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Abstract

As first shown more than 100 years ago, fertilization of an aged (overripe) egg increases the rate of malformations and
embryonic loss in several vertebrates, including possibly humans as well. Since the molecular events in aging eggs may be
similar in these species, we established in the frog Xenopus tropicalis a defined protocol for delayed fertilization of eggs. A
three-hour delayed fertilization led to a dramatic increase in malformation and mortality. Gene expression profiling revealed
that 14% of the polyadenylated maternal transcripts were downregulated upon aging. These transcripts were not degraded,
but rather deadenylated as shown for specific maternal mRNAs. The affected transcripts are characterized by a relatively
short 39UTR and a paucity of cytoplasmic polyadenylation elements (CPE) and polyadenylation signals (PAS). Furthermore,
maternal mRNAs known to be deadenylated during egg maturation as well as after fertilization were preferentially
deadenylated in aged eggs. Taken together our analysis of aging eggs reveals that unfertilized eggs are in a dynamic state
that was previously not realized. On the one hand deadenylation of transcripts that are typically deadenylated during egg
maturation continues and this implies overripeness of the aged egg in the truest sense of the word. On the other hand
transcripts that normally are deadenylated after fertilization loose their poly(A) in the aged egg and this implies that the egg
awaiting fertilization starts processes that are normally only observed after fertilization. Based on our novel finding we
postulate that the imbalance of the polyadenylated maternal transcripts upon egg aging contributes to the loss of
developmental potential. Based on this hypothesis the developmental consequences of downregulation of specific
transcripts can be analyzed in future.
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Introduction

Egg quality is acquired during oocyte growth and maturation

and can be defined as the ability of the egg to be fertilized and

subsequently develop into a normal embryo. Ovulated oocytes, i.e.

eggs, are arrested at metaphase II and are normally fertilized

within a few hours. Although the terms ‘‘oocyte’’ and ‘‘egg’’ are

used quite differently in various species, we use for clarity the term

‘‘egg’’ for the ovulated female gamete arrested in metaphase II.

More than 100 years ago Pflüger reported that delayed

fertilization of frog eggs (Rana temporaria) resulted in a high

incidence of abnormal development [1]. This observation was not

only confirmed in other frogs [2], but also in rainbow trout [3],

mouse [4], rat [5] and guinea pig [6]. In agreement, in humans the

risk of early pregnancy loss has been reported to be increased with

the probability that the egg has aged before being fertilized [7].

Today the issue of delayed fertilization and a potential increase in

malformations is most important in humans, since up to 4% of all

babies in Europe are born following Assisted Reproduction

Technologies (ART) [8]. Although ART has been progressively

improved over the last 30 years, a 30–40% increased risk of birth

defects for ART children has been reported [9]. Factors suggested

to be responsible for the increased risk are the underlying causes

for infertility in the couples receiving ART, but also factors

associated with the techniques per se that influence egg quality [9].

Indeed, Jongbloet was the first to suggest that overripeness may

contribute to the adverse outcome of ART [10]. Thus, eggs in the

oviduct or in culture are likely to undergo a time dependent

quality loss, a process also called postovulatory oocyte aging [11]

and it is most relevant to understand the molecular events involved

in the declined potential in aged eggs.

Although many changes in morphology and cell biology during

egg aging [11] and specific epigenetic alterations have been

described [12,13], no global analysis on the level of gene

expression has been performed. Since in all vertebrates transcrip-

tion starts only after egg cleavage, aging induced alterations may

involve changes in maternal mRNAs that have been deposited

during oocyte maturation. In recent years research has shown that

in oogenesis and early embryogenesis translational control plays a

major role including temporal regulation of cytoplasmic polyad-
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enylation and deadenylation [14,15] mediated via multiple cis-

acting elements in the 39UTR of mRNAs [16]. Further, a study in

rainbow trout has indicated that egg aging is associated with

variations in the relative abundance of several maternal mRNAs.

[17] Therefore, we speculate that postovulatory aging disturbs the

pool of maternal transcripts.

To address this experimentally we have chosen the frog Xenopus,

because its development constitutes an excellent model for

embryogenesis of vertebrates [18]. Hundreds of eggs are available,

early development reaching complete organogenesis is attained

within four days and external development in water allows visual

inspection and easy manipulation. In addition, most control

mechanisms that operate in mammalian oogenesis have been first

and most intensively studied in Xenopus laevis. As genomic analysis

of Xenopus laevis is complicated due to its pseudo-tetraploid

genome, we used for our investigation Xenopus tropicalis which

shares the positive features of its close relative, but has the

advantage of being a truly diploid species and thus genome wide

analysis is considerably facilitated [19] and a draft genome

assembly has been reported most recently [20]. Furthermore, gene

expression profiling in Xenopus tropicalis has defined seven

categories of maternal mRNAs with distinct adenylation behavior

upon egg maturation and fertilization [15]. Because of this basic

knowledge of differential polyadenylation and deadenylation of

maternal mRNAs prior to the onset of zygotic transcription, it is

sensible to study postovulatory aging in this species.

