipopolysaccharide
(LPS) in macrophages, it has been found that MyD88 signaling also
activates Src tyrosine kinase via the cytoplasmic protein EGF
receptor pathway substrate number 9 [Eps8 (31)] which causes
actin cytoskeleton rearrangement. Although alternate MyD88-
independent pathways have been identified [actin-Cdc42/Rac
pathway (32); CD14/complement receptor 3 (33)], the MyD88
pathway seems to be the main driver of phagocytosis of Borrelia
burgdorferi (34). It also plays a role in phagocytosis of fungal
pathogens, although this differs depending on the fungal challenge
(35). The role ofMyD88 signaling in innate immunity is highlighted
by high incidence of life-threatening infection in patients with
MyD88 and IRAK4 deficiencies (36, 37).

TRIF-Dependent Signaling Cascades
TLR3 exclusively signals through the TRIF-dependent pathway
through direct interaction, whereas TLR4 uniquely signals
through MyD88 at the cell surface or through TRIF (also referred
Frontiers in Immunology | www.frontiersin.org 3
to as TICAM-1) upon internalization of the receptor complex after
ligand binding (20). Trafficking of TLR4 to the endosomal
compartment is dependent on CD14 (38, 39). After TLR4
endocytosis, the recruitment of the adaptor protein TRAM (also
termed TICAM-2) is coordinated with the release of the TIRAP-
MyD88 complex (19, 40). From the endosomal compartment, TLR3
and TLR4 associate with the TRAM-TRIF complex which interact
with TNF receptor-associated factor 6 (TRAF6) and lead to
activation of NF-kB or AP-1 and downstream production of
inflammatory cytokines. Alternatively, interaction with TRAF3
induces interferon regulatory factors 3 (IRF3) or IRF7 and
downstream production of type I interferons (17, 40). Briefly,
TRAF6 activates the TAK1 complex that subsequently activates
NF-kB and MAPKs via the IKK family member NF-kB essential
modifier (NEMO). On the other hand, TRAF3 recruits TBK1 and
IKKi resulting in phosphorylation of IRF3 or IRF7 which dimerize
and translocate to the nucleus to induce to transcription of IFNs.
Additional intricacies of the TRIF-dependent signaling cascade are
reviewed by Ullah et al. (18). Production of type I IFNs is most often
associated with defense against double-stranded RNA (dsRNA)
viruses; however, they are also important for response to single-
stranded RNA (ssRNA) viruses, DNA viruses, and bacteria (41, 42).
TRIF signaling seems to play a role in activation of the adaptive
immune system via T cell stimulation. Importantly, TRIF signaling
mediates caspase activation, apoptosis, and necroptosis which may
play a role in removing infected cells, thus preventing pathogen
dissemination via cell death (43–45).

Balance Among MyD88- and
TRIF-Dependent-Signaling
Activation of MyD88-dependent and TRIF-dependent signaling
cascades allows for immune functional responses specific to the
pathogen sensed by TLR ligand binding, as discussed above. Thus,
these pathways are subject to several regulatory strategies for the
balanced production of inflammatory cytokines and type I IFNs for
elimination of pathogens but also to control the magnitude of the
response to prevent pathogenic inflammation and autoimmune
disease (46). Such regulatory controls of TLR-mediated
inflammatory responses include cooperation with coreceptors,
post-translational modifications, cellular trafficking, and negative
feedback, which are reviewed in detail by Leifer and Medvedev (47).
Commonly, regulatory molecules (1) interfere with signaling
complex formation via TIR domain-containing molecules, (2)
prevent association of TRAF6 or TRAF3 with their respective
signaling complexes via deubiqutinases (48–50), (3) competitively
inhibit downstream signaling (51), or (4) provide mRNA stability of
signaling molecules regulated by miRNAs (50), or cytokines by
RNA-binding proteins (52).

Interestingly, both MyD88-dependent and TRIF-dependent
pathways are required for maximal antimicrobial responses upon
LPS-activation of TLR4 (53), demonstrating that they work in
concert rather than being redundant. As such, TLR4 signaling is
tightly controlled by localization, internalization upon ligand
binding (thus acting as a temporal regulator), as well as influence
of regulatory molecules. In addition to MAPK and NF-kB
pathway activation upon TLR stimulation, the PI3K pathway is
also activated via B-cell adaptor for PI3K (BCAP) in
February 2021 | Volume 11 | Article 622614
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FIGURE 1 | TLR signaling pathways mediated through MyD88- or TRIF-dependent cascades. Cell surface Toll-like receptors (TLRs) include TLR4 and TLR5 which
form homodimers upon recognition of their classic ligands lipopolysaccharide (LPS) and flagellin, respectively. TLR2 is also localized on the cell surface which
heterodimerizes with TLR1 or TLR6, dependent on ligand recognition with either triacyl or diacyl lipopeptides. TLR recognition of PAMPs on common pathogens are
indicated. These cell surface TLRs signal via the adaptor protein myeloid differentiation primary response protein (MyD88) through MyD88-adapter-like protein (MAL)
also referred to as TIR Domain Containing Adaptor Protein (TIRAP). Intracellular TLRs include TLR9, stimulated by agonist CpG oligodeoxynucleotides (CPG) and the
heterodimer TLR7/TLR8, stimulated by single stranded DNA (ssDNA) which signal through direct interaction with MyD88. Activation of MyD88 signaling induces
phosphorylation of IL-R-associated kinases (IRAKs) dependent on TLR localization which in turn interacts with TNF receptor-associated factor 6 (TRAF6) and
downstream activation of the TAK1 (transforming growth factor b–activated kinase 1)/TAB (TAK1-binding protein) complex. The TAK1/TAB complex activates
mitogen-activated protein kinases (MAPKs) or the IkB kinase (IKK) complex of which NF-kB essential modulator (NEMO) is the regulatory subunit. These signaling
events activate transcription factors activator protein-1 (AP1) and nuclear factor-kB (NFkB), which translocate into the nucleus for transcription of inflammatory
mediators. As a result, pro-inflammatory cytokines and reactive oxygen species drive bacterial killing and limit viral replication as well as stimulate leukocyte
recruitment to clear the infectious pathogen. Alternatively, TLR3 recognizes double stranded DNA (dsDNA) and uniquely signals through the adaptor protein Toll/IL-
1R (TIR) domain-containing adapter producing interferon-b (TRIF) which interacts with TRAF3. TLR4 also activates TRIF through endocytosis, which activates TRIF
signaling via the sorting adaptor protein TRIF-related adaptor molecule (TRAM). Activated TRAF3 signals through IKKi/IRAK1 or IKKi/TBK1 which activate the
transcription factors interferon-regulatory factor (IRF) 7 and IRF3, respectively, which translocate to the nucleus for transcription of type I interferons (IFNs). Type I
interferons act to inhibit viral replication as well as stimulate adaptive immunity. TRIF-dependent TLR4 signaling can also activate TRAF6 via receptor interacting
protein (RIP)-1 for late NFkB signaling. B-cell adaptor for phosphatidylinositol 3-kinase (PI3K) (BCAP) also seems to be an adaptor protein that confers negative
feedback on NFkB-mediated inflammation via PI3K as a regulatory mechanism.
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macrophages (54, 55) and DCs (56). BCAP/PI3K signaling serves
as a negative feedback arm which limits NF-kB induced
inflammation and acts as an endogenous regulatory
mechanism (57). Additionally, the adaptor TRAF3 has been
found to play an inhibitory role on TLR-mediated MAPK
activity through preventing the release of the TAK1 signaling
complex (58, 59), while peroxiredoxin-1 (PRDX1) attenuates
NF-kB activation via attenuation of ubiquitin-ligase activity of
TRAF6 (60). Understanding these endogenous negative feedback
mechanisms will be highly useful while translating TLR-
mediated trained immunity for clinical application to protect
patients against infection with careful attention as to limit
inflammatory responses.
TOLL-LIKE RECEPTOR AGONIST-
MEDIATED TRAINED IMMUNITY AND
PROTECTION AGAINST INFECTION

Innate Immune Cell Types Which Drive
Toll-Like Receptor-Induced Trained
Immunity
TLR agonists have exhibited highly attractive immunomodulatory
properties whereby they induce augmentation of cell recruitment,
antimicrobial effector functions (i.e. phagocytosis, respiratory
burst, production of proinflammatory cytokines and
chemokines), bacterial clearance, attenuate inflammation, and
trigger cross-protection to infection with clinically relevant
pathogens (61). Importantly, trained immunity is not dependent
on T and B lymphocytes as evidenced by preserved protection
against several models of infection in transgenic RAG2 knockout
mice comparative to survival benefit observed in wild type animals
(62, 63).

