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post-traumatic and age-related osteoarthritis
Mukundan Attur1*†, Xin Duan2†, Lei Cai2, Tianzhen Han1,3, Weili Zhang2, Eric D. Tycksen4, Jonathan Samuels1,
Robert H. Brophy2, Steven B. Abramson1 and Muhammad Farooq Rai2,5*

Abstract

Background: Elevated levels of periostin (Postn) in the cartilage and bone are associated with osteoarthritis (OA).
However, it remains unknown whether Postn loss-of-function can delay or prevent the development of OA. In this
study, we sought to better understand the role of Postn in OA development and assessed the functional impact of
Postn deficiency on post-traumatic and age-related OA in mice.

Methods: The effects of Postn deficiency were studied in two murine experimental OA models using Postn−/− (n =
32) and littermate wild-type (wt) mice (n = 36). Post-traumatic OA was induced by destabilization of the medial
meniscus (DMM) in 10-week-old mice (n = 20); age-related OA was analyzed in 24-month-old mice (n = 13).
Cartilage degeneration was assessed histologically using the OARSI scoring system, and synovitis was evaluated by
measuring the synovial lining cell layer and the cells density in the synovial stroma. Bone changes were measured
by μCT analysis. Serum levels of Postn were determined by ELISA. Expression of Postn and collagenase-3 (MMP-13)
was measured by immunostaining. RNA-seq was performed on chondrocytes isolated from 21-day old Postn−/−

(n = 3) and wt mice (n = 3) to discover genes and pathways altered by Postn knockout.

Results: Postn−/− mice exhibited significantly reduced cartilage degeneration and OARSI score relative to wt mice in
post-traumatic OA after 8 weeks (maximum: 2.37 ± 0.74 vs. 4.00 ± 1.20, P = 0.011; summed: 9.31 ± 2.52 vs. 21.44 ±
6.01, P = 0.0002) and spontaneous OA (maximum: 1.93 ± 0.45 vs. 3.58 ± 1.16, P = 0.014; summed: 6.14 ± 1.57 vs.
11.50 ± 3.02, P = 0.003). Synovitis was significantly lower in Postn−/− mice than wt only in the DMM model (1.88 ±
1.01 vs. 3.17 ± 0.63; P = 0.039). Postn−/− mice also showed lower trabecular bone parameters such as BV/TV, vBMD,
Tb.Th, and Tb.N and high Tb. Sp in both models. Postn−/− mice had negligible levels of serum Postn compared with
wt. Immunofluorescent studies of cartilage indicated that Postn−/− mice expressed lower MMP-13 levels than wt
mice. RNA-seq revealed that cell-cell-adhesion and cell-differentiation processes were enriched in Postn−/− mice,
while those related to cell-cycle and DNA-repair were enriched in wt mice.
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Conclusions: Postn deficiency protects against DMM-induced post-traumatic and age-related spontaneous OA.
RNA-seq findings warrant further investigations to better understand the mechanistic role of Postn and its potential
as a therapeutic target in OA.
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Introduction
Osteoarthritis (OA) is a clinical syndrome that affects
more than 50 million people in the USA, with $185 bil-
lion in annual socioeconomic costs [1, 2]. Currently,
there are no proven treatments to delay, let alone pre-
vent, the progression of OA. Thus, a treatment that
slows or halts disease progression before end-stage joint
failure and arthroplasty is sorely needed. OA is recog-
nized as a whole joint disease that affects all tissues
(bone, cartilage, synovium, meniscus, and ligaments) [3,
4], although cartilage degeneration is considered the
hallmark of end-stage disease [5]. Despite advances in
preclinical studies, the pathways controlling early cartil-
age degeneration and new bone formation in OA remain
unknown. Therefore, a critical issue in OA treatment is
discovering early OA mediators, particularly elucidating
the underlying intracellular signal transduction path-
ways, which affects multiple tissues in the joints.
Emerging evidence indicates periostin (Postn) is up-

regulated in patients with OA [6–9] and has been identi-
fied as a gene of interest in articular cartilage [10–12].
Postn is a vitamin K-dependent and glutamate-
containing matricellular protein [13]. Postn, a member
of the fasciclin family of proteins, was originally called
osteoblast-specific factor 2 [14]. First identified in mur-
ine osteoblasts, it is also found in the periosteum [15].
Postn plays key roles in health and disease across various
disciplines such as osteology and oncology [16–20]. It
also plays a role in the repair mechanism of many con-
nective tissues and organs such as the periodontal tissue,
heart, and lungs [15, 16, 20–23]. Postn is considered im-
portant for its role in maintaining tissue integrity. In the
bone, Postn is predominantly expressed in the perios-
teum and considered a key extracellular matrix (ECM)
protein needed in health and healing. For instance, loss
of Postn influences the propensity to fatigue fractures in
mice [24], and Postn-deficient periosteum cannot recon-
stitute stem cells after injury [25]. Despite this evidence
for the importance of Postn, it also has an adverse role
in various inflammatory settings [26–28].
We have shown that expression of Postn is induced

following joint trauma such as destabilization of the
medial meniscus (DMM) or anterior cruciate ligament
transection/partial medial meniscectomy and leads to
development and progression of OA [12, 22]. Recently,
our data confirmed that the Postn expression increases

significantly in mouse and human cartilage and osteo-
phytes during OA progression. Immune-localization
studies further revealed that Postn was present in the
cartilage ECM [10, 12, 22]. Emerging evidence supports
the involvement of Postn in Wnt signaling activation
and MMP-13 expression. Postn-induced MMP-13 ex-
pression was also inhibited by CCT031374 hydrobro-
mide, an inhibitor of the canonical Wnt/β-catenin
signaling pathway [12]. These findings suggest a cata-
bolic role for Postn in promoting cartilage degeneration
in OA by upregulating MMP-13 in response to injury.
In the present study, we hypothesize that genetic Postn

loss-of-function in mice would protect against cartilage
degeneration, synovitis, and bone changes secondary to
aging and knee injury. To test this hypothesis, we
assessed cartilage degeneration, synovial pathology, and
bone morphometric parameters in two animal models.
One consisting of 24-month-old mice with spontaneous
OA and one with surgically induced OA model in 10-
week-old mice. Postn knockout mice were compared to
wild-type (wt) in both cohorts. We also performed
RNA-seq on chondrocytes isolated from both Postn−/−

and wt mice in a pursuit to identify genes and pathways
altered following Postn knockout.