Results

Loss of egg potential upon postovulatory aging
To study whether postovulatory aging affects the developmental

potential of the Xenopus tropicalis egg we fertilized at different time

intervals egg aliquots made from batches of eggs collected from

hormonally primed females. Up to 3.8 hours the fertilization rate

stayed constant and then dropped significantly (Fig. 1A). In

contrast, the survival recorded at the swimming larval stage 40

[21] dropped by about two-fold at a 3.3-hour delayed fertilization

and no larvae survived at 5.4 hours. This drop in survival was

accompanied by a dramatic increase in malformation. The

abnormal embryonic development included a large variation of

malformations like edema, acephaly, compressed and distorted

spinal cord and cyclops (Fig. 1B). In addition, many larvae that

showed no malformations upon egg aging were undersized and

retarded in development (Fig. 1C). For subsequent experiments we

chose a 3-hour delay in fertilization, since under these conditions

malformation increases significantly, but fertilization rate remains

high enough to assure evaluation of the developmental perfor-

mance.

Changes in the maternal polyadenylated mRNA
population in aged eggs

Since no transcriptional activity occurs prior to fertilization

[22], we postulate that the decreased potential of aged eggs reflects

alterations of some maternal components. To address this issue we

focused on the maternal polyadenylated mRNA population using

Affymetrix Xenopus tropicalis Genome Array containing more than

58,000 probesets representing over 51,000 transcripts. We

compared fresh versus 3-hour aged unfertilized eggs from a batch

of eggs, where the larvae derived from aged eggs exhibited a 2.5-

fold increase of malformation and a 4.2-fold increase including

underdevelopment compared to immediately fertilized eggs (Fig.

S1A). To account for biological variation in a spawn we analyzed

two pools of ten fresh eggs versus two pools of ten 3-hour aged eggs

and the cross comparison of the microarray data show highly

correlating replicates (Fig. S1B). For further analysis only probesets

that showed a consistent change in all four comparisons were

taken into account. Using these criteria we identified 1785 signal

decreased probesets that include 897 and 177 probesets decreased

by more than two- and four-fold, respectively. Only 174 probesets

showed an increased signal, including nine with a two-fold change.

Overall about 15% of the probesets that detect transcripts in fresh

eggs exhibited an alteration upon aging.

To confirm the alterations observed by microarray analysis we

performed qRT-PCR using oligo(dT) primed cDNA synthesis on

the same RNA preparation as used for microarrays. As in both

methods we used oligo(dT)20 primers for the reverse transcription,

only changes in the poly(A) length that shorten the poly(A) to less

than 20 As were assessable. We selected fourteen transcripts that

were at least four-fold decreased, full-length and annotated (Table

S1). As assayed by qRT-PCR all these transcripts were decreased

and the fold decrease was even stronger than observed by

microarrays (Fig. 2). In conclusion, the data derived from both

assays are in good agreement.

The drop in egg potential correlates with
downregulation of polyadenylated transcripts

To evaluate the variability of egg aging in individual females we

used eggs from eight females. The comparison of these eight

females reveals the influence of egg quality on survival and

development (Fig. 3A) indicating that many factors play a role.

However, in all experiments we observed a drop of larvae survival

Figure 1. Postovulatory aging effect on egg quality. (A) Batches
of 100–300 eggs were fertilized immediately (white bars) or with the
delay as indicated (light to dark grey bars). The fertilization rate was
scored at the 4-cell stage 3 [21], whereas the survival and malformation
rates were determined at the free swimming larval stage 40 (20). At 0,
3.3, 3.8, 5.4 and 6.3 hours 7, 3, 3, 2 and 3 females were used,
respectively. Error bars represent standard deviation and the values of
the groups indicated by the bracket were compared to the immediately
fertilized sample using student t-test (* and **denote p-values of ,0.05
and 0.01, respectively). (B) Malformation observed at free swimming
larvae: edema (e), abnormal gut formation (g), truncated head (h), small
eye (y), kinky tails (k), acephalus (a), cyclop (c) and multiple
deformations (m) recorded from different experiments. Normal larvae
indicated by arrow. (C) Additionally some larvae without malformations
were undersized and retarded in development. Arrow indicates normal
larvae.
doi:10.1371/journal.pone.0013532.g001
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and an increase in the proportion of defective larvae upon aging.