To date, TLR-mediated innate immune cellular responses
have largely been studied in monocytes, macrophages, and
natural killer (NK) cells which show long-term functional
reprogramming with increased responses to secondary
stimulation by bacterial, parasitic, or viral microbes (12, 62,
64) (Figure 2). As the ‘first responders’ to infection, neutrophils
play a key role in TLR-mediated resistance to infection via
increased recruitment and function (65–67). Similarly,
activation of macrophages by TLR signaling results in
increased antimicrobial effector functions (phagocytic capacity,
respiratory burst, altered production of inflammatory mediators)
(63). Importantly, both neutrophils and macrophages are
required for TLR4-mediated resistance to infection. DCs can
be activated by TLR signaling or secondary to TLR-activation of
NK cells which ‘bridge the gap’ between innate and adaptive
immunity whereby activated and matured DCs migrate to the
lymph nodes and subsequently activate naïve T-cells (15, 68).
Thus, immunomodulation of DCs by TLR signaling may prove
to be an effective vaccine adjuvant strategy (69). Continued
investigation regarding innate immune cell responses to TLR-
mediated trained immunity will help refine therapeutic strategies
to address specific clinical scenarios.
Frontiers in Immunology | www.frontiersin.org 5
Immunomodulation via Targeting Cell
Surface Toll-Like Receptors
Agonists which stimulate cell surface TLRs 2, 4, and 5 have been
widely studied for their potential as immunomodulators and
conferring host resistance to infection. Such studies are discussed
below and are summarized in Table 1.

Toll-Like Receptor 2
TLR2 recognizes lipid-containing PAMPs of Gram positive bacteria
(i.e. lipopeptides, peptidoglycan), as well as viral (i.e. HSV
glycoproteins) and fungal (i.e. zymosan) pathogens, and upon
activation it forms heterodimers with TLR1, TLR6, or other cell
surface molecules such as Dectin-1 and CD36 (86). Both TLR2/
TLR1 and TLR2/TLR6 result in MyD88-dependent signaling via
MAL/TIRAP; however, the TLR2/TLR1 heterodimer is activated by
triacyl lipopeptides whereas the TLR2/TLR6 heterodimer is
stimulated by diacyl lipopeptides (87). Several TLR2 agonists have
shown promising immunomodulatory effects.

First isolated from Mycoplasma fermentans in 1997 (88),
macrophage-activating lipopeptide-2 (MALP-2) has become a
well-studied immunomodulator which activates TLR2/TLR6
heterodimer. When administered 24 h prior to challenge with
Streptococcus pneumoniae, MALP-2 treatment reduced bacterial
load and enhanced leukocyte migration in the lungs (70).
Interestingly, treatment of influenza A virus-infected mice with
MALP-2 prior to challenge with S. pneumoniae enhanced
leukocyte recruitment and reduced bacterial load in the lungs,
and was associated with increased survival and improved body
condition (71). MALP-2 immunomodulation is presumably
driven by its ability to rapidly stimulate neutrophil chemotactic
activity followed by induction of monocyte chemoattractant
protein-1 (MCP-1) activity in the lungs (89). Further, MALP-2
induces production of proinflammatory cytokines (IL-6, TNF-a)
and chemokines (macrophage inflammatory protein-1a and -1b;
MIP) (89, 90). Palma et al. also postulated that the microbicidal
effect which they observed of MALP-2 on Mycobacterium
tuberculosis was mediated by nitric oxide (NO) production (72).

As MALP-2 demonstrates attractive immunomodulatory
potential, several synthetic analogs of the molecule, termed
palmitoylated peptides, have been investigated in the recent
decade. The peptide dipalmitoyl-S-glyceryl cysteine (Pam2Cys)
targets TLR2/TLR1, whereas the peptide tripalmitoyl-S-glyceryl
cysteine (Pam3Cys) stimulates TLR2/TLR6. These peptides and
their derivatives hold strong potential as vaccine adjuvants, with
Pam2Cys seeming to be more ideal due to increased solubility
and potency compared to Pam3Cys (91, 92). A body of evidence
suggests that immunostimulation with Pam2Cys provides
immediate protection against acute infection with influenza
virus but also allows for the development of specific immune
responses for long-term protection (73). Such protection is
mediated via activation of DCs, increased leukocyte
recruitment, and increased production of inflammatory
cytokines (73). Mifsud and colleagues demonstrated that a
derivative of Pam2Cys mediates potent anti-viral activity
against influenza infection but also protects against secondary
infections with S. pneumoniae by reducing bacterial burden and
February 2021 | Volume 11 | Article 622614
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inflammation (93). Although these compounds display promise,
their synthesis is expensive; thus, recently a novel inexpensive
synthesis strategy of an N-acetylated Pam2Cys analog has been
developed, which seems to maintain high potency (94).

The potential application of another TLR2/TLR6 agonist,
GSK3277329, was studied in the context of chemotherapy-
induced neutropenia which demonstrated that repeated
daily injections of the compound for 2 weeks effectively
restored neutrophil loss in monkeys given chemotherapy
treatment (95). This evidence further illustrates the potential
application of TLR agonists in the context of protecting
Frontiers in Immunology | www.frontiersin.org 6
immunocompromised patients from potentially life-threatening
infection by boosting innate immunity.

Toll-Like Receptor 4
TLR4 recognizes lipopolysaccharide (LPS) and uniquely signals
through both MyD88- and TRIF-dependent pathways.
Discovered in 1956 by Landy and Pillemer, mice treated with
LPS were resistant to subsequent challenge with Gram negative
pathogens (74). Following this work, it became evident that LPS
conferred resistance to a broad array of microbes beyond Gram
negative bacteria (75, 96) to include Gram positive
FIGURE 2 | Potential mechanisms by which TLR agonists trigger trained immunity and host resistance to infection. The stimulation of TLR signaling induces
metabolic reprogramming (including alterations in glycolysis, TCA cycle, and oxidative phosphorylation, i.e. OXPHOS) and epigenetic modifications (histone
acetylation, methylation, and lactylation) which rewire innate leukocytes for more robust antimicrobial functions upon a secondary infectious challenge. Adaptations of
innate cell programs thereby allow for more efficient clearance of pathogens and thus protection against a broad array of infections.
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TABLE 1 | Agonists which trigger trained immunity via cell surface TLRs.

TLR Agonist Route of Administration Infectious Model Antimicrobial Response Reference

TLR2 MALP-2 i.t. S. pneumoniae (i.n.) ↑ Leukocyte recruitment Reppe et al. (70)
↓ Bacteremia in lung parenchyma

i.t. prior to S. pneumoniae infection Influenza A (transnasal) + S.
pneumoniae (i.n.) superinfection

↓ Pulmonary bacterial load Reppe et al. (71)

Assay media of BMDMs M. tuberculosis inoculation of
BMDMs

↓ Bacterial growth Palma et al. (72)

↑ Nitric Oxide

Pam2Cys i.n. Influenza A (i.n.) ↑ Neutrophil and macrophage
recruitment

Tan et al. (73)

↑ Pro-inflammatory cytokines

TLR4 LPS i.p. E. coli (i.p.); P. aeruginosa (i.p.) ↑ Bacterial clearance Landy & Pillemer (74)

i.p. P. aeruginosa (i.p.) ↑ Bacterial clearance (systemic and
lungs)

Varma et al. (75)

↓ Pro-inflammatory cytokines (plasma)

i.p. and i.v. S. aureus (i.v.) ↑ Bacterial clearance Murphey et al. (61)
↓ Pro-inflammatory cytokines (plasma)

MPLA i.p. P. aeruginosa (topical inoculation
of burn wound or i.p.)

↑ Bacterial clearance Romero et al. (65)

↑ Leukocyte recruitment

Polymicrobial abdominal sepsis
(CLP surgical model)

↓ Pro-inflammatory cytokines (plasma)

i.p. P. aeruginosa (topical inoculation
of burn wound)

↑ Neutrophil mobilization &
recruitment to site of infection

Bohannon et al. (67)

i.p. P. aeruginosa (i.p.) ↑ Neutrophil & macrophage
recruitment

Fensterheim et al. (76)

↓ Pro-inflammatory cytokines (plasma)

i.v. S. aureus (i.v.) ↑ Bacterial clearance Fensterheim et al. (63)
C. albicans (i.v.) ↓ Pro-inflammatory cytokines (plasma)

↓ Organ injury (kidney)

PHADs i.p. P. aeruginosa (i.p.) ↑ Bacterial clearance Hernandez et al. (77)
↑ Leukocyte recruitment

i.v. S. aureus (i.v.) ↑ Antimicrobial functions
Attenuates systemic and local
inflammation

AGP i.n. Influenza A (i.n.) ↑ Pathogen clearance Baldridge et al. (78)

i.v. L. monocytogenes (i.v.)

i.n. F. tularensis (inhalation) ↑ Cytokine & inflammatory responses Lembo et al. (79)
↑ Bacterial clearance

i.n. Y. pestis (i.n.) ↑ Bacterial clearance (lungs) Airhart et al. (80)

fmOMV i.n. H1N1, PR8, H5N2, H5N1 ↑ Type I IFNs Bae et al. (81)
↑ Macrophage recruitment

FimH i.n. Influenza A (i.n.) ↑ Neutrophil recruitment Abdul-Careem et al. (82)
↓ Organ injury (lung)

Transurethral instillation Uropathogenic E. coli (UPEC) or ↑ Bacterial clearance (bladder) Habibi et al. (83)
P. mirabilis

TLR5 Flagellin i.p. Rotavirus (oral inoculation) ↓ Viral load Zhang et al. (84)
↓ Viral replication

Sublingual S. pneumoniae (i.n.) ↑ Neutrophil recruitment Munoz-Wolf et al. (85)
Frontiers
 in Immunolog
y | www.frontiersin.org
 7
 February 2021 | Vol
i.n., intranasal administration; i.p., intraperitoneal injection; i.t., intrathecal administration; i.v., intravenous injection.
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Staphylococcus aureus (61) and fungal pathogens (97) as well
as polymicrobial sepsis (98). LPS-mediated resistance to
infection is associated with reduced bacterial burden (75, 99),
increased leukocyte recruitment (61, 100), and attenuated
inflammation (101).