Methods
Animals
In this study, we used homozygous mutant Postntm1Jmol/J
(Postn−/−; Stock No. 009067) mice on a B6129SF2/J (wt;
Stock No. 101045) background. Postn−/− and wt mice
were obtained from The Jackson Laboratories (Bar Har-
bor, ME). Post-traumatic OA studies were performed at
Washington University (St. Louis, MO), and aging stud-
ies were conducted at New York University Grossman
School of Medicine (New York, NY). Postn−/− mice were
obtained by crossing heterozygous mice, and littermate
mice from the same breeding were used for all experi-
ments. All mice were kept and bred at the study institu-
tions and genotyped by polymerase chain reaction (PCR)
using tail deoxyribonucleic acid separated on 1.5% agar-
ose gel using standard methods. Mice were housed in in-
dividually ventilated cages, with each cage having no
more than five mice at a time in a hygienic barrier facil-
ity operating at 21–22 °C. Food and water were available
ad libitum, and animals were maintained in a 12-h light,
12-h dark cycle. We used only male mice given sex
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differences in the DMM model [29]. The number of
mice in each experimental group and each genotype are
indicated in figure legends and summarized in Table 1.

Detection of Postn protein in the murine serum
Postn deficiency in Postn−/− mice was detected by solid-
phase enzyme-linked immunosorbent assay (ELISA).
Briefly, mice euthanized by carbon dioxide asphyxiation
were exsanguinated by cardiac puncture using mini-
collect serum separator tubes (Greiner Bio-One, Mon-
roe, NC). The blood was allowed to clot at room
temperature for 30 min and retract at 4 °C for 4 h. The
clotted blood was centrifuged at 2500 rpm at 4 °C for 10
min. The serum was collected, centrifuged, and stored at
− 20 °C until used. Postn concentration in serum was
measured using a mouse periostin/OSF-2 Quantikine
ELISA kit according to the manufacturer’s instructions
(MOSF20, R&D Systems Inc., Minneapolis, MN). In
brief, 50 μl assay diluent was added to each well of a 96-
well strip plate followed by an equal volume of standard,
control, and sample in individual wells. The plate was
incubated at room temperature on a horizontal orbital
microplate shaker. After 2 h of incubation, the contents
were removed, and each well was washed five times with
the supplied wash buffer. Subsequently, 100 μl conjugate
was added to each well followed by 2-h incubation at
room temperature with constant shaking. Then, follow-
ing washing as above, the plate was incubated with
100 μl substrate solution in each well for 30 min. Finally,
the reaction was terminated with the addition of 100 μl
of stop solution and the plate was read at 450 nm within
30min.

Induction of post-traumatic OA
To determine the role of Postn loss-of-function in post-
traumatic OA, we performed the DMM surgery on 10-
week-old male Postn−/− or wt mice as described [30].
In short, mice were anesthetized with 2.5% isoflurane in
4 L/min oxygen. After aseptic preparation of the right

hind limb, the joint capsule immediately medial to the
patellar tendon was cut open, and the anterior attach-
ment of the medial meniscotibial ligament was severed
with sterilized microsurgical tools. This step resulted in
the destabilization of the medial meniscus. Afterward,
the joint capsule was closed with 6–0 absorbable poly-
propylene sutures (Ethicon, Blue Ash, OH), and the skin
was closed by Vetclose skin glue (Henry Schein, Melville,
NY). However, we used the contralateral left hind limb as
non-operated control to avoid the effect of surgery. In
compliance with guidelines, sustained-release buprenor-
phine (1.0 mg/kg) was administered once as an analgesic
before surgery. No other pain-relieving medication was
given to the mice. All mice were weight-bearing following
recovery from the general anesthesia and resumed previ-
ous cage activity, water consumption, and food intake.
Mice were euthanized 8 weeks after surgery by carbon
dioxide inhalation. Hind limbs were separated, skinned,
and subjected to histological and micro-computed tom-
ography (μCT) analyses.

Age associated spontaneous OA
For aging studies, 24-month-old wt and Postn−/− mice
were sacrificed using carbon dioxide asphyxiation; the
hind limbs were separated, skinned, and prepared for
histological and μCT analyses.

Histological assessment of cartilage degeneration and OA
The knee joints were fixed in 10% neutral-buffered for-
malin for 48 h and decalcified using 12% formic acid,
then embedded in paraffin using standard methods.
Twelve coronal sections, each with 5 μm thickness, were
taken from each joint at eight levels separated by 80 μm
intervals. From each level, three sections were stained
with Safranin O [31]. In each genotype, the same num-
ber and depth of sections were evaluated. The semi-
quantitative Osteoarthritis Research Society Inter-
national (OARSI) scoring system (scale: 0–6) was used
to assess cartilage damage [32]. Cartilage damage was
measured and scored in all four tibiofemoral compart-
ments of the knee (lateral and medial femoral condyles
and lateral and medial tibial plateaus) at all sectioned
levels. The maximum OARSI score representing the
highest score within all sectioned levels of the knee was
recorded. Summed OARSI score was calculated by add-
ing the total scores of four consecutive levels of each
knee. Two independent scorers blinded to genotype and
procedure scored the sections with a high inter-rater
reliability.