Quantification by RT-PCR of the fourteen transcripts revealed in

most cases a decrease in these transcripts, although there was no

quantitative correlation between the loss of developmental

potential and the decrease of the transcripts (Fig. 3B). These data

show that the reduced developmental potential of aged eggs is

highly reproducible and suggest the downregulation of polyade-

nylated transcripts as one but possibly not the only causative

factor.

In the experiments described so far we used modified Barth

solution with 0.5% bovine serum albumin (BSA) for storing the

eggs. In this high salt medium the jelly coat does not swell and thus

the eggs can still be fertilized several hours later [18]. To exclude

that the observed signal-reduction results from incubation in salt

solution, but not from egg aging per se, we stored the eggs in a wet

chamber that also prevents the formation of the jelly coat. Also

under these conditions we detected a decrease in survival and an

increase in malformations that was correlated with a drop in the

abundance of the fourteen transcripts (Fig. S2).

To analyze whether the monitored alterations of in vitro aged

eggs may represent changes that occur also in vivo, we compared

eggs collected directly after ovulation to eggs squeezed from the

same female 1.5 hours later. We observed that immediately

fertilized eggs from the second spawn showed also a high loss in

development potential like eggs from the first spawn aged in vitro

for 3 hours (Fig. 4A–B). As under both conditions a similar

decrease of the transcripts was observed (Fig. 4C), it seems possible

that eggs harvested later have a lower quality reflecting in vivo

aging. This is a general finding when collecting eggs from

hormonally primed Xenopus [18]. However, a direct correlation

between the fold decrease for the transcripts and the degree of

quality loss is not given implying additional factors determining

developmental potential.

Deadenylation explains the decreased transcript signals
As our microarrays and the qRT-PCR using oligo(dT) quantify

polyadenylated transcripts exclusively, the decreased abundance of

polyadenylated mRNA could reflect either deadenylation or

degradation of maternal mRNA. Therefore, we compared the

quantification of the fourteen transcripts by qRT-PCR using either

oligo(dT) or random primers. As with random primed cDNA no

significant changes were detected (Fig. 5), we deduce that the

reduced transcript signals reflect deadenylation and not degrada-

tion of maternal transcripts.

To show directly that the decrease in transcripts relies on a

shortening of the poly(A) tail we used the RNA ligation-mediated

poly(A) test (RL-PAT) [23] of decreased (Fig. 6A) and not-changed

(Fig. 6B) transcripts. Aged eggs revealed a poly(A) tail shortening in

all four decreased transcripts. Notably transcripts of aged eggs

were shorter than transcripts of fresh eggs deadenylated by

RNaseH/oligo(dT)20 treatment (Fig. 6A). Direct sequencing laid

open a complete deadenylation plus a loss of seven and five

nucleotides of the RNA body in atp5a1 and tpi1, respectively. In

contrast, transcripts being not changed upon aging showed no

transcript shortening, independent of the poly(A) length in fresh

eggs (Fig. 6B).

Figure 2. Quantification of specific polyadenylated transcripts
upon egg aging. The fold decrease in the relative amount of
polyadenylated transcript in eggs aged for 3 hours compared to
immediately fertilized eggs is indicated as obtained from microarrays
(black bars) and oligo(dT) primed qRT-PCR (grey bars). The transcripts
are named according to the corresponding gene symbols listed in Table
S1 and were selected based on their .4-fold decrease in the microarray
upon egg aging. TEgg053p21.1 and nop5 are classified by microarray
analysis as transcripts with no change upon egg aging and are used as
controls.
doi:10.1371/journal.pone.0013532.g002

Figure 3. Drop in egg potential and decrease in specific polyadenylated transcripts upon egg aging in batches of eggs obtained
from different frogs. Eggs were fertilized immediately or with a 3-hour delay. (A) The developmental competence refers to the survival rate (white
boxes) and the percentage of defective development (grey boxes) observed at the free swimming larval stage 40 (20). The defective development
includes malformation (dark grey) as well as undersized and retarded development (light grey) as exemplified in Fig. 1B and C. Experiment (exp.) 6
and the experiment in Fig. 2 were made ten months apart using the same female. (B) From each experiment the aging induced decrease determined
by oligo(dT) qRT-PCR of the fourteen polyadenylated transcripts is given in the same order as analyzed in Fig. 2.
doi:10.1371/journal.pone.0013532.g003
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Transcript signal reduction correlates with a short 39UTR
and a paucity of CPE as well as of PAS

To identify common features of the signal-reduced transcripts

we correlated the length of the 39UTR sequences with the degree

of downregulation for all probes with a full-length annotation

given in the UCSC browser. Interestingly, we observed an inverse

correlation between the magnitude of signal reduction and the

39UTR length (Fig. 7). In fact, more than four-fold signal-

decreased transcripts exhibited a median 39UTR length of 180 nt

that was significantly shorter than the median length of 296 nt,

432 nt or of 543 nt of transcripts less than four-fold decreased,

with no change or increased, respectively (Fig. 7).