Despite several studies demonstrating its potential
therapeut ic benefi t , the appl icat ion of LPS as an
immunomodulator for translation to the clinical scenario was
largely abandoned due to its toxicity (16, 102). More recently,
derivatives of LPS as well as synthetic molecules have
demonstrated potent induction of trained immunity with
significantly reduced toxicity, thus holding strong therapeutic
potential. Notably, monophosphoryl lipid A (MPLA) is
structurally identical to LPS with the exception of the cleaved
C1 phosphate group from lipid A which reduces its toxicity 100-
fold (103, 104). Binding of MPLA by TLR4 induces both MyD88-
and TRIF-dependent signaling, althoughMyD88 signaling seems
to be predominant (105). Similarly to protection conferred by
LPS immunomodulation, administration of MPLA prior to
infectious challenge provides a survival benefit to an array of
pathogens including Gram negative P. aeruginosa, Gram positive
S. aureus, viral influenza, and fungal C. albicans (63, 65, 106).
Importantly, MPLA also protects burn-injured mice from wound
infection with the clinically relevant pathogen P. aeruginosa (67)
and in large animals (sheep (107) demonstrating its capacity to
induce protection in the immunocompromised host. MPLA-
driven survival benefit lasts for at least 10 days following
administration (76). Evidence suggests that B and T cells are
not required for MPLA-mediated protection to S. aureus, neither
were recruited monocytes; conversely, depletion of macrophages
or neutrophils resulted in loss of MPLA-induced survival benefit
(63). MPLA treatment enhances leukocyte recruitment, bacterial
clearance, antimicrobial functions, and attenuates inflammation
which all likely play a role in resistance to infection (65, 67). It is
important to highlight that MPLA similarly enhances human
neutrophil responses characterized by increased chemotaxis and
bacterial killing (108). Additionally, MPLA stimulates the
adaptive immune response whereby it increases antibody titers
up to 20-fold (109) and thus is used as an adjuvant in malaria
(AS01), human papillomavirus (HPV), and hepatitis B (AS04)
vaccines (110, 111).

With their immunostimulatory properties, it is unsurprising
that several synthetic TLR4 agonists have been developed with
the goal of clinical translation. One promising class of synthetic
TLR4 agonists are phosphorylated hexa-acyl disaccharides
(PHADs) which are similar in structure to MPLA as they have
only one phosphate group (16). PHADs similarly bind TLR4 and
activate both MyD88- and TRIF-dependent signaling.
Hernandez and colleagues recently showed that treating mice
with PHADs confers protection to P. aeruginosa and S. aureus,
both of which are of high clinical relevance (77). They found the
survival benefit to be associated with increased bacterial
clearance, an effect which was observed up to 10 days after
treatment. Further, treatment with PHADs increased leukocyte
recruitment and antimicrobial functions while attenuating
systemic and local levels of proinflammatory cytokines (77).
Frontiers in Immunology | www.frontiersin.org 8
Another synthetic lipid A TLR4 agonist, aminoalkyl
glucosamine 4-phosphate (AGP), was first found to possess
immunostimulatory properties two decades ago (112). Initially
studied for their potential as a vaccine adjuvant (80), later studies
demonstrated that AGPs confer protection to an otherwise lethal
influenza challenge as well as to Listeria monocytogenes infection
which were associated with increased bacterial clearance (78).
Intranasal administration of AGP either before or after infection
with the Gram-negative pathogen Francisella tularensis resulted
in increased survival, and interestingly the survivors were
protected against rechallenge with aerosolized Francisella
novicida (113). Likewise, intranasal administration of AGPs
prior to challenge with Yersinia pestis also extended time to
death which was correlated with cytokine production and
decreased bacterial load in the lung (80). Evidence suggests
that TLR4 signaling via activation by AGPs induces NF-kB
and IRF-3 signaling independent of the co-receptor CD14 (114).

Additionally, outer membrane vesicles (OMVs) with low
endotoxicity by modification of lipid A of LPS (fmOMV) may
increase protective benefit of intranasally administered influenza
vaccine (115). Further, fmOMV confers protection against a
lethal dose of pandemic viruses (H1N1, PR8, H5N2, and highly
pathogenic H5N1) which is dependent on macrophages but
independent of neutrophils. Treatment with fmOMV increased
macrophage recruitment and production of type I IFNs without
observance of adverse effects (81).

Beyond lipid A compounds, other natural and synthetic TLR4
ligands have been investigated. Fimbriae H protein (FimH) is the
receptor-recognizing element of the adhesive organelle type 1
fimbriae on uropathogenic E. coli (UPEC) (116). Mice which
receive FimH intranasally are resistant to influenza infection
through increased recruitment of neutrophils and production of
proinflammatory cytokines (TNF-a and IL-12) and chemokines
(RANTES) in a macrophage-independent manner (82). Fusion
of fimH with the MR/P fimbriae protein MrpH from P. mirabilis
(MrpH.FimH fusion protein) conferred higher protection to
UPEC and P. mirabilis, associated with reduced bacterial
burden in the bladder and kidney as well as increased
neutrophil recruitment (83).

Two classes of synthetic small molecule agonists have been
studied with modest therapeutic potential. Neoseptin-3 is a more
potent TLR4 agonist than LPS despite being structurally unique
(117, 118). Neoseptin-3-activation of TLR4 signaling results in
MyD88- and TRIF-dependent signaling and downstream
activation of NF-kB and IFN-b but not IFN-a (118). Evidence
suggests that Neoseptin-3 may hold strong vaccine adjuvant
properties whereby mice immunized by ovalbumin (OVA)
together with the compound had increased OVA-specific IgG
production 21 days later when compared to immunized vehicle
controls mice. However, these compounds failed to induce TLR4
signaling in human THP-1 monocytes, thus calling into question
their therapeutic potential (118).

Toll-Like Receptor 5
TLR5 recognizes bacterial flagellin (119) and signals through
MyD88, culminating in the production of inflammatory
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mediators. Studies have shown that bacterial flagellin is indeed
an immunomodulatory agent. Mucosal administration of
flagellin conferred resistance to S. pneumoniae lung infection
whereby flagellin treatment increased bacterial clearance which
was associated with increased neutrophil mobilization
independent of B- and T-cells (120). More recently, this
research group showed that sublingual administration of
flagellin also effectively protects against pneumonia (85).
Demonstrating cross-protection, treatment with bacterial
flagellin was able to prevent infection with or cure ongoing
infection of rotavirus in mice independent of adaptive
immunity (84).

Bacterial flagellin also restores antibiotic-impaired innate
immunity (121) and improves efficacy of antibiotics in the
treatment of influenza virus or pneumonia (122). Thus,
bacterial flagellin may be highly useful in prevention of
infection in immunocompetent and immunocompromised
individuals, as well as a strategy to combat antibiotic resistant
microbes and boost efficacy of current antibiotic drugs.

Immunomodulation via Targeting
Intracellular Toll-Like Receptors
Numerous TLR agonists which activate intracellular TLRs have
also been widely studied for their potential application as
immunomodulators that trigger trained immunity, which are
summarized in Table 2.

Toll-Like Receptor 3
TLR3 is localized to the intracellular compartment and
recognizes viral dsRNA, including that produced during
replication of ssRNA viruses or self-RNAs released from
damaged cells (86, 143). Stimulation of TLR3 results in direct
interaction with TRIF for downstream activation of IRF3 and
modest activation of NF-kB (144). TLR3/TRIF activation
culminates in production of type I IFNs and inflammatory
cytokines for killing of invading viruses and has also been
found to be important in cross-priming CD8+ T cell responses
in a virus-specific manner (21, 145). As TLR3 signaling is
MyD88-independent, the safety and immunostimulatory
properties of TLR3-specific agonists is unique among other
TLR immunomodulators (146).

The TLR3-activating synthetic dsRNA molecule poly-
inosinic:poly-cytidylic acid (poly I:C) was first discovered to
confer protection against subsequent viral challenge in 1969
(147). More recently, it was found that intraperitoneal
administration of poly I:C 3 days prior to challenge with E. coli
K1 meningitis in neutropenic mice resulted in increased
recruitment of NK cells, production of RANTES and IFN-g,
and decreased bacterial burden (126). Pre-treatment with poly I:
C resulted in survival benefit of neutropenic but not
immunocompetent mice. In another model of infection, poly I:
C conferred anti-viral properties (148) which lead to
neuroprotection in a mouse model of HSV-1 encephalitis
(124). In a unique oyster model, poly I:C injection protected
the organism against subsequent environmental infection by
mitigating viral replication which persisted for at least 5
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months (148). It is suggested that the length of the dsRNA
dictates distinct antimicrobial functions dependent on cell type
which should be considered during study design and data
interpretation (149). It has been posed that the difference in
TLR3-mediated protection against viral infection compared to
bacterial infection may be due to the production of type I IFNs
which impairs bacterial clearance (15). Indeed, intranasal
administration of poly I:C prior to challenge with S.
pneumoniae and methicillin-resistant S. aureus increased
susceptibility to infection (150).