Histological assessment of synovitis
Safranin O-stained sections were graded for synovitis in
the medial compartment for two parameters using a
method developed by Lewis and colleagues [33].

Table 1 Distribution of mice for each experiment

Genotype Age Experiment n

Postn−/− 10 weeks DMM 10

24 months Aging 7

24 months Serum 6

21 days RNA-seq 3

21 days Real-time PCR 6

wt 10 weeks DMM 10

24 months Aging 6

24 months Serum 11

21 days RNA-seq 3

21 days Real-time PCR 6
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Enlargement of the synovial lining cell layer is measured
on a scale of 0–3, separately from the cells’ density in
the synovial stroma on a scale of 0–3. Synovitis scores
obtained for both of these parameters were averaged
separately, and the sum of averages from both parame-
ters used for analysis on a scale of 0–6.

Immunostaining for Postn and MMP-13
Histological sections were deparaffinized using xylene and
then rehydrated in a graded series of ethyl alcohol. En-
dogenous peroxidase activity quenched by incubating slides
with 3% (v/v) hydrogen peroxide in phosphate-buffered sa-
line (PBS). After 15min of incubation, proteinase K (10 μg/
mL, Abcam, Cambridge, MA) was added to the sections for
20min at 37 °C to retrieve the antigen. Following washing
with PBS and blocking with 10% normal goat serum
(NGS), slides were allowed to react overnight at 4 °C with
the following primary antibodies diluted in 2% NGS: anti-
periostin (1:100, Sigma-Aldrich, St. Louis, MO), MMP-13
(1:200, Abcam), and in-house collagen type II (Col 2, 1:
200). The next day, following the washing step, slides were
incubated with the corresponding HRP- (for Postn), Alexa
488-(MMP-13), or Alexa 594-(for Col 2) conjugated sec-
ondary antibody in 2% NGS for one-hour room
temperature. Then, slides (MMP-13 and Col 2) underwent
counterstaining with Fluoro-Gel II with 4′,6-diamidino-2-
phenylindole (DAPI, Electron Microscopy Sciences, Hat-
field, PA) for MMP-13 and Col 2. For immunohistochemi-
cal staining of Postn, HRP stained slides were developed
with 3,3’-Diaminobenzidine (DAB Chromogen Kit; Vector
Laboratories Inc., Burlingame, CA) for 10 min at room
temperature. All images were visualized using a NanoZoo-
mer (Hamamatsu Corp., Bridgewater, NJ) or Confocal
Laser Scanning Microscope (Leica, Biosystems, Buffalo
Grove, IL). MMP-13 expression levels were quantified by
measuring the staining intensity of 20–40 cells in each
stained section using LAS X software (Leica Biosystems).

μCT analysis of the trabecular bone
After fixation but before decalcification, the knees undergo-
ing DMM were scanned using a vivaCT 40 in vivo μCT
scanner (Scanco Medical Inc., Southeastern, PA) with the
following setting: voxel size = 21 μm, energy = 45 kV, inten-
sity = 177 μA, and integration time = 300ms [34]. To
analyze bone changes, the femoral epiphysis was chosen as
the region of interest. The region of interest was identified
between the cartilage and the growth plate. The outline of
the epiphysis was carefully selected without the inclusion of
outgrowing osteophyte(s). Knees from 24-month-old mice
were scanned using a 10 MP digital detector using the fol-
lowing parameters: 10W of energy (50 kV and 200mA),
pixel size = 9.7 μm, exposure = 1025ms/frame, rotation step
0.3 degrees with × 10 frames averaging, 0.5mm Aluminum
filter, and scan rotation = 180o. After scanning, the

radiographs were reconstructed using NRecon software ver.
1.7.3.0 (Bruker μCT, Kontich, Belgium). Reconstruction
was done with NRecon using GPU acceleration. Gaussian
smoothing was applied with a 2-voxel radius, ring artifact,
and beam hardening corrections were applied in recon-
struction. Ring artifact reduction set to 7 pixels. Beam hard-
ening correction was set to 40%. Following trabecular bone
morphometric parameters defined by the American Society
for Bone and Mineral Research were analyzed [35]: bone
volume fraction (BV/TV), volumetric bone mineral density
(vBMD), trabecular thickness (Tb.Th), trabecular number
(Tb.N), and trabecular spacing (Tb.Sp).

RNA-Seq analysis, gene ontology annotation, and
transcript expression validation
We performed bulk RNA-seq on articular chondrocytes
isolated from Postn−/− and wt mice to determine the base-
line transcript-level differences between the two genotypes.

Chondrocyte isolation and culture
Primary chondrocytes were isolated from femoral head car-
tilage of 21-day-old Postn−/− (n = 3) and wt (n = 3) mice as
described previously [36]. The cells were seeded in 24-well
plates, supplied with 10% fetal bovine serum (FBS; Thermo
Fisher Scientific, Waltham, MA) in high glucose Dulbecco’s
modified Eagle’s medium (DMEM; Thermo Fisher Scien-
tific) supplemented with 1% penicillin and streptomycin
(10,000 U/mL and 10,000 ug/mL respectively;, Thermo
Fisher Scientific) and incubated at 37 °C in a humidified in-
cubator with 5% CO2. After 2 days of culture, cells were
washed 3× with PBS before RNA extraction.