The cytoplasmic polyadenylation element (CPE) and the poly(A)

signal (PAS) are both involved in polyadenylation behaviour of

mRNA [24]. Since these elements are usually close to the 39

terminus, we scored for the presence of PAS and CPE in the 39

terminal 100 and 120 nucleotides, respectively, of each full-length

transcript and correlated this frequency with the extent of signal

reduction. To allow a meaningful interpretation we classified the

decreased transcripts into three categories with distinct extent of

signal reduction and used as fourth category all transcripts with an

increased signal.

We considered six alternative sequences that have been defined

as CPE (Table S2) and found a decreased frequency in the

transcripts with a more than four-fold reduced signal compared to

other categories (Fig. 8A). A similar paucity was also found for the

canonical PAS AAUAAA represented in about 60% of the mRNA

[25]. In contrast, the less frequent non-canonical PAS (Table S2)

were distributed equally in the 39UTR sequences of all categories

(Fig. 8A).

Since AU rich element (ARE) known as destabilizing element is

not reported to be at a specific region of the 39UTR, six as ARE

referred motifs (Table S2) were scored in the entire 39UTR. After

normalization of their occurrence to the total 39UTR length of the

corresponding category we found no significant enrichment in any

category (Fig. 8B).

Transcripts deadenylated at oocyte maturation and after
fertilization are enriched for transcripts deadenylated
upon egg aging

A comparison of the transcripts deadenylated in aged eggs with

the seven categories defined by their differential adenylation

behaviour [15] revealed a significantly uneven distribution of

transcripts deadenylated upon egg aging (Fig. 9). Indeed,

categories 1, 6 and 8 defined by their deadenylation during egg

maturation include a significant high proportion of probesets of

transcripts deadenylated upon egg aging. A similar significant

overrepresentation was also seen in category 5 characterized by

transcripts deadenylated after fertilization, whereas all other

categories (2, 3 and 4) showed no enrichment. Transcripts

deadenylated at egg maturation and after fertilization that are

also decreased upon egg aging, are derived from genes with many

different functions (Table S3).

Discussion

By using Xenopus tropicalis we have established an excellent model

for studying egg aging and have revealed changes in maternal

transcripts that can not easily be explored in other species. So far

only preovulatory aging has been analyzed in Xenopus laevis that

leads to high mortality and various malformations [26] compara-

ble to what we observed here in postovulatory aging.

Investigating the effect of delayed fertilization in Xenopus tropicalis

eggs is very attractive due to its simplicity, as it involves egg storing

in a salt solution or in a wet chamber. In contrast to preovulatory

aging studies, inter-female variations and influences by female age

and breeding conditions including feeding, water temperature and

composition, can be excluded for a single postovulatory aging

experiment, as batches of up to a thousand eggs are harvested

simultaneously at the same time from a single female and can be

distributed into aliquots for defined in vitro aging. Thus, expression

profiling of eggs from the same spawn reveals a highly

reproducible pattern (Fig. S1B), while substantial inter-female

variation occurs in the biological response as well as in the

downregulation of specific transcripts comparing eight different

females (Fig. 3).

Figure 4. Comparison of in vitro and in vivo egg aging. (A–C) Eggs
were fertilized immediately, with a 3-hour delay (in vitro) or from a
batch obtained 1.5 hours later (in vivo) from the same female shown
also in Fig. 3 as exp. 8. The survival rate (A) and the percentage of
defective development (B) observed at the free swimming larval stage
40 [21] is given. The defective development includes malformation
(dark grey) as well as undersized and retarded development (light grey).
(C) From each experiment the aging induced decrease of the fourteen
polyadenylated transcripts analyzed in Fig. 2 is given (gray boxes: in
vitro aging; white boxes in vivo aging).
doi:10.1371/journal.pone.0013532.g004