Since its creation 5 decades ago, analogs of poly I:C have been
rapidly developed in effort to reduce toxicity (146). The
substitution of a uridylic acid at a molar ratio of 12:1 in the
synthesis of the poly C strand results in poly I:C12U which is more
rapidly metabolized in vivo (151). Pre-treatment with poly I:C12U
protects against subsequent viral challenge more effectively than
poly I:C (123). Interestingly, a protective benefit has also been
observed when the molecule was administered 2 days after viral
myocarditis infection (152). In a clinical trial in which poly I:C12U
was administered to HIV-infected patients, immune function was
restored or stabilized (153); however, clinical investigation did not
progress past phase II clinical trials (154). Poly I:C12U also holds
promise as a vaccine adjuvant as it increases efficacy of intranasal
H5N1 immunization (155) and intradermal HSV-2
immunization, which conferred resistance to subsequent
otherwise lethal HSV-2 infect ious challenge (156).
Demonstrating its safety, this compound has been developed as
a therapy for chronic fatigue syndrome (157, 158) that is
approved in Argentina and has been approved for early access
program in the European Union and Turkey, although it does not
currently have FDA approval in the United States (Rintatolimod,
tradename Ampligen).

Two other chemically stabilized analogs of poly I:C have
demonstrated promising immunostimulatory properties. The
first being poly IC : LC (termed Hiltonol) which has been
shown to protect rhesus monkeys from several viruses
including yellow fever, Rift Valley fever, and rabies (159, 160)
and has conferred protection against highly viral strains of H4N1
and influenza in mice (161, 162). Importantly, it was found in
2017 that intranasal administration of poly IC : LC 24 h prior to
or 8 h after an otherwise lethal challenge with SARS-CoV
conferred survival benefit as well as reduced lung hemorrhage
scores and lung viral titers in mice (125). Additionally, this
molecule has been investigated for its potential in boosting
immunity of HIV-infected patients which induced transient
innate immune responses, suggesting application as a vaccine
adjuvant may be appropriate (163). This line of investigation is
being pursued whereby administration of poly IC : LC alongside
an antigen stimulates a ‘live virus vaccine equivalent’ effect
whereby antigen-presenting cells (APCs) are activated, T
lymphocyte response is elicited, memory T and B cells are
generated, and Teff/Treg ratios are increased (164). Keyhole
limpet hemocyanin (KHL) or HPV vaccines elicited
significantly elevated antibody responses and Th1 immune
responses when administered with poly IC : LC in rhesus
Macaques (165).
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TABLE 2 | Agonists which trigger trained immunity via intracellular TLRs.

TLR Agonist Route of Administration Infectious Model Antimicrobial Response Reference

TLR3 Poly I:C &
derivatives

i.p. Punta Toro virus (s.c.) ↓ Organ injury (liver) Gowen et al. (123)

i.p. HSV-1 (i.n.) Boivin et al. (124)

i.n. Mouse-adapted SARS-CoV (i.n.) ↓ Organ injury (lungs) Kumaki et al. (125)
↓ Viral load (lungs)

i.p. E. coli (intracranial) ↓ Viral load (systemic, cerebellum,
and spleen)

Ribes et al. (126)

↑ NK cell recruitment*
↑ INF-g (brain and spleen)*
*In neutropenic but not
immunocompetent hosts

CRL1505 Oral Respiratory syncytial virus (RSV; i.n.) ↓ Viral load Chiba et al. (127)
Attenuation of Th2 reactions

i.n. Respiratory syncytial virus (RSV; i.n.) ↓ Viral load Tomosada et al. (128)
↓ Viral replication
↓ Organ injury (lungs)

i.n. Influenza A (i.n.) ↓ Viral load Zelaya et al. (129)
↓ Organ injury (lungs)
↑ Lymphocytes and DCs (lungs)

i.n. Primary RSV (i.n.) + secondary S. pneumoniae (i.n.) ↑ Alveolar macrophages and T cells
(lungs)

Clua et al. (130)

TLR7 1V270
(TMX201)

i.n. B. anthracis, Venezuelan equine encephalitis virus,
H1N1 virus (i.n.)

↑ Local, but not systemic,
inflammation

Wu et al. (131)

Imiquimod i.p. Polymicrobial sepsis (fecal-induced peritonitis) ↑ Neutrrophil recruitment Wynn et al. (66)
↑ Antimicrobial responses
(phagocytosis)

i.n. Influenza A (i.n.) ↓ Viral replication To et al. (132)
↓ Local inflammation
↓ Organ injury (lungs)

T7-EA i.p. Hepatitis B (i.v.) ↑ HBsAg-specific IgG2a titer & T-
cell response

Hu et al. (133)

CL097 i.p. Hepatitis B transgenic mice ↑ HBsAg-specific T-cells (spleen) Wang et al. (134)

GS-9620 Oral Hepatitis B chronically infected patients ↑ T-cell and NK cell responses Boni et al. (135)

TLR9 CpG i.p. L. major (oral) Shifts Th2 towards Th1 response Zimmerman et al.
(136)

Intradermal L. amazonensis (intradermal) ↓ Lesion size Verthelyi et al. (137)
↓ Parasite load

Mucosal (genital tract) HSV-2 (intravaginal) ↓ Viral load (vaginal fluids) Harandi et al. (138)
T-cell dependent

i.t. K. pneumoniae (i.t.) ↑ Bacterial clearance (systemic &
lungs)

Deng et al. (139)

↑ Neutrophils and lymphocyte
recruitment

i.p. L. monocytogenes (i.p.) ↑ CD4 & CD8 T cells Ito et al. (140)

i.n. New World arenavirus Tacaribe (neurotropic virus: i.n.,
i.p., or intracranial)

↑ Ag-specific antibodies (IgG & IgM) Pedras-Vasconelos
et al. (141)

i.p. MRSA (i.v.) ↑ Bacterial clearance Kim et al. (142)
↓ Organ injury (lung, kidney, spleen)
↑ Lymphocyte recruitment
↑ Bacterial-reactive antibodies
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The second poly I:C stabilized analog is PIKA which has been
shown to protect mice against an array of influenza viruses along
with decreased viral burden in the lungs and increased
recruitment of macrophages, neutrophils, and plasmacytoid
DCs (166). However, application of PIKA has mostly focused
on its potential as a vaccine adjuvant for H5N1 (167–169),
Hepatitis B (HBsAg) (170), and rabies (171), the latter of
which underwent phase II clinical trials with moderate
success (172).

Beyond the poly I:C class of TLR3-stimulating molecules, oral
administration of purified L. rhamnosus CRL1505 peptidoglycan
confers resistance to RSV infection associated with decreased
viral loads in the lungs and augmented cytokine responses (127).
Protection against RSV and subsequent secondary infection to
pneumococcal pneumonia was found to be dependent on TLR3
(128, 130) and macrophages (173). In an immunocompromised-
malnourished model, it was found that immunostimulatory
properties of CRL1505 peptidoglycan extended beyond
augmentation of innate immunity. Administration of CRL1505
enhanced the Th2 response and recovery of B cells after S.
pneumoniae infection (174). The investigators also found that
intranasal administration of CRL1505 prior to challenge with
influenza virus was associated with reduced pulmonary injury
and viral loads in the lungs via regulation of pro-inflammatory
cytokines and increased levels of type I IFNs (129).

Together, TLR3 agonists hold strong promise, especially in
protection against viral infections and for vaccine adjuvant
strategies. However, careful attention needs to be paid as to the
potential propagation of bacterial infections by TLR3-induced
production of type I IFNs.

Toll-Like Receptor 7
The endosomally located TLR7 recognizes ssRNA and often
plays a role in responding to viral infections through MyD88-
dependent signaling. The small molecule 1V270 (also designated
TMX201) is a TLR7 ligand conjugated with a phospholipid that
has been shown to protect mice from an otherwise lethal
infection with Bacillus anthracis , Venezuelan equine
encephalitis virus, and H1N1 influenza virus (131). 1V270-
mediated protection was associated with increased cytokines
and chemokines in bronchial alveolar lavage fluids but not
in circulation.

The Imidazoquinoline compound Imiquimod is a low
molecular weight compound which selectively activates TLR7.
Imiquimod is an FDA approved immune response modifier for
the topical treatment of genital warts caused by HPV (175).
Imiquimod has also been found to be protective against influenza
A infection in mice which was associated with reduced viral
replication, airway inflammation, proinflammatory cytokine
production, and preservation of body weight (132). Neonates
were also protected against polymicrobial sepsis when infection
was initiated 24 h after treatment (66). It is also important to note
that imiquimod may be an effective vaccine adjuvant strategy for
influenza (176).