RNA extraction
Total RNA was extracted from 1.0 × 105 cells using a
column-based RNeasy Mini kit (Qiagen, Valencia, CA). Total
RNA quality and concentrations were measured using Agi-
lent Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA).
RNA samples with a RIN (RNA integrity number) score > 9.0
were used for RNA-seq analysis and real-time PCR.

Library preparation, sequencing, and gene ontology
analysis
Library preparation was performed with 10 ng of total
RNA. Double-stranded cDNA was prepared using Clon-
tech SMARTer Ultra Low RNA kit (Takara Bio Inc.,
Mountain View, CA). cDNA was fragmented with an
E220 sonicator (Covaris Inc., Woburn, MA) using these
settings: peak incident power = 18, duty factor = 20%,
and cycles per burst = 50 for 120 s. cDNA was blunt-
ended, had an A base added to the 3′ ends, and had Illu-
mina sequencing adapters ligated to the ends. Ligated
fragments were amplified for 12–15 cycles using primers
incorporating unique dual index tags. Fragments were
sequenced on an Illumina HiSeq 3000 (Illumina, San
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Diego, CA) using single-end reads extending 50 bases.
Base calls and demultiplexing performed with Illumina’s
bcl2fastq software, and a custom python demultiplexing
program with a maximum of one mismatch in the
indexing read. RNA-seq reads were aligned to the
Ensembl release 76 top-level assemblies with STAR ver-
sion 2.0.4b [37]. Gene counts were derived from the
number of uniquely aligned unambiguous reads by Sub-
read:featureCount version 1.4.5 [38]. Sequencing per-
formance was assessed for the total number of aligned
reads, the total number of uniquely aligned reads, and
features detected. The ribosomal fraction, known junc-
tion saturation, and read distribution over known gene
models were quantified with RSeQC version 2.3 [39].
All gene counts imported into the R/Bioconductor

package EdgeR [40], and TMM normalization size fac-
tors were calculated to adjust for samples for differences
in library size. Ribosomal genes and genes not expressed
in the smallest group size minus one sample greater than
one count-per-million excluded from further analysis.
The TMM size factors and the matrix of counts were
then imported into the R/Bioconductor package Limma
[41]. Weighted likelihoods based on the observed mean-
variance relationship of every gene and sample were
then calculated for all samples with the voomWithQuali-
tyWeights [42] function with additional unknown latent
effects as determined by surrogate variable analysis [43].
All genes performance assessed with plots of the residual
standard deviation of every gene to their average log-
count with a robustly fitted trend line of the residuals.
Differential expression analysis was performed to analyze
for differences between conditions, and the results were
filtered for only those genes with Benjamini-Hochberg
false-discovery rate (FDR) adjusted P ≤ 0.05.
For each contrast extracted with Limma, global pertur-

bations in known Gene Ontology (GO) terms detected
using the R/Bioconductor package “Generally Applicable
Gene set Enrichment” [44] to test for changes in expres-
sion of the reported log2-fold changes reported by
Limma in each term versus the background log2-fold of
all genes found outside the respective term. The R/Bio-
conductor package heatmap3 [45] used to display heat-
maps across groups of samples for each GO term with a
Benjamini-Hochberg FDR-adjusted P ≤ 0.05.

Validation of RNA-seq data by quantitative real-time PCR
We validated RNA-seq data by quantitative real-time
PCR. We selected representative genes for each pattern
of expression. Expression of Dscaml1 and Tm4sf1 was
higher in Postn−/− and wt mice respectively, expression
of Ndufs5 and Srsf10 was similar in both groups. Total
RNA was prepared from chondrocytes isolated from
Postn−/− mice (n = 6) and wt mice (n = 6) mice. A total of
250 ng of total RNA was subjected to Amplification Grade

DNase I treatment (1 U/μL, Thermo Fisher Scientific), to
eliminate traces of genomic DNA and then reverse tran-
scribed to synthesize the first strand of cDNA (High-Cap-
acity Reverse Transcription Kit, Thermo Fisher Scientific).
Briefly, 2 μL cDNA was added to the reaction mixture
comprising of 2× SYBR Green Master Mix (Thermo
Fisher Scientific), gene-specific forward and reverse
primers (primer sequences are depicted in Table 2), and
RNase-free water to reach a total volume of 20 μL. Subse-
quently, real-time PCR was performed under the following
settings: 94 °C for 3min, followed by 40 cycles at 94 °C for
30 s, 60 °C for 30 s, and 72 °C for 30 s. The target gene ex-
pression was normalized to the housekeeping gene,
Gapdh. Each analysis was performed in triplicate. The
relative expression values were computed using 2−ΔΔCt
method.

Statistical analysis
The non-parametric Mann-Whitney test used to com-
pare the data from two genotypes (wt and Postn−/−) un-
less indicated otherwise. Results were considered
statistically significant at P < 0.05. Data are presented as
mean ± standard deviation with 95% confidence interval
(CI) where indicated. All statistical analyses were per-
formed using GraphPad PRISM version 7.03 (GraphPad
Software Inc., San Diego, CA).

Results
Postn−/− mice exhibit no Postn in the joint and in the
serum
The genotype of each mouse was confirmed by PCR
(Fig. 1a–c). We demonstrated a complete loss of Postn
protein in Postn−/− mice by immunostaining of the joint
section (Fig. 1d) and ELISA in serum. ELISA results re-
vealed significantly low levels of Postn protein in the
serum of Postn−/− mice compared with the wt mice
(28.33 ± 21.65 [95% CI = − 4.88–61.55] vs. 3827.00 ±
2504.00 [95% CI = 2144.00–5509.00], P = 0.0002) (Fig. 1e).