Figure 5. Deadenylation upon egg aging. The fold decrease in
relative abundance of the fourteen polyadenylated transcript in aged
eggs measured by qRT-PCR using oligo(dT) (grey bars) or random
primed cDNA (white bars) is given for two females, the same as used for
Fig. 2 and exp.4 in Fig. 3. Error bars represent standard deviation.
doi:10.1371/journal.pone.0013532.g005
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Figure 6. Poly(A) tail reduction of specific maternal mRNA in aged eggs. Poly(A) tail behavior of the indicated transcripts decreased (A) and
not changed (B) upon egg aging are shown. Total mRNA from fresh (0 h) and aged (3 h) eggs was assayed by the RNA ligation-mediated poly(A) test
(RL-PAT). * indicates RNaseH/oligo(dT)20 digestion prior to ligation. Control lanes: –Lig, Ligation reaction performed without RNA; -RT, ligated RNA
was not reverse transcribed prior to PCR. M, DNA size marker are given in base pairs. Direct sequencing of atp5a1 and tpi1 (A lower panel) reveals the
actual transcript 39ending (indicated by arrows), which is in fresh eggs at the end of the poly(A) tail (italic As), but in aged eggs several nucleotides
upstream of the former end of the RNA body (clear box). P1 is the ligated primer.
doi:10.1371/journal.pone.0013532.g006

Figure 7. Transcript signal reduction correlates with a shorter 39UTR length. The average signal fold change of probesets, which were
scored as consistently increased, not changed and decreased in all 4 cross-comparisons, were plotted against the length of the 39UTR. Probesets
receiving decreased (N = 1134), not changed (N = 4050) and increased change (N = 107) calls in the Affymetrix comparison analysis (MAS 5.0 statistical
algorithm) are given in green, grey and red, respectively. Transcripts classified according to signal alterations upon aging, i.e. .4-fold decrease, ,4-
fold decrease, not changed and increased, are marked with brackets and the median length of the 39UTR of each class is given. Highly significant p-
values between .4-fold decreased transcripts and all other classes derived by Mann-Whitney test are indicated (*** p-value,0.001).
doi:10.1371/journal.pone.0013532.g007
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Although aging of Xenopus tropicalis eggs for at least up to 4 hours

neither changes egg pigmentation indicating artificial activation

nor alters fertilization rate (Fig. 1), delayed egg fertilization leads to

malformations and a progressive increase in mortality. The

increased death rate reflects serious developmental defects such

as incomplete gastrulation and neurulation that are frequently

incompatible with further development and thus lead to early

death. We observed a similar drop in egg potential upon

postovulatory aging in the related species Xenopus laevis (Fig. S3).

In these experiments we also excluded that sperm aging has an

effect, as the performance with fresh and 5-hour aged sperms was

indistinguishable. A comparison of in vivo versus in vitro egg aging

implies a most similar effect (Fig. 4). However, we can not exclude

that a batch of eggs harvested later may be distinct, although it is

from the same female, as not all the eggs mature simultaneously

and may be derived from oocytes of distinct quality. Based on this

uncertainty we used in vitro aged eggs for our experiments. Our

data establish that Xenopus has the main feature of impaired

development upon postovulatory aging well documented from fish

to mammals [1–6] including human [7], making Xenopus well

suited to investigate mechanisms involved in egg aging. 3-hour

aging in Xenopus tropicalis seems a short time period. However, as

the development is very fast, it reflects the time needed to attain

the early morula stage [27], which is reached in mouse within

three days [28].

We show for the first time using microarray and qRT-PCR that

the decreased egg potential upon postovulatory aging is reflected

in a decrease of 14% of the maternal polyadenylated mRNA. This

proves that changes occur in the molecular outfit of the Xenopus egg

within a 3-hour aging period. Because significant alterations are

detected only in qRT-PCR using oligo(dT), the apparent signal

reduction implies RNA deadenylation in the absence of degrada-

tion (Fig. 5) and this was directly proven by measurements of the

poly(A) tails lengths (Fig. 6). The analysis of four random

transcripts of the downregulated fraction revealed a short poly(A)

that was completely removed upon egg aging (Fig. 6A). Our

finding that this shortening even included a few nucleotides of the

RNA body is consistent with the reported activity of deadenylases

[29,30]. In contrast, transcripts not changed upon egg aging

(Fig. 6B) contained either long poly(A) tails (odc1 and melk) or

short poly(A) tails (TEgg053p21.1, nop5 and tmem85). We deduce

that during egg aging selective deadenylation of specific maternal

mRNAs occurs and that a shortening of the poly(A) to less than 20

nucleotides impairs oligo(dT) mediated reverse transcription

needed to detect the corresponding transcript. The loss of poly(A)

without a corresponding disappearance of the mRNA may be not

too surprising, since unlike in most cell type deadenylation of

mRNA in eggs does not trigger transcript degradation. Typically,

in eggs deadenylated mRNAs remain stable but dormant until

they get polyadenylated again to be translated [16].