Additionally, several TLR7 agonists have been shown to
improve immunity of hepatitis B-infected hosts and are
implicated as potential HBV vaccine adjuvants. When
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administered together with an alum adjuvant and recombinant
hepatitis B surface antigen (HBsAg) protein, the novel TLR7
agonist T7-EA induced HBsAg-specific antibody and restored T-
cell responses in a murine model (133). Similar improvement of
HBsAg-specific T-cell function was observed by immunizing
HBV-transgenic mice with a TLR7/TLR8 agonist (CL097)-
conjugated HBV protein (134). In a prospective clinical study,
it was found that oral administration of the TLR agonist GS-9620
increased T-cell responses to HBV peptides demonstrated by
increased cytokine production; however, it failed to reduce serum
HBsAg levels (135).

Toll-Like Receptor 9
TLR9 is expressed in DCs, monocytes, macrophages, and B cells
and recognizes bacterial and viral DNA. Upon ligand binding, it
signals through MyD88 directly; however, it is important to note
that signaling depends on intracellular localization as a
mechanism to fine-tune the immune response. In resting cells,
TLR9 is localized to the ER (177). Recently described in detail by
Marongiu et al., trafficking of TLR9 is controlled by the
multimembrane protein unc-93 homolog B1 (UNCB1) which
is required for the receptor to leave the ER and traffic to the Golgi
(178). After delivery to the plasma membrane, the adaptor
protein AP-2 is recruited to mediate internalization of the
receptor in a clathrin-dependent mechanism (179). In parallel
to internalization of TLR9, the ligand must also be endocytosed.
TLRs are then localized to early endosomal compartments and
the pathway bifurcates to either IRF7 signaling endosomes or
NF-kB signaling endosomes (180), which are determined by AP-
3 (181). Thus, the localization of TLR9, presence of co-receptors
and co-factors, as well as trafficking of the ligand itself all
influence downstream signaling and determine whether pro-
inflammatory cytokines or type I IFNs are produced. Such
intricate control also prevents recognition of self-DNA to
prevent autoimmune dysfunction.

CpG oligodeoxynucleotides (CpG ODNs) are synthetic
molecules which mimic bacterial DNA and stimulate TLR9.
Pre-treatment with CpG has been found to protect mice from
Leishmania major infection by shifting immune responses from
Th2 towards Th1 (136). CpG conferred survival benefit to
Leishmania major and F. tularensis for up to 2 weeks
independent of the route of infection (182). Intrathecal
administration of CpG 48 h prior to Klebsiella pneumoniae
infection resulted in increased survival, associated with reduced
bacterial burden in the lungs and circulation, increased
recruitment of neutrophils, NK cells, gd-T cells, and
augmented inflammatory response (139). Interestingly,
treatment of methicillin-resistant S. aureus (MRSA)-infected
mice with CpG improved survival (142). Beyond protection
against bacterial microbes, CpG conferred survival benefit to
viral challenge by HSV-2 which was associated with decreased
viral replication (138) via augmentation of the innate immunity
(183). CpG has also conferred protection of neonate mice
challenged with Listeria infection (140) as well as neurotropic
Tacaribe Arenavirus which was associated with decreased viral
load, increased antigen-specific antibodies, and NO production
viaNO synthase expression (141). CpG-mediated protection was
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preserved in T cell-depleted immunocompromised mice (182).
HIV-infected macaques treated with CpG prior to challenge with
Leishmania exhibited decreased lesion size and parasite load
(137). The two latter studies clearly demonstrate the clinical
potential of CpG to protect immunocompromised populations
against opportunistic infections.

In 2017, the FDA approved the use of CpG 1018 as a vaccine
adjuvant in a hepatitis B vaccine (Heplisav-B) which has
increased efficacy of the vaccine, thus reducing the prior three-
dose strategy to a two-dose strategy (184). CpG 1018 increases
antibody concentrations, stimulates helper (CD4+) and cytotoxic
(CD8+) T cells, boosts T and B cell memory responses, and shifts
T cells towards a Th1 response. Researchers have found that the
2-dose HBV vaccine strategy with CpG as the adjuvant
compared to the 3-dose strategy with aluminum hydroxide was
more effective in patients aged 60–70 years old with type 2
diabetes mellitus (185), a population which typically
demonstrates reduced immunogenicity compared to younger
and/or non-diabetic populations. Thus, CpG may be a
beneficial agent to boost immune responses in vulnerable
patient populations.

Other Pathogen Associated Molecular
Patterns Which Trigger Trained Immunity
in a Toll-Like Receptor-Associated
Mechanism
Bacillus Calmette-Guerin Vaccine
The Bacillus Calmette–Guerin (BCG) tuberculosis vaccine is the
most used vaccine globally which has been demonstrated to
confer T cell-independent cross-protection against fungal
infection with C. ablicans or with the parasite Schistosomiasis
mansoni (186, 187). After adjusting for age and other vaccines,
the BCG vaccine is associated with a significantly lower mortality
ratio among infants in Ginea-Bissau (188). In animal studies,
BCG-mediated non-specific protection lasts for at least 3 months
and is independent of T and B cells (189) and there is evidence
that protection may last up to a year (190). Although the
immunization effect of the BCG vaccine against M. tuberculosis
requires adaptive immunity, namely T cell activation, the initial
response to BCG is through the innate immunity whereby TLR2
and TLR4 and downstream MyD88-dependent signaling are
activated (191). The resulting activation of the NF-kB pathway
serves as the link between the innate and adaptive response.
Therefore, the BCG vaccine does activate the innate immune
response and may be responsible for driving broad protection.

b-Glucan
Fungal b-glucans are a promising class of molecules which
trigger trained immunity, although the immunostimulatory
properties differ depending on the strain from which they were
isolated (192). These naturally derived molecules have been
found to confer protection against a model of E. coli peritonitis
(193), S. aureus (194), influenza (195), and MRSA (196) and
were associated with increased leukocyte recruitment and
antimicrobial functions. Treatment of burn-injured mice with
glucan phosphate prior to wound infection with P. aeruginosa
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improved survival, attenuated cytokine production, and
decreased bacterial load at the burn wound (197).

b-glucans bind their specific PRR dectin-1 which results in
downstream inflammasome activation. However, b-glucan-
mediated production of inflammatory cytokines and reactive
oxygen species (ROS) is dependent on the cooperation between
dectin-1 and TLR2 (198). Further, TNF-a production in
response to zymosan or live fungi is dependent on MyD88
(199). Thus, b-glucan-mediated trained immunity is dependent
on the synergism of dectin-1 and TLR2.

CL429
One research group is investigating the potential immunostimulant
properties of CL429, which is a novel chimeric compound that was
designed to stimulate both TLR2 and NOD2 by covalently linking
the NOD2 ligand Murabutide with the TLR2 ligand Pam2C (200).
Initially studied as a vaccine adjuvant, they went on to find that
CL429 confers protection against pneumovirus (PVM) infection
associated with attenuated inflammation (201) and against
leptospiral infection for up to 3 months via increased
proinflammatory cytokine and chemokine production (202).

CpG-Oligodeoxynucleotide : AG-OVA Nanoparticles
Similar in approach as the CL429 molecule, the TLR9-activating
ligand CpG ODN was crosslinked with the dectin-1/TLR2
stimulating agonist b-glucan-Ovalbumin resulting in CpG-
OND : AG-OVA dual-targeting nanoparticles as a vaccine
adjuvant strategy (203). Investigators found that the
nanoparticles enhanced APC maturation and induced robust
Th1 and Th2 responses similar to that triggered by Freund’s
adjuvant but without the toxicity. Although this novel
compound demonstrates promise as a vaccine adjuvant, it
would also be of interest to investigate whether it confers
broad protection to infection which may be more profound
than that mediated by CpG or b-glucan alone, both of which are
strong immunomodulators.

Cross-Protection Between Infections
As the BCG vaccine seemingly mediates cross-protection against
pathogens besides tuberculosis, evidence suggests that some
infections also confer cross-protection which is, at least in part,
due to trained immunity (10). For example, administration of an
attenuated strain of C. albicans conferred host resistance to
subsequent challenge with the Gram-positive bacteria S.
aureus; this phenomenon was found to be independent of T
cells but was dependent on macrophages (204). Interestingly,
several observations have suggested that viral infections may
trigger a similar cross-protection benefit. Barton et al.
demonstrated that latent herpesvirus was associated with
protection against bacterial L. monocytogenes and against
bacterial L. monocytogenes and Y. pestis which was similarly
dependent on macrophages (205). This observation was
confirmed by others who elucidated that herpesvirus-induced
protection against bacterial infection is transient (approximately
5 months) despite stable viral load (206). NK cells are also key
mediators of cross-protection whereby they expand during the
initial infection and are primed to undergo a second expansion as
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well as produce more cytokines upon a secondary infection
(207). More recently, a Singapore study of military recruits
within a 5-year period showed that men infected with
influenza were protected against subsequent infection with
adenovirus (79). It should be noted, however, that cross-
protection between infections is generally considered to be
dependent on both non-specific reprogramming of innate
immunity as well as activation of memory T cells.