Postn−/− mice develop less severe OA after DMM
Cartilage degeneration
The analysis of histological sections of DMM-operated or
non-operated knees from Postn−/− and wt mice at 8-weeks
after DMM surgery (Fig. 2a) showed that non-operated
control mice retained relatively normal cartilage with max-
imum OARSI score ≤ 1.00. Conversely, many histological
features representative of OA were apparent 8 weeks after
surgery in wt mice: reduced Safranin O staining depicting
proteoglycan loss in the ECM, fibrillation, and delamination
of superficial zone cartilage, and in severe cases, an exten-
sion of the cleft lesions into the middle zone. These features
illustrate that DMM surgery-induced degeneration of the
cartilage resembles human OA pathology. The mean max-
imum OARSI score for wt mice in DMM-operated knees
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(4.00 ± 1.20; 95% CI = 3.00–5.00) was significantly (P <
0.001) higher than that of non-operated control knees
(0.75 ± 0.46; 95% CI = 0.36–1.14). Postn−/− mice that
underwent DMM showed significantly less cartilage dam-
age with the mean maximum OARSI score of 2.37 ± 0.74
(95% CI = 1.75–3.00), significantly (P = 0.011) lower than
for their littermate wt mice (4.00 ± 1.20; 95% CI = 3.00–
5.00) (Fig. 2b). Likewise, DMM-operated Postn−/− mice
(9.31 ± 2.52, 95% CI = 7.21–11.42) had significantly (P =
0.0002) lower mean summed OARSI score than wt mice
(21.44 ± 6.01, 95% CI = 16.41–26.46) (Fig. 2c).

Synovitis
We noted a thinner synovial lining cell layer and a low
density of cells in the synovial stroma in Postn−/− mice
than wt mice (Fig. 2d). Quantification of synovitis score
was significantly (P = 0.039) lower in Postn−/− mice

(1.88 ± 1.01; 95% CI = 0.82–2.93) than wt mice (3.17 ±
0.63; 95% CI = 2.51–3.82) (Fig. 2e).

Trabecular bone changes
Interestingly, there were no differences in the bone pa-
rameters measured in the control/contralateral limbs be-
tween the genotypes (Table 3). The differences in the
various parameters of trabecular bone between wt and
Postn−/− are shown in Fig. 2f. We noted that the follow-
ing bone parameters were significantly lower in Postn−/−

mice compared with wt mice: trabecular BV/TV (9.8%,
P = 0.009), vBMD (11.3%, P = 0.029), Tb.Th (25.6%, P =
0.043), and Tb.N (14.6%, P = 0.012). In contrast, Tb. Sp
was significantly higher in Postn−/− mice than wt mice
(17.2%, P = 0.023).

Table 2 Sequence and characteristics of primers used for real-time PCR

Gene symbol Forward primer (5′ → 3′) Location Reverse primer (5′ → 3′) Location Amplicon size Accession no.

Dscaml1 aggctgaagaggctacgaga 4972–4991 gaggtcctttcacaggggtg 5062–5043 91 bp NM_001081270.2

Tm4sf1 actgggtttggcagaaggac 1006–1025 tgggctcatagcacttggac 1127–1108 122 bp NM_008536.4

Ndufs5 acagccctataagaacgccg 148–167 tgtaccgaagcaagcactct 287–268 140 bp NM_001030274.1

Srsf10 acgtcgggaatttggtcgtt 234–253 agcgtcttcagcatcacgaa 357–338 124 bp NM_010178.3

Gapdh aggtcggtgtgaacggatttg 100–120 tgtagaccatgtagttgaggtca 222–200 123 bp NM_001289726.1

bp = base pair

Fig. 1 Postn−/− mice lack Postn protein. a Primers used for mouse genotyping. b Diagram of targetting vector for genertaion of Postn−/− mice. c
Genotyping analysis of wt, Postn−/− and Postn+/− mice. d Immunostaining of Postn in the knee joint revealed that wt (n = 3) mice expressed
periostin (red arrows) whereas Postn−/− (n = 3) mice showed no staining for Postn (left panel: 10x, right panel 20x). Scale bar = 100 μm. e Serum
Postn levels were negligible and significantly low in Postn−/− (n = 6) than wt mice (n = 11) (Mann-Whitney test)
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24-month-old Postn−/− mice demonstrated protection
from spontaneous OA
Cartilage degeneration
Representative histological sections from 24-month-old
Postn−/− and wt mice are shown in Fig. 3a. Histological
analysis of the knee joints of 24-month-old Postn−/− and
wt mice showed that Postn−/− mice had less cartilage de-
generation (only focal loss of proteoglycans without

cartilage loss) than wt mice, which exhibited increased
loss of cartilage proteoglycan and delamination of both
superficial and middle zones. These observations con-
firmed that in mice, aging induces spontaneous cartilage
degeneration that resembles OA pathology in humans.
The mean maximum OARSI score in Postn−/− mice was
significantly lower than in wt mice (1.93 ± 0.45 [95% CI =
1.51–2.35] vs. 3.58 ± 1.16, [95% CI = 2.37–4.80], P =

Fig. 2 Postn−/− mice are protected from post-traumatic OA. a Histological analysis of the cartilage showed that DMM-operated limbs exhibited
increased cartilage degeneration than non-operated control limbs. Cartilage degeneration in wt mice was markedly higher (dotted boxes) than
Postn−/− mice (arrows). b Semi-quantitative analysis of cartilage degeneration by maximum OARSI score showed that Postn−/− mice (n = 8) had
significantly less maximum OARSI score than wt mice (n = 8). (Mann-Whitney test). c Semi-quantitative analysis of cartilage degeneration by summed
OARSI score showed that Postn−/− mice (n = 8) had significantly less summed OARSI score than wt mice (n = 8). (Mann-Whitney test). d Synovitis was
evaluated by measuring synovial lining cell layer and density of cells in the synovial stroma. e Semi-quantification of synovitis score was significantly
lower in Postn−/− mice (n = 6) than wt mice (n = 6). (Mann-Whitney test). f μCT analysis showed that Postn−/− mice (n = 10) had significantly lower BV/
TV. vBMD, Tb.Th and Tb.N and significantly higher Tb. Sp than wt mice (n = 10) in the DMM-operated limb (Mann-Whitney test)