In the rainbow trout changes in the abundance of eight

polyadenylated transcripts upon postovulatory aging have been

reported using random primers on isolated polyadenylated RNA

suggesting a change in the concentration of these mRNAs [17].

However, since the non-polyadenylated fraction was not analyzed,

it could well be that these RNAs were deadenylated and thus

shifted into the non-polyadenylated fraction. In several studies

gene expression profiling was done on oocytes matured under

different conditions [31–33]. As in these studies preovulatory

differences are inherent, a direct comparison with our data is not

appropriate, but we note that potential changes in the polyade-

nylation state have been ignored in these investigations.

As in Xenopus but also in mouse eggs deadenylated mRNAs are

poorly translated [16], we suppose that the deadenylation of a

specific set of maternal RNAs in aged eggs leads to corresponding

reduced synthesis of specific proteins. To get some insight into the

possible functions impaired by postovulatory egg aging we used

the Gene Ontology Enrichment Analysis Software Toolkit [34].

However, this approach is not optimal for Xenopus tropicalis, as only

a limited number of reliable annotations are available. This

drawback impedes a detailed comparison to other species such as

mouse and human with reliably annotated genes. With this

limitation in mind we found among others the strongest

overrepresentation in the categories of ‘‘translation’’ and ‘‘energy

metabolism’’. In fact, similar gene ontology enrichment has been

reported for maternal RNA obtained from mouse, bovine and

Xenopus laevis [35] as well as from human oocytes [33].

Figure 8. Abundance of CPE, PAS and ARE in the 39UTR of
transcripts deadenylated upon egg aging. Transcripts were
classified according to their signal alteration magnitude: .4-fold
decreased (black, N = 98), 4.x.2-fold decreased (dark grey, N = 403),
,2-fold decreased (light grey, N = 496) and increased (white, N = 96). (A)
Percentage of mRNA sequences bearing at least one canonical PAS
(AAUAAA), one non-canonical PAS (PAS#) or one CPE in the 39terminal
100nt for each transcript category are given. *, ** and *** denote p-
values of ,0.05, p,0.01 and p,0.001 using Fisher’s exact test,
respectively. (B) Abundance of ARE in the entire 39UTR was normalized
against the total 39UTR length of the corresponding transcript class and
analyzed using Mann-Whitney test.
doi:10.1371/journal.pone.0013532.g008

Figure 9. Distribution of maternal transcripts deadenylated
upon egg aging to the RNA categories with distinct adenyla-
tion behavior at egg maturation and upon fertilization. The
transcripts of each category defined according to their deadenylation
and/or polyadenylation were classified in percentage whether they are
decreased (black), not changed (white) or increased (grey) upon egg
aging. Deadenylation (D) and polyadenylation (P) at egg maturation
and upon fertilization for each category is given. Category 7 is not
shown as this type of behavior was not observed [15]. For comparison
the percent distribution of decreased (black), not changed (white) and
increased (grey) transcripts in aged eggs of all transcripts measurable
by Affymetrix microarrays is given. Statistically significant differences in
the distribution of the categories compared to all measured transcripts
are indicated by three asterixs (p,0.0001 by chi square statistics).
doi:10.1371/journal.pone.0013532.g009
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There are several distinct pathways of deadenylation in oocytes

and early embryos that have been best characterized in Xenopus

and are considered to be most relevant in mammals as well [36].

