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Abstract

The success of vision transformers (ViTs) has given rise to their application in classification

tasks of small environmental microorganism (EM) datasets. However, due to the lack of multi-

scale feature maps and local feature extraction capabilities, the pure transformer architecture

cannot achieve good results on small EM datasets. In this work, a novel hybrid model is pro-

posed by combining the transformer with a convolution neural network (CNN). Compared to

traditional ViTs and CNNs, the proposed model achieves state-of-the-art performance when

trained on small EM datasets. This is accomplished in two ways. 1) Instead of the original

fixed-size feature maps of the transformer-based designs, a hierarchical structure is adopted

to obtain multi-scale feature maps. 2) Two new blocks are introduced to the transformer’s two

core sections, namely the convolutional parameter sharing multi-head attention block and the

local feed-forward network block. The ways allow the model to extract more local features

compared to traditional transformers. In particular, for classification on the sixth version of the

EM dataset (EMDS-6), the proposed model outperforms the baseline Xception by 6.7 percent-

age points, while being 60 times smaller in parameter size. In addition, the proposed model

also generalizes well on the WHOI dataset (accuracy of 99%) and constitutes a fresh approach

to the use of transformers for visual classification tasks based on small EM datasets.

1. Introduction

Environmental Microorganisms (EMs) (e.g., bacteria, viruses, etc.) have a typical size range

between 0.1 and 100 microns and thus cannot be detected with the naked eye. They can be

classified as cell-free, multicellular, or unicellular species [1]. Despite their tiny size, EMs can

have a significant impact on human life. On the beneficial side, some EMs are used to make

fermented foods such as cheese and bread, break down plastics, treat sulfurous emissions from

industrial processes, condition soil, digest organic waste from sludge, and enhance the quality

of freshwater [2–4]. On the harmful side, some EMs can reduce crop yields, cause food spoil-

age, and will even lead to diseases such as the novel coronavirus disease 2019 (COVID-19) and
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death [5, 6]. Therefore, the correct identification of EMs is necessary for the study of their ben-

eficial or adverse effects on other organisms and the environment [7, 8].

Due to their small size, the classification of EMs is difficult [9]. The two traditional classifi-

cation methods typically used for EM classification are molecular biology (e.g., DNA and RNA

analysis), and morphological approaches (e.g., manual observation under a microscope) [10].

The former has high accuracy but requires expensive equipment, while the latter requires a sig-

nificant amount of time and effort on manual labor by a professional researcher [11, 12]. As a

result, many researchers have attempted to classify images using computer-aided methods

based on machine learning [13, 14], which has allowed the development of classification meth-

ods that are efficient and do not require substantial expertise. However, these methods still

require substantial feature engineering to formulate classification conditions and cannot

extract the EMs’ salient features automatically for classification [15].

Due to the rapid development of artificial intelligence in recent years, deep learning-based

methods are being adopted for automated salient feature extraction and end-to-end classifica-

tion. Such methods have thus emerged as primary tools for image classification [16–18]. For

EM image classification tasks, several researchers have employed deep learning methods based

on convolutional neural networks (CNNs) [19, 20]. However, although CNNs have been shown

to be effective in extracting local image features, their performance is lacking when it comes to

capturing long-distance dependencies [21]. It should be noted that for 2D image classification

tasks, locality and long-distance dependencies have been shown to be equally important [22,

23]. Due to their capacity to capture long-range dependencies, transformers [24, 25] are now

commonly used in modern deep learning applications, including computer vision (CV) [26, 27]

and speech processing [28]. Transformers were first proposed as components of machine trans-

lation models [29]. The vision transformer (ViT), the first pure transformer architecture used in

CV, was proposed only recently [30]. In terms of image classification, it achieves results that are

competitive with many state-of-the-art CNNs [31, 32]. Zhao P. et al. [33] first applied ViTs,

such as ViT [30], DeiT [34], T2T-ViT [35] and BotNet [36], to EM classification tasks. However,

when trained on the sixth version of the EM dataset (EMDS-6) [37], which is a small dataset

consisting of only 21 classes and 1680 EM images, these models’ performance was inferior to

that of similar-sized CNNs, such as Xception [38]. The reasons for this are twofold. First, due to

the constant patch size of ViTs, it is extremely difficult for the transformer to extract multi-scale

feature maps definitively, which presents a significant challenge for classification tasks [39]. Sec-

ond, ViTs lack the locality inherent in the design of CNNs, which makes them unsuitable for

image classification problems on small datasets like EMDS-6 [30].