Table 3 Bone epiphysial parameters in control limbs of wt and Postn−/−mice

Parameter wt Postn−/− P
valueMean ± SD 95% CI Mean ± SD 95% CI

BV/TV (mm3/mm3) 0.79 ± 0.04 0.76–0.82 0.73 ± 0.09 0.66–0.79 0.143

vBMD (mg HA/cm3) 650.70 ± 57.35 609.70–691.70 608.90 ± 103.60 534.70–682.90 0.436

Tb.Th (mm) 0.20 ± 0.11 0.13–0.28 0.15 ± 0.03 0.13–0.17 0.248

Tb.N (1/mm) 14.46 ± 2.54 12.64–16.28 15.33 ± 2.87 13.28–17.39 0.631

Tb.Sp (mm) 0.07 ± 0.02 0.06–0.08 0.06 ± 0.01 0.05–0.07 0.353

SD standard deviation, CI confidence interval
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0.014) (Fig. 3b). Similarly, the mean summed OARSI
score was significant (P = 0.003) lower in Postn−/− mice
(6.14 ± 1.57, 95% CI = 4.69–7.60) than wt mice (11.50 ±
3.02, 95% CI = 8.33–14.67) (Fig. 3c).

Synovitis
The synovial lining cell layer and cell density in the syn-
ovial stroma appeared similar in both genotypes (Fig.
3d). We did not find any significant (P > 0.999) differ-
ence in synovitis score between Postn−/− mice (3.33 ±
1.63; 95% CI = 1.62–5.05) and wt mice (3.33 ± 1.63; 95%
CI = 1.62–5.05) (Fig. 3e).

Trabecular bone changes
The changes in different trabecular bone parameters are
depicted in Fig. 3f. We observed that Postn−/− mice ex-
hibited significantly lower trabecular BV/TV (54.7%, P =
0.009), vBMD (20.9%, P = 0.016), Tb.Th (12.2%, P =
0.044) and Tb.N (49.7%, P = 0.005) in contrast to wt

mice. Also, Tb. Sp was 24.0% higher in Postn−/− than wt
mice but did not reach significance (P = 0.138).

MMP-13 expression decreased in Postn−/− mice
Immuno-fluorescence analysis of MMP-13 revealed that
its expression was increased in wt mice following DMM
compared with the control knees. In contrast, no MMP-
13 was detected in DMM-operated knees of Postn−/−

mice (Fig. 4a). Semi-quantitative assessment of immuno-
fluorescence imaging further showed that intensity of
MMP-13 staining was significantly (P = 0.029) lower in
Postn−/− (6.73 ± 5.23, 95% CI = -1.60–15.06) than wt
mice (28.18 ± 14.94, 95% CI = 4.42–51.95) (Fig. 4b).

RNA-seq and gene ontology analyses
Qualitative gene expression analysis revealed that sam-
ples were clustered into two distinct clusters of Postn−/−

and wt chondrocytes based on principal component ana-
lysis indicating a specific expression profile (Fig. 5a)
though there was higher variation among samples from

Fig. 3 Postn−/− mice are protected from age-related spontaneous OA. a Histological analysis of cartilage showed that wt mice developed
significant cartilage degeneration at 24-month of age whereas age-matched Postn−/− mice did not develop any degeneration in the articular
cartilage. b Semi-quantitative analysis of cartilage degeneration using maximum OARSI score displayed that Postn−/− mice (n = 7) had significantly
less maximum OARSI score than wt mice (n = 6) (Mann-Whitney test). c Semi-quantitative analysis of cartilage degeneration using summed OARSI
score displayed that Postn−/− mice (n = 7) had significantly less summed OARSI score than wt mice (n = 6) (Mann-Whitney test). d Synovitis was
assessed by semi-quantiative analysis of synovial lining cell layer and density of cells in the synovial stroma. e Semi-quantification of synovitis
score was not significantly different between the genotypes (n = 6 each). (Mann-Whitney test). f μCT analysis showed that Postn−/− mice (n = 5–
7) had significantly lower BV/TV, vBMD, Tb.Th, and Tb.N and higher Tb. Sp than wt mice (n = 5–6) in the DMM-operated limbs
(Mann-Whitney test)
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Fig. 4 Postn−/− mice expressed less MMP-13 than wt mice after DMM. a Immunofluorescent analysis showed that MMP-13 staining (green) was
higher in cartilage of DMM-operated limbs than in the non-operated control limb. Postn−/− mice (n = 4) showed less staining of MMP-13 than wt
mice (n = 4). Type II collagen (Col 2) (red) staining was used for location of cartilage. The dotted lines on lower panels indicate the Col 2-positive
cartilage area based on the results in the upper panels. DAPI (blue) was used as a counterstain. Scale bars = 100 μm. b Quantification of
immunostaining intensity of MMP-13 showed that MMP-13 intensity was significantly lower in Postn−/− mice (n = 4) than wt mice (n = 4).
(Mann-Whitney test)

Fig. 5 Descriptive RNA-seq data and real-time PCR. a Principal component analysis of chondrocytes samples from wt (n = 3) and Postn−/− (n = 3)
mice showed distinct grouping based on gene expression differences. b MA (log2 ratio to mean expression) plot depicts expression fold change
and averaged expression level of differentially expressed transcripts. c Volcano plot of all genes expressed greater than 1 count-per-million in all 6
samples where the observed log2 fold change is on the x-axis and the unadjusted P value converted to the −log10 scale is on the y-axis. Twelve
genes with unadjusted P ≤ 0.05 are highlighted in red when log2 fold changes > + 2 and blue when < – 2. d Real-time PCR performed on
chondrocytes isolated from an independent cohort of wt (n = 6) and Postn−/− (n = 6) mice revealed an agreement with the RNA-seq data. (Mann
Whitney test)
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wt mice than Postn−/− mice. Moreover, we show that ex-
pression fold change and average expression levels vary
subtly in a mean average (log2 ratio to mean expression
plot) (Fig. 5b).