The first pathway is the ‘‘default’’ deadenylation in maturing

Xenopus oocytes [37] that is relatively slow. Since the polyadenyl-

ated transcripts downregulated upon postovulatory aging contain

CPE at a decreased level, a feature unique to this pathway, we

speculate that this process is responsible for the decrease in

maternal transcripts observed in our aging experiments. In

contrast, we rather exclude the second mechanism that represent

a targeted deadenylation involving ARE [38], since we did not

find an overrepresentation in ARE in the maternal transcripts

deadenylated upon aging. The third pathway is mediated by the

embryonic deadenylation element (EDEN)-specific RNA binding

protein [39]. Since we could not find a significant enrichment of

the EDEN binding site in the deadenylated transcripts (data not

shown), we rather exclude this mechanism, although the low

frequency of the EDEN15 motif [40] precludes a thorough

statistical analysis. The fourth pathway of deadenylation [41] is

most unlikely in the aged eggs, as this process only operates after

zygotic gene expression in the blastula stage. Our finding that the

most downregulated transcripts contain a short 39UTR is possibly

linked to the fact that most of these transcripts represent

housekeeping genes [42]. As translation is regulated via changes

in the poly(A) tail length, which is critically controlled by cis-

elements in the 39UTR [24], our finding of a decreased level of the

canonical PAS (AAUAAA) and CPE may be most relevant. CPE is

the best characterized element critical for cytoplasmic poly(A) tail

length regulation conserved from invertebrates to mammals. Its

binding protein CPEB can assemble complexes that repress

mRNA translation as reported in immature oocytes, or that direct

cytoplasmic polyadenylation and activate translation e.g. in

maturing oocytes [43,44]. Maturation specific deadenylation in

both amphibian and mouse oocytes is considered as a default

pathway for mRNA that lack CPEs [36]. Specifically, in Xenopus

tropicalis more than 50% of the transcripts that gain a poly(A) tail

during oocyte maturation contain CPEs, while transcripts dead-

enylated during maturation are relatively devoid of CPE [15]. We

searched also for PAS elements that are known to be initially

needed for cleavage and nuclear adenylation of primary mRNA,

but are important for CPE mediated cytoplasmic polyadenylation

as well, since the distance of up to 120 nucleotides between the

canonical PAS and CPE is essential for this process [44]. Due to

this critical neighborhood of these two elements it is not surprising

that AAUAAA is underrepresented in the transcripts downregu-

lated by postovulatory aging (Fig. 8A). In contrast, the less frequent

non-canonical PAS elements are equally distributed between the

various classes of transcripts (Fig. 8A). This correlates with the

reports that these variant PAS elements seem to have distinct

properties [45].

Since we detected a significant underrepresentation of CPE in the

polyadenylated transcripts downregulated upon postovulatory aging,

we speculate that postovulatory aging possibly reflects an ongoing of

the normal egg maturation process not terminated by fertilization.

This assumption is fully supported by our finding that the maternal

mRNA categories that are known to be deadenylated upon egg

maturation [15] are enriched in transcripts that are decreased due to

loss of their poly(A) (Fig. 9). This implies that postovulatory aging of

the Xenopus egg is best described as overripeness in the truest sense of

the word, as the deadenylation of specific transcripts occurring at

maturation continues. The fact that a high proportion of transcripts

deadenylated after fertilization (category 5) are decreased upon egg

aging (Fig. 9) reveals that in the aging egg deadenylation of specific

transcripts starts prior to fertilization.

Taken together both these findings show that the unfertilized

egg is in a dynamic state with an ongoing and beginning removal

of specific mRNA poly(A) tails and thus a delayed fertilized egg

contains a distinct set of polyadenylated mRNA. Based on our

novel finding we postulate that this imbalance of the polyadenyl-

ated maternal transcripts upon egg aging contributes to the loss of

developmental potential. Based on this hypothesis the develop-

mental consequences of downregulation of specific transcripts can

be analyzed in future. For such experiments Xenopus is a most

suited model as knock-down of specific transcripts is straightfor-

ward by using morpholinos. We also anticipate that comparable

changes occur in mammalian systems and these events can now be

explored by analyzing the expression of the corresponding genes in

aged eggs of mammals.

Methods

Gamete collection, fertilization and early development
Xenopus tropicalis adults were obtained from the European

Xenopus Resource Centre at Portsmouth (UK). We prestimulated

the females by injection of 10 units of human chorion gonatropin

(HCG, Sigma CG10) and induced ovulation 14 hours later by 100

units HCG. After about 4 hours when the first eggs were

spontaneously released we collected by gentle pressure on the

lower back and abdomen the eggs into Modified Barth solution

(MBS; 88 mM NaCl, 1 mM KCl, 0.7 mM CaCl2, 1 mM MgSO4,

5 mM HEPES, 2.5 mM NaHCO3, 0.7 mM CaCl2 [18] contain-

ing 0.5% bovine serum albumin (BSA, Sigma A-7888). The eggs

of each spawn were mixed, divided into aliquots of about 100–500

eggs and fertilized either immediately or after a three to seven

hour storage at 25uC. For fertilization MBS was removed as

efficiently as possible and fertilization performed by adding a testis

suspension in MBS with 0.5% BSA. For fresh and aged eggs the

same sperm suspension prepared in MBS with 0.5% BSA was used

and stored at 14uC. Shortly before adding sperm suspension, pools

of ten unfertilized eggs were collected from each batch and stored

at 280uC for RNA extraction. Fertilization rate was monitored at

the four-cell stage. Dead eggs and embryos were removed

regularly. Survival rate was scored as percentage of initial number

of fertilized eggs at larval stage 40 [21], i.e. three days after

fertilization at 23uC. Morphological malformations and underde-

velopment were determined as percentage of at stage 40 survived

larvae. Husbandry, breeding and hormone injections were

approved by ‘‘Landesamt für Natur, Umwelt und Verbrau-

cherschutz Nordrhein-Westfalen (B 952/07).