Toll-Like Receptor Antagonists as
Potential Immunomodulatory Strategies
for Treatment of Chronic Infectious
Diseases
It is clear that TLR agonists hold strong therapeutic potential to
mediate host resistance to subsequent infection; however, this is
only one of many potential therapeutic applications of TLR
immunomodulators. As TLR signaling cascades culminate in
robust inflammation, TLR antagonists are under development for
the treatment of chronic infectious and inflammatory diseases
(208). To date, these compounds are generally designed to bind
the TLR, thus preventing the binding of agonists responsible for
driving inflammation (209–211). The TLR4 antagonist Eritoran
(E5564) reached Phase III clinical trials for the treatment of sepsis.
This synthetic lipid A analogue which prevents LPS from activating
TLR4, hypothetically preventing propagation of systemic
inflammatory response syndrome (SIRS) characteristic of sepsis.
Preclinical and early clinical studies with the compound showed
promising anti-inflammatory results in response to LPS (212–214),
however the study failed to meet its target end-point in phase III
(215). Similarly, another TLR4 antagonist designated Resatorvid
(TAK-242) was also studied in the treatment of sepsis and reached
Phase III of the clinical trials, however it failed to attenuate
inflammation in septic patients (216).

Recently, the antimalarial drugs chloroquine and
hydroxychloroquine have been under investigation for
treatment of COVID-19 with the hypothesis that these drugs
will prevent glycosylation of the angiotensin-converting-enzyme
2 (ACE2) as well as inhibit endosomal TLR activation (217, 218).
Initial in vitro studies showed potent antiviral activity (219).
Randomized trials have not shown improved clinical outcomes
in the hydroxychloroquine-treated COVID patients (218, 220,
221). In another study, the Bruton tyrosine kinase (BTK)
inhibitor acalabrutinib was administered to COVID patients
for 10–14 days which seemed to improve patient outcomes as
indicated by oxygenation (222).

Although clinical trials using TLR antagonists in the
treatment of severe infection have been unsuccessful to date,
critical information has been gained from these investigations
which provide a strong foundation for future studies.
Importantly, this class of compounds is also being widely
studied for treatment of chronic inflammatory conditions such
as rheumatoid arthritis and autoimmune disorders. One key
finding of the clinical trials studying the TLR4 antagonists
Eritoran and Resatorvid was that the compounds were well-
tolerated (215). Continued drug discovery efforts via high
throughput screening and alternative approaches such as
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targeting the transcriptional regulation of TLRs to suppress
their expression rather than direct inhibition of the receptor
may move the field forward (223). These efforts will be also be
supported by continued elucidation of TLR signaling
mechanisms and immune responses.
METABOLIC AND EPIGENETIC
REPROGRAMMING AS THE BASIS
FOR TOLL-LIKE RECEPTOR AGONIST-
INDUCED TRAINED IMMUNITY

Upon inflammatory stimulation, innate leukocytes undergo
metabolic reprogramming that is characterized by augmentation
of glycolysis and mitochondrial oxidative phosphorylation to meet
the increased energy demands for combating an infection (14, 224).
Previous investigations aimed at deciphering the molecular
mechanisms of trained immunity-mediated protection against
infections have predominantly used the fungal ligand b-glucan
(225, 226). Reviewed in detail by Netea and colleagues, metabolic
reprogramming and epigenetic modifications are the key
mechanisms of b-glucan-induced trained immunity (226). It has
been shown that Akt/mTOR/HIF-1a signaling is critical in b-
glucan induced augmentation of glycolysis in monocytes (225).
As opposed to the breadth of mechanistic understanding of trained
immunity induced by b-glucan, the molecular mechanisms
underlying TLR ligand-induced training of leukocytes are an
evolving field. Our studies show that treatment with the TLR4
ligand MPLA not only increases glycolysis but also augments
mitochondrial oxidative phosphorylation and mitochondrial
biogenesis in concert with increased antimicrobial functions of
macrophages (63). Further, stimulation of macrophages with the
classic TLR4 ligand LPS reprograms mitochondrial metabolism
leading to increased accumulation of tricarboxylic citric acid
(TCA) cycle metabolites that play an important role in TLR
agonist-mediated trained immunity (227, 228).

The finding that a variety of TLR ligands have the ability to
mediate protection against infection from a broad array of
organisms which activate distinct TLRs, including Gram-
positive and Gram-negative bacteria, fungi, and viruses,
demonstrates that TLR activation has the ability to offer
cross-protection against diverse pathogens. Both MyD88 and
TRIF activation have been implicated in facilitating signaling-
driven metabolic and epigenetic alterations induced by TLR
ligands (229), but little is understood about the roles of these
signaling pathways in initiating trained immunity. This raises
the question as to whether activation of trained immunity by
TLR ligands is mediated through common signaling pathways.
Future studies providing insight into these common pathways
would pave the way for the discovery of a multitude of potential
TLR ligand-based therapeutics to improve resistance to
infection. The following sections will provide a succinct
overview of leukocyte metabolic reprogramming and
epigenetic modifications as the basis for TLR ligand induced
trained immunity (Figure 2).
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Toll-Like Receptor Ligand-Induced
Metabolic Reprogramming of Innate
Leukocytes
Stimulation of macrophages with LPS increases glucose uptake
and glycolytic capacity mediated via stabilization and
upregulation of hypoxia-inducible factor 1- a (HIF-1a) (230–
232). Increased glycolytic capacity serves to rapidly generate ATP
and provide essential precursors for synthesis of amino acids,
lipids, and nucleotides that are necessary for optimal effector
activities and cell viability under stress conditions (233). Our
studies have shown that deletion of HIF-1a or inhibition of
mammalian target of rapamycin (mTOR; known to stabilize
HIF-1a) attenuates MPLA-induced increased glycolysis,
abolishing the protective effect of MPLA against infection
(63, 76).

Along with augmented glycolysis, reprogramming of
mitochondrial metabolism plays a key role in modulating the
inflammatory response of innate leukocytes. LPS-induced
activation of macrophages introduces ‘breaks’ in the TCA cycle at
the levels of isocitrate dehydrogenase and succinate dehydrogenase
(SDH), leading to increased accumulation of citrate and succinate
(234). Studies from our laboratory also show that MPLA treatment
cause an early reduction in TCA cycle flux between citrate and a-
ketoglutarate leading to increased accumulation of citrate (63).
Citrate is diverted towards generation of itaconate via increased
immunoresponsive gene 1 (Irg1) enzyme expression (235).
Itaconate is being widely investigated for its direct antimicrobial
and anti-inflammatory effects. The direct antimicrobial effect of
itaconate is mediated via inhibition of the microbial enzyme
isocitrate lyase (236). Itaconate has been shown to inhibit the
growth of numerous pathogens including M. tuberculosis, S.
aureus, Legionella pneumoniae, Acinetobacter baumanii, and
Salmonella enterica (235, 237, 238). Itaconate can be transported
into the phagosome, where it limits microbial growth (239),
implying a role for phagolysosomes as a critical site for itaconate’s
antimicrobial effects. The synthetic itaconate analog, 4-octyl-
itaconate (4OI) exerts anti-inflammatory effects and potently
activates the NF-E2-related factor 2 (Nrf2) pathway (240) which
regulates the expression of cytoprotective proteins and plays a
critical role in redox homeostasis (241). A study by Swain et al.
shows that endogenous itaconic acid fails to activate Nrf2 as
compared to 4OI, and that synthetic itaconate analogs do not
recapitulate the effects of endogenous itaconic acid (242).
However, endogenous itaconic acid is anti-inflammatory and
reduces IL-1b production similar to 4OI (240, 242). In contrast to
these findings, treatment with b-glucan does not induce significant
levels of Irg1 and itaconate in human monocytes, and pretreatment
with 4OI diminishes b-glucan induced trained phenotype (243).
However, it is important to note that b-glucan focused studies relied
on measuring cytokine responses alone as a key for demonstrating
the lack of effect of itaconate on b-glucan-induced trained immunity
although cytokine responses to an inflammatory stimuli may not
correlate with actual protective response (76).

Beyond the role of citrate in serving as a precursor for
itaconate, our studies using MPLA-stimulated macrophages
have shown that citrate transported into the cytosol replenishes
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mitochondrial oxaloacetate pools and fuels a sustained increase
in mitochondrial TCA cycle flux (63). Upon TLR4 stimulation of
macrophages, inhibition of SDH activity by itaconate and
increased TCA cycle flux also results in succinate accumulation
(231, 244). Increased succinate levels and inhibition of SDH
activity stabilize HIF-1a and increase mitochondrial ROS
generation which lead to an enhanced inflammatory response
(231, 244). Mitochondrial ROS aid in microbial clearance (245);
however, this phenomenon requires further investigation.
Importantly, MPLA-induced increase in TCA cycle flux is
associated with enhanced macrophage antimicrobial effects and
protection against infections (63). Therefore, metabolic
reprogramming plays a critical role in TLR ligand induced
trained immunity-mediated protection against infections.