Detection of differentially expressed gene transcripts
Gene transcripts (Supplemental Table 1) were signifi-
cantly differentially expressed (n = 1247) between
Postn−/− and wt chondrocytes at an unadjusted P ≤ 0.05
with 727 being upregulated in Postn−/− while 520 were
upregulated in wt chondrocytes. Out of 1247, only 48
transcripts had log2 fold-change ≥2. After, FDR ≤ 0.05
correction, only four transcripts (Table 4) were found to
be differentially expressed (3 upregulated and 1 down-
regulated) between Postn−/− compared with wt. Volcano
plot of genes expressed greater than 1 count-per-million
in all six samples is shown (Fig. 5c).

Gene ontology annotation
Gene ontology analysis revealed that a number of dis-
tinct biological processes were significantly enriched for
each genotype (Table 5). While the biological processes
related to cell-cell adhesion, cell signaling, cell differenti-
ation, focal adhesion, and angiogenesis were elevated in
Postn−/− mice, biological processes such as cell cycle, cell
division, and DNA repair repressed in Postn−/− mice.

Validation by real-time PCR
We further confirmed the differentially expressed genes
by quantitative real-time PCR in agreement with the
RNA-seq data (Fig. 5d).

Discussion
Our study illustrates that Postn deficiency exerts a pro-
tective effect against OA in mice. Specifically, mice lack-
ing the Postn gene displayed significantly less cartilage
degeneration than wt control mice in post-traumatic OA
as well as age-related primary OA. Postn deficiency also
appears to wield protective effects by modulating
changes in the synovium and bone. Thus, our findings
highlight that Postn loss-of-function protects against in-
cidence and progression of OA independent of the
cause, i.e., primary age-related spontaneous OA as well
as injury-induced post-traumatic OA.
In both mouse models of OA, Postn−/− mice retained

superior cartilage and exhibited less degenerative

changes as measured by OARSI scores. These findings
are consistent with the notion that protection from car-
tilage degeneration parallels protection from OA since
cartilage degeneration is considered OA’s hallmark [4].
Besides, we also showed that Postn−/− mice developed
significantly less synovitis than wt mice after DMM.
Tajia et al. have also shown increased expression of
Postn in human OA synovium [46]. These protective ef-
fects of Postn loss-of-function on the cartilage and syno-
vium indicate decreased catabolic activity in the joint.
Our observation aligns with our previous in vitro work
showing that siRNA-mediated knockdown of Postn in
chondrocytes results in reduced expression of inflamma-
tory and catabolic markers such as IL-1β, ADAMTS-4/5,
and MMP-13 [12, 22].
We also found differences in trabecular bone parame-

ters between the genotypes (Postn−/− and wt) for both
OA models. BV/TV, vBMD, Tb.Th, and Tb.N was low
and Tb. Sp was high in Postn−/− mice. These parameters
are not only standard osteoporosis measurements but
have also been used as markers for OA [47–49]. The
pattern of these bony changes in Postn−/− mice mirrors
OA protection as has been noted in rodent and human
studies of OA [31, 47–52]. These findings suggest that
Postn plays a role in modulating changes in cartilage as
well as in the bone. However, it is not possible to con-
clude that the bone is driving the cartilage phenotype
from this investigation.
In the present study, we did not examine how the gen-

etic deficiency of Postn protects mice from developing
OA. However, several studies suggest a possible link
connecting the mechanisms of Postn-mediated cartilage
degeneration with NF-κB and Wnt signaling [7, 12, 22,
53]. We have previously shown that Postn expression is
increased following injury [12]. Postn is upregulated in
human OA cartilage and cartilage from mice undergoing
DMM and is correlated with increased MMP-13 expres-
sion in OA cartilage [12, 22]. Increased expression of
Postn leads to overexpression of cartilage ECM degrad-
ing enzymes such as MMP-13 and ADAMTS-5. Postn
also promotes condylar resorption via the NF-κB-
ADAMTS-5 axis in temporomandibular joint OA [54].
Overexpression of Postn by the administration of recom-
binant proteins or through lentivirus transduction leads
to increased expression of MMP-13 in human and mur-
ine chondrocytes. Likewise, Postn inhibition or

Table 4 Gene transcripts differentially expressed in chondrocytes between Postn−/− and wt mice

Gene symbol Gene name Log2 fold change P Description

Evx2 Even skipped homeobox 2 3.14 5.30 × 10− 6 Up-regulated in Postn−/− mice

Dscaml1 DS cell adhesion molecule like 1 2.62 1.22 × 10− 5 Up-regulated in Postn−/− mice

Gdf10 Growth differentiation factor 10 1.05 7.85 × 10−6 Up-regulated in Postn−/− mice