RNA extraction
To prepare total RNA ten unfertilized eggs were treated in

Precellys24 homogenizer (Peqlab) for 5 sec and RNA extracted

with the peqGOLD Total RNA Kit (Peqlab) according to

manufacturer’s instructions. Extracted RNA was quantified by

spectrophotometry on a Nanodrop ND1000 (Peqlab).

Microarray analysis
The quality of total RNA was assessed on an Agilent chip and

by analyzing the cRNA. There was no difference between the

RNA samples. Total RNA (100 ng) was converted into double

stranded cDNA by using oligo-dT-primers with a T7 RNA

polymerase binding site followed by amplification and labeling

using the GeneChip 39 IVT Express Kit (Affymetrix). Labeled

cRNA was purified, fragmented and hybridized to Xenopus tropicalis

Genome Arrays (Affymetrix) followed by washing and staining

steps according to the manufacturer’s recommendation. Arrays

were finally scanned in a GeneChip scanner 3000 G7 (Affymetrix).
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Array images were processed to determine signals and detection

calls (Present, Absent, Marginal) for each probeset using the

Affymetrix GCOS1.4 software (MAS 5.0 statistical algorithm).

Arrays were scaled across all probesets to an average intensity of

1000 to compensate for variations in the amount and quality of the

cRNA samples and other experimental variables of non-biological

origin. Pair-wise comparisons of treated versus control samples were

carried out with GCOS1.4, which calculates the significance

(change p-value) of each change in gene expression based on a

Wilcoxon ranking test. To limit the number of false positives, we

restricted target identification to probesets with increased or

decreased change calls, which exhibited at least one present

detection call in the treated/control pair. The data discussed in

this publication have been deposited in NCBI’s Gene Expression

Omnibus under accession number GSE21109.

Gene Ontology analysis
To identity statistically overrepresented Gene Ontology (GO)

terms within a given gene set GO was performed using the Gene

Ontology Enrichment Analysis Software Toolkit (GOEAST) [34],

which compares the ratio between probesets in the ontology sub-

categories and all probesets in given dataset to the ratio between

probesets in the ontology sub-categories and all probesets on the

microarray platform.

qRT-PCR
500 ng of mRNA were reverse transcribed using oligo(dT)20

(Invitrogen) or random hexamer primer (Applied Biosystems) and

the High Capacity cDNA Reverse Transcription Kit from Applied

Biosystems according to manufacturer’s instructions. qRT-PCR

was performed in duplicate using the Power SYBRGreen PCR

Master Mix (Applied Biosystems) in an Sequence Detection

System 7900HT apparatus (Applied Biosystems). After incubation

for 2 min at 50uC and for 10 min at 95uC amplification was

performed using the cycle: 95uC for 15 sec; 60uC for 1 min;

40times. The relative amount of mRNA was normalized against

ornithine decarboxylase (odc) mRNA as reference. All primers

provided by Invitrogen are listed in Table S1.

Polyadenylation assay
1 mg of mRNA was ligated to 0.4 mg of kinased primer P1

(Eurofins) containing a 39amino modification to block ligation at

this end using T4 RNA Ligase (New England Biolabs) for 30 min

at 37uC in a 10 ml volume. The ligated RNA was reverse

transcribed using 0.4 mg primer P’1 and the High Capacity cDNA

Reverse Transcription Kit (Applied Biosystems) according to

manufacturer’s instructions. The PCR was performed for 38 cycles

and 56uC annealing temperature using gene specific forward and

P’1 as reverse primer and the Hot Star Taq Polymerase (Qiagen)

in 25 ml according to manufacturer’s directions. All primers except

P1 were obtained from Invitrogen and are listened in Table S4.

To remove all poly(A) tails, mRNA was treated with RNaseH

(New England Biolabs) and 0.3 mg oligo(dT)20 for 30 min at 37uC
in a 10 ml volume prior to ligation.

Bioinformatic analysis
For each mRNA 39UTR sequence was obtained from the

UCSC browser via RefSeq transcript ID. 39UTR length and motif

frequency were analyzed using an exact pattern-matching

approach implemented in the programming language perl. The

algorithm identifies motif occurrence, motif position and total

length of each 39UTR.

To compare our microarray data using the Affymetrix chip with

the data using the non-commercial microarray containing 50mer

oligonucleotides [15], we searched in Xenbase [46] with the

50mer oligonucleotide sequence the corresponding Affymetrix

probeset numbers for the transcripts of the seven categories with

an altered adenylation behavior at maturation or upon fertiliza-

tion.
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