Role of Epigenetic Modifications in Toll-
Like Receptor Ligand-Induced Trained
Immunity
Exposure to inflammatory stimulus or pathogens also causes
epigenetic reprogramming in innate leukocytes reflected by
alterations in the histone acetylation and methylation status
(246). The major histone modifications including acetylation
(H3K27ac) and methylation (H3K4me3) in monocytes exposed
to b-glucan persist even 7 days after removal of the initial
stimulus and are strongly associated with metabolic
reprogramming (225). A study by Saeed et al. showed that LPS
and b-glucan induce diverse and opposing alterations in the
epigenome with b-glucan showing a greater degree of de novo
H3K27ac modifications in gene loci encoding for inflammatory
responses (247). Alternatively, LPS stimulation of human
monocytes acutely induces a strong acetylation of H3K27
around Irg1 gene locus within 1 h of stimulation which is
associated with increased expression of Irg1 (243).

Metabolic reprogramming and epigenetic modifications are
tightly interconnected. Fumarate accumulates in monocytes
stimulated with b-glucan via glutamine anaplerosis. Increased
fumarate levels have been shown to downregulate the activity of
histone demethylase KDM5 (248). In turn, decreased KDM5
activity upregulates trimethylation of H3K4 at promoters of
genes encoding pro-inflammatory cytokines (248). a-
ketoglutarate stimulates the jumonji domain containing family
of the lysine demethylase enzyme JMJD33. Further, a high a-
ketoglutarate/succinate ratio favors anti-inflammatory
phenotype in macrophages (249).

The post-translational modification of succinylation arising from
the addition of succinate to the protein lysine residues supports a
pro-inflammatory state in macrophages (231). Succinylation is
known to occur on histone lysine residues in human cells (250).
However, the role of histone succinylation in the context of trained
immunity is currently unknown and remains an important question
to be addressed in future studies. A study by Zhang et al. showed
that lactate can also bind to histone lysine residues (lactylation) and
demonstrated 28 distinct histone lactylation sites (251). This study
showed that LPS-induced increase in macrophage lactate levels via
increased glycolysis sets in motion a lactylation epigenetic program
which directs the expression of genes involved in alternative anti-
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inflammatory activation state in macrophages (251). The influence
of accumulated metabolites during trained immunity is just
beginning to be explored and needs further characterization.

The traditional school of thought is that treatment with TLR
ligands such as LPS induces a state of immune tolerance, while
leukocytes exposed of b-glucan produce a heightened response to
secondary stimulation (trained phenotype) classically reflected
by cytokine production (252). However, as discussed, treatment
with clinically applicable TLR agonists protect against a broad
array of infections, implying that TLR ligands also induce robust
trained immunity. One potential explanation for this
discrepancy in the literature regarding whether TLR ligands
induce a state of tolerance or training may be due to the
reliance on cytokine production upon exposure to a secondary
stimuli which has more recently been shown to not be uniformly
indicative of antimicrobial immunity (76). Future studies aimed
at detailed characterization of TLR agonist-induced epigenetic
reprogramming and defining its link with metabolic
reprogramming will be critical in elucidating the mechanisms
of TLR agonist-induced trained immunity.
TOLL-LIKE RECEPTOR AGONIST-
INDUCED TRAINED IMMUNITY: A
CLINICAL PERSPECTIVE

Potential Adverse Consequences of
Immunostimulation by Toll-Like Receptor
Agonists
It is important to thoroughly consider that activation of the immune
system may have deleterious consequences and requires careful
study to identify the clinical situations in which TLR-mediated
immunomodulation are most appropriate. Sepsis and septic shock
yield a proinflammatory response that results in organ injury;
however, survivors demonstrate an immunosuppressive
phenotype that results in secondary infections and increased
mortality (253, 254). Likewise, a potentially harmful outcome of
TLR agonist treatment is tolerance to subsequent exposure of
endotoxin, particularly in the setting of prolonged LPS exposure
or treatment, a phenomena also termed as immunoparalysis (255,
256). Aberrant activation of TLR signaling by PAMPs or DAMPs,
mutations of TLR signaling molecules, or failure of self-recognition
mechanisms are responsible for development of several diseases
such as autoimmune, chronic inflammatory, and allergic diseases
(257). In the field of oncology research, adverse effects from TLR
immunotherapy have been linked to unintended expansion of
adaptive leukocytes, such in B-cell lymphoma, where activation of
TLR4 MyD88-dependent signaling may exacerbate the disease
(258–260). Other adverse effects of treatment with TLR agonists
have been described in cardiovascular medicine research where
treatment with oxidized low-density lipoprotein and the BCG
vaccine yield a dose-dependent response of proinflammatory
cytokines. These mediators damage human coronary smooth
muscle cells and increase atherosclerosis which was found to be
TLR2- and TLR4-dependent (261).
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Therapeutic Potential of Toll-Like
Receptor Ligands Beyond Infection
Resistance
Although there are some potential adverse effects of TLR
immunotherapy which require consideration, there are several
patient populations which may benefit from novel TLR agonist
strategies. The oncology patient population presents a challenge due
to immunosuppression. Most cancer-associated antigens are self-
antigens and require immunostimulant adjuvants in addition to
cancer-targeting strategies (262). In an H22 liver cancer murine
model, administration of curdlan sulfate-matured tumor cell lysate-
pulsed DCs was associated with an increase in CD80, MHC-1 and
MHC-II expression, CD8+T cell infiltration, upregulated TNF-a
and INF-g transcription, and downregulation of TGF-b
transcription in tumor tissues, and improved survival (263). In a
separate study, the use of the TLR3 agonist Ampligen, a GMP-grade
synthetic poly I:C derivative, was shown to mature human
monocytes derived from DCs and sustained bioactive IL-12
production, and generate Th1 specific anti-cancer responses in
peripheral blood T-cells obtained from cancer patients (262). In a
study by Breckpot et al., the zinc finger protein A20 was
downregulated in poly I:C treated DCs which led to sustained
production of IL-6, IL-10, and IL-12p70, thus making poly I:C a
candidate adjuvant for an anti-cancer immunotherapy (264).
Likewise, intratumor administration of the TLR7 agonist 1V270
increased the ratio of M1 toM2 tumor-associated macrophages and
was associated with improved survival (265). In addition to anti-
cancer immunotherapy, TLR agonists have shown promise in
reduction of ischemia reperfusion injury in cardiac myocytes
(266, 267). Further, TLR therapy has also been studied in
progressive diseases such as Alzheimer’s disease, where single or
repeated treatment has been shown to reduce evidence of disease
progression (268, 269).

Aside from innate immune cells, non-immune cells are
capable of long-term memory, including hematopoietic,
mesenchymal, and epithelial stem cells (270). There is an
increasing body of evidence on how the microbiome influences
immunity and how probiotic therapy modulates innate
immunity (271). Interestingly, trained immunity may be a
mechanism of the beneficial effects of probiotics. Probiotics
have been found to augment innate immune function via
receptor antagonism or expression, binding or expression of
adaptor molecules, expression of regulatory signaling molecules,
induction of micro-RNAs, and secretion of immunomodulatory
proteins, lipids, and metabolites (271).

Trained immunity may even play a role in combating the
ongoing COVID-19 pandemic. As one of the sequelae of
COVID-19 infections include secondary respiratory infections, the
BCG vaccine or b-glucan may be adjunct strategies to reduce
morbidity and mortality by enhancing immunity (272, 273).
Imiquimod, a TLR7 agonist, has also been proposed as a
therapeutic adjunct for COVID-19 and related infections (274). In
summary, there is a growing body of evidence focusing on trained
immunity as a mechanism to enhance immunity against a broad
array of infections which are common in critically ill patients, but
also for several other patient populations as discussed above. Such
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application requires further investigation to elucidate the full
potential of TLR agonist-based immunotherapies (Table 3).

Clinical Trials Investigating Toll-Like
Receptor Immunomodulators
Ongoing clinical trials investigating the adjuvant properties of TLR
agonists constitute approximately double of those studying them as
therapeutics (275), demonstrating that the immunomodulatory
properties of these compounds are largely being harnessed for
vaccine development. The application of trained immunity for
vaccine development is highly attractive due to its potential to (1)
increase nonspecific effector responses of innate immune cells, and
(2) to activate DCs to enhance adaptive T cell responses to specific
and nonrelated antigens (276). For example, a novel synthetic small
molecule TLR7/8 agonist 3M-052 is now in a phase I clinical trial
studying the safety and immunogenicity of the HIV-1 BG505
SOSIP.664 gp140 vaccine candidate (NCT04177355). Other TLR
agonists currently in clinical trials as vaccine adjuvant strategies for
HIV-1 include TLR3 agonist Poly ICLC (NCT02071095) and TLR9
agonists MGN1703 (NCT02443935) and CpG-7909
(NCT00562939). TLR7 compounds are under investigation as
vaccine adjuvant strategies for hepatitis B as well, including
Vesatolimod (GS-9620; NCT02166047) and R07020531
(NCT02956850). The TLR9 compound SD-101 is being studied
as an adjuvant for chronic hepatitis C (NCT00823862).