Tm4sf1 Transmembrane 4 superfamily member 1 −6.59 1.27 × 10− 7 Down-regulated in Postn−/− mice
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deficiency results in decreased expression of catabolic
enzymes. Therefore, we surmise that loss of Postn pro-
tects against cartilage degeneration by decreasing ECM
degrading enzymes such as MMP-13 and ADAMTS-5.
A recent study identified DDR-1 as a potential receptor
for Postn-mediated signaling in chondrocytes. It showed
that blocking DDR-1 with small chemical inhibitors re-
duced MMP-13 expression and cartilage degradation
in vitro and in vivo [53].
Baseline transcriptomic differences between Postn−/−

and wt mice revealed interesting findings. The expres-
sion of Evx2, Dscaml1, and Gdf10 increased in Postn−/−

compared with wt mice. Evx2 is predominantly
expressed in the limbs and is involved in vertebrate
limbs’ morphogenesis, where it interacts with Hox genes
[55]. Dscaml1 is a member of the immunoglobulin
superfamily of cell adhesion molecules, which partici-
pates in neuronal differentiation [56]. Tuure et al. re-
ported that the expression of Dscaml1 is low in human
OA chondrocytes treated with IL-1β and is increased
following treatment with a selective inhibitor of micro-
somal prostaglandin E synthase 1 [57]. Gdf10 gene en-
codes a secreted ligand of transforming growth factor-
beta superfamily of proteins, which plays essential func-
tions in chondrocyte differentiation and bone formation
[58]. In particular, it was found that the expression of
Gdf10 was increased in chondrocytes under hypoxia,
where Gdf10 was regulated by Sox-9, suggesting its pro-
tective role in chondrocytes [59]. The expression of
Tm4sf1 was decreased in Postn−/− mice. Tm4sf1 is a sur-
face marker, known to inhibit apoptosis and promote
cell proliferation and migration [60]. This transcriptomic
profile paralleled with gene ontology annotations. For in-
stance, the biological processes related to cell-cell adhe-
sion, cell signaling, cell differentiation, and focal
adhesion were elevated in Postn−/− mice, while biological

processes such as cell cycle, cell division, and prolifera-
tion were repressed in Postn−/− mice. Together, these
findings provide novel insights into the role of Postn in
chondrocytes, specifically highlighting that increased ex-
pression of Dscaml1 and Gdf10 (and related biological
processes) offers protection from OA, while the expres-
sion of Tm4sf1 (and related biological processes) related
to cellular phenotypes that are altered with Postn knock-
out. While the role of Postn in OA has been discussed
in the previous paragraph, here, we highlight its role in
cell functions. Chinzei et al. showed that exogenous
overexpression of Postn increases chondrocyte migration
which is impeded by its knockdown [22]. Likewise,
Padial-Molina et al. reported an increase in proliferation
and migration of periodontal ligament fibroblasts with
Postn treatment [61]. Finally, Cai and colleagues showed
that Postn knockdown decreases cell matrix [23]; how-
ever, no data are yet available for cell-cell-adhesion in
the context of Postn knockdown or overexpression in
chondrocytes.
Our finding that Postn deficiency reduces both age-

related spontaneous OA and post-traumatic OA is im-
portant. While aging and obesity are associated with pri-
mary idiopathic OA [62–65], joint injuries cause post-
traumatic OA cases [66, 67] and constitute at least 12%
of OA [68]. While both OA forms are qualitatively simi-
lar in that both share standard features such as cartilage
degeneration and bone sclerosis [69], the underlying dis-
ease mechanisms are dissimilar in many ways [10]. How-
ever, their degree of overlap is unclear, particularly at
the mechanistic level. Our finding that Postn deficiency
protected the joint from cartilage degeneration and bone
alterations in both types of OA suggests that Postn abla-
tion may have widely applicable therapeutic efficacy.
Specifically, anti-Postn therapy may have utility for pri-
mary idiopathic OA as well as for post-traumatic OA.

Table 5 Biological processes (gene ontologies) altered in chondrocytes between Postn−/− and wt mice
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In this study, we have shown that global deletion of Postn
is protective against OA. Postn knockout is embryonically
non-lethal, yet some Postn−/− mice die shortly after birth.
Surviving mice have 10–20% growth retardation and ex-
hibit some skeletal abnormalities such as shorter subchon-
dral bone, weaker ligaments, and moderate scoliosis (Cai
et al. unpublished data), which complicate mechanistic ex-
ploration in a specific tissue, cartilage, for example. Thus, in
future studies, we will disable Postn in a temporal (indu-
cible) and cartilage-specific manner by genetic ablation in
mature mice to study OA development.
This study has some limitations, we did not report data

from heterozygotes (Postn+/−) since no protective effect
was observed in those mice. Other limitations included
the lack of measurement of functional outcomes such as
behavior, pain, and gait as well as the lack of assessment
of progressive changes as the only one-time point was
studied in both models. Moreover, detailed analysis of
osteophyte structure and histology is lacking. Another
limiting factor was also difficulty to breed and raise Postn
homozygous mice due to post-natal death of mice. Due to
limiting number of mice available “sham” procedure could
not be performed and could be a superior control for this
model. Lastly, as we performed bulk RNA-seq only on pri-
mary chondrocytes, the findings should be interpreted
within the context of cartilage. Since OA is considered a
whole-joint disease and Postn plays a role in the bone and
probably other parts of the joint, the lack of data from
other tissue and cell types is a limitation.

Conclusions
In summary, Postn genetic loss-of-function protects against
DMM-induced post-traumatic and age-related spontaneous
OA. Our data identify Postn as a novel therapeutic target to
delay or prevent OA, independent of the cause despite
aforementioned limitations. Further mechanistic studies are
warranted to investigate the tissue-specific role(s) of Postn
in OA and its impact on other knee tissues such as menis-
cus and ligaments. Postn modulating therapies will have to
be identified and tested before these findings have transla-
tional value in the clinical setting.
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