On the other hand, the TLR9 agonist Lefitolimod in
combination with neutralizing antibodies is in phase II trials
studying its effectiveness in conferring reservoir reduction in HIV
infection (NCT03837756) after phase I demonstrated its safety and
effectiveness in improving both innate and adaptive immunity in
HIV-1 infected patients (277). The TLR7 compound Imiquimod
has completed phase II trials for its efficacy in treating human
papillomavirus (HPV) when applied topically (NCT00941811).

In addition to the above listed clinical trials regarding
investigation of TLR agonists as vaccine adjuvant strategies or
drugs to fight infection, numerous TLR ligands are being
investigated as immunomodulators to treat chronic inflammatory
Frontiers in Immunology | www.frontiersin.org 16
diseases, cancer, and autoimmune disorders, which can be found
listed in Anwar et al. (275).

Current Challenges to the Clinical
Translation of Toll-Like Receptor
Immunomodulators
Although there are several potential clinical applications of TLR
immunomodulators as stand-alone therapies which are
supported by a growing body of strong preclinical evidence,
several knowledge gaps hinder progress of clinical translation.
Much remains to be elucidated regarding duration of protection
mediated by TLR agonists, and whether protection could be
continued by repeated treatment once protection wanes. Further,
the most effective but feasible route of administration is essential
to identify, with oral and intranasal administrations likely most
practical. Dosing and efficacy for various patient populations is
also essential to understand, such as whether aged patients or
those with comorbidities respond similarly to healthy young
patients. In this regard, one limiting factor remains the use of
healthy young animals for the vast majority of preclinical studies
which does not recapitulate the clinical situation and therefore
limits the amount of information that could be gained prior to
starting clinical trials.

Another limiting factor is the striking lack of reporting of clinical
trial data; therefore, scientists do not have all of the tools that
otherwise could refine ongoing and future studies. Finally, as TLR
agonists initiate inflammatory cytokine pathways, one glaring
concern remains the potential of these compounds to trigger
inflammatory or autoimmune disease. Thus, it is critical to
continue elucidating TLR signaling mechanisms to identify
potential therapeutic targets which may circumvent this concern
in addition to conducting proper dosing studies aimed at avoiding
induction of inflammation. Rapid scientific progress has been made
since the discovery of the phenomenon of trained immunity and its
potential therapeutic application. As the field drives forward to fill in
these knowledge gaps, the goal of clinical translation of TLRs as
immunomodulators holds strong promise to be realized.
TABLE 3 | Clinical application of TLR immunomodulators.

Application of TLR
Immunomodulator

Examples Mechanism Potential Therapeutic Outcome Potential Adverse
Consequences

Resistance to
infection

TLR2 agonist Pam2Cys, TLR4 agonists MPLA &
PHAD, TLR3 agonist poly I:C, TLR9 agonist CpG

Increased leukocyte
recruitment and antimicrobial
functions

Improved survival; reduced risk of
nosocomial infections; reduced
reliance on antibiotics

Chronic
inflammation;
autoimmune
disease

Vaccine adjuvant TLR4 agonist MPLA as an approved adjuvant in
malaria (AS01), human papillomavirus (HPV), and
hepatitis B (AS04) vaccines

Immune stimulation for
increased antibody titers

Improved efficacy of vaccines and
reduced dosing strategies

Discomfort at
injection site;
transient malaise

Cancer
immunotherapy

TLR3 agonist poly I:C & derivatives; TLR7 agonist
1V270

T-cell activation and DC
maturation

Antitumor immunity Dose-limiting side
effects (fatigue,
malaise, fever)

Chronic infections &
inflammatory
diseases

TLR4 antagonist Eritoran to treat sepsis; TLR9
agonist Lefitolimod for reduction of HIV-1 viral
reservoir

Antagonize TLR to prevent
activation and downstream
inflammation

Reduced inflammation and
associated organ injury

Immune tolerance
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CONCLUDING REMARKS

Unfortunately highlighted during the ongoing SARS-CoV-2
pandemic, immunocompromised patients are highly susceptible to
life-threatening infections. Beyond the current healthcare crisis,
populations with insufficient immune responses fail to clear
pathogens which results in opportunistic infections that are often
difficult to combat due to the increasing prevalence of antibiotic
resistance. With limited pharmacological tools, it is critical to develop
new strategies aimed at combating infection. Here we have reviewed
the potential application of TLR agonists as immunotherapies which
trigger trained immunity and confer broad protection to microbes.
Importantly, since immunomodulation targets the host response
rather than the pathogen, development of microbial resistance is
unlikely. TLR agonists have also shown promise as adjuvants for
cancer-targeting immunotherapies. Moreover, our lab and others
have demonstrated that such agonists may be highly useful as stand-
alone therapies to protect against infection through boosting
antimicrobial responses of innate leukocytes.

With their instrumental role in stimulating innate immunity and
in activation of inflammatory responses, TLRs are tightly controlled
by localization to the cell surface or endosomal compartment as well
as complex downstream signaling pathways via MyD88- or TRIF-
dependent cascades. Althoughmuch remains to be elucidated, TLR-
mediated trained immunity seems driven by metabolic
reprogramming and epigenetic modifications. It is critical to
Frontiers in Immunology | www.frontiersin.org 17
further elucidate the cell types, signaling pathways, and
intracellular mechanisms responsible for conferring the beneficial
protective effects of TLR agonists via trained immunity. Doing so
will aid the translation of TLR-based immunotherapies to protect
patients from potentially life-threatening infections.
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ACE2 Angiotensin-converting-enzyme 2
AGP Aminoalkyl glucosamine 4-phosphate
AP-1 Activator protein-1
APC Antigen-presenting cell
BCAP B-cell adaptor for PI3K
BCG vaccine Bacillus Calmette-Guerin tuberculosis vaccine
BTK Bruton’s tyrosine kinase
CDC Centers for Disease Control and Prevention
CpG ODN Cytosine-phosphate-guanine dinucleotides oligodeoxynucleotides
CLP Cecal ligation and puncture
DAMP Damage-associated molecular pattern
DCs Dendritic cells
dsRNA Double-stranded RNA
DUBA Deubiquitinating Enzyme A
EGF Epidermal growth factor
ER Endoplasmic reticulum
FDA U.S. Food and Drug Administration
FimH Fimbriae H protein
fmOMV Low endotoxicity outer membrane vesicles
H1N1 Influenza A subtype
H5N1 Influenza A subtype
avian flu bird flu
H5N2 Influenza A subtype
avian flu bird flu
HBV Hepatitis B virus
HBsAg Hepatitis B surface antigen
HCAI Healthcare associated infections
HIV Human immunodeficiency virus
HPV Human papillomavirus
HSV Herpes simplex virus
ICU Intensive care unit
Ig Immunoglobulin
IKK IkB kinase
IKKi IKK inducible gene
IRAK Interleukin-1 receptor-associated kinases
IRF Interferon regulatory factor
KHL Keyhole limpet hemocyanin
LPS Lipopolysaccharide
LRR Leucine-rich repeat
MAL MyD88-adaptor-like
MALP Macrophage-activating lipopeptide
MAPK Mitogen-activated protein kinase
MCP Monocyte chemoattractant protein
miRNA Micro RNA
MPLA Monophosphoryl lipid A
mRNA Messenger RNA
MrpH MR/P fimbriae protein
MRSA Methicillin-resistant S. aureus
MyD88 Myeloid differentiation 88
NADPH Nicotinamide adenine dinucleotide phosphate
NEMO NF-kB essential modifier
NF-kB Nuclear factor-kb
NK cells Natural killer cells
NO Nitric oxide
NOD Nucleotide oligomerization domain
OMV Outer membrane vesicles
OVA Ovalbumin
Pam2Cys Peptide dipalmitoyl-S-glyceryl cysteine
Pam3Cys Peptide tripalmitoyl-S-glyceryl cysteine
PAMP Pathogen-associated molecular pattern
PHAD Phosphorylated hexa-acyl disaccharides
PI3K Phosphatidylinositol 3-kinase
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Poly I:C Polyinosinic:polycytidylic acid
PR8 Mouse-adapted H1N1
PRDX Peroxiredoxin
PRR Pattern recognition receptor
PVM Pneumovirus
RAG Recombination-activating gene
RANTES Regulated upon activation, normal T cell expressed and secreted
RIP Receptor-interacting protein
RSV Respiratory syncytial virus
SDH Succinate dehydrogenase
ssRNA Single-stranded RNA
TAK Transforming growth factor b–activated kinase 1
TANK TRAF-associated NFkB activator
TBK TANK-binding kinase
TCA cycle Tricarboxylic citric acid cycle
Teff Effector T cell
Th T helper cell
THP Tamm-Horsfall protein
TICAM TIR domain-containing adaptor molecule
TIR Toll/interleukin receptor
TIRAP TIR domain-containing adaptor protein
TLR Toll-like receptor
TMX201 Small molecule 1V270
TNF Tumor necrosis factor
TRAF TNF receptor-associated factor
TRAM TRIF-related adaptor molecule
Treg Regulatory T cell
TRIF TIR-domain-containing adapter-inducing interferon-B
UNCB1 Unc-93 homolog B1
UPEC Uropathogenic E. coli
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