To enhance ViT performance and raise it to a level comparable to that of the state of the art

using small EM datasets, in this work, a novel hybrid transformer-CNN EM classification

architecture (HTEM) is proposed. To address the first of the two main issues discussed above,

a hierarchical structure is adopted to obtain multi-scale feature maps. For the second problem,

additional convolution operations are introduced in the transformer’s two core sections,

which makes the HTEM inherently efficient, both in terms of number of parameters and

computational efficiency.

In the proposed HTEM model, the transformer is divided into four stages to create a hierarchi-

cal framework, and all stages share a similar structure. The input images first go through a convo-

lution token embedding (CTE) block for feature extraction [40, 41]. The resulting data of the CTE

block are fed into a feature-embedding layer to reduce the size of feature maps. This embedding

layer allows the generation of different scales of images for the classification task, while also reduc-

ing the number of parameters and thus the computation load incurred by the network. The 2×
down-sampled feature maps are then input to the i-th stage transformer encoder, which consists

of a convolutional parameter sharing multi-head attention (CPSA) block and a local feed-forward
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network (LFFN) block. Inspired by [42], the linear projection before each self-attention block in

the original transformer model is replaced by the convolutional parameter sharing projection in

the CPSA block. This allows the key and value matrices of the original transformer model to share

the same parameters and perform depth-wise separable convolution operations [43] to subsample

the feature maps. By subsampling and sharing matrix parameters, the block can capture more

local features for image classification and simultaneously minimize the computational complexity

and excessive flexibility of the transformer model, thus increasing efficiency with minimal perfor-

mance loss. Additionally, motivated by [44], the LFFN block is proposed as a replacement for the

feed-forward network (FFN) in the transformer model. This block introduces a sandglass block

with additional depth-wise convolutions in the FFN block to help the transformers capture more

local features. These depth-wise convolutions provide an effective mechanism for local content

aggregation, which is not available in the traditional ViT’s FFN block. It should be noted that the

depth-wise convolution is effective in terms of both parameters and computation complexity. The

basic transformer encoder structure is repeated multiple times at each stage. After four feature

embedding layers and encoding stages, a global average pooling block is used to replace the class

token in the transformer model for better classification results.

Overall, the proposed HTEM bears all the advantages of CNNs and transformers through

its efficient hierarchical network structure and the introduction of improved local feature per-

ception. The results show that the proposed model achieves state-of-the-art performance while

remaining lightweight and efficient when trained on a small EM dataset like EMDS-6. Addi-

tionally, the proposed HTEM outperforms all compared CNN- and transformer-based models;

after data augmentation, its accuracy is 9.02 percentage points higher than Xception while

requiring less training time and fewer parameters. Additionally, it is demonstrated that the

proposed model’s performance is not contingent on the presence of the token position embed-

ding. This allows for a simplified architecture design and offers flexibility with respect to the

input images’ resolutions, which is essential for classification tasks.

To summarize, the main contributions of this paper are three-fold:

1. We put forward a new hierarchical transformer architecture called HTEM, which can cap-

ture multi-scale feature maps of EM images, thus strengthening the model’s ability to cap-

ture salient features.

2. We introduce the CPSA and LFFN blocks to the transformer’s core sections to increase the

number of convolutions. The novel model architecture can simultaneously capture local

features and long-range dependency information and is free of any position embedding

dependence.

3. Experimental results on the EMDS-6 and WHOI datasets show the effectiveness and gener-

alization ability of HTEM with less training time and a lower number of parameters com-

pared with previous state-of-the-art ViTs and CNNs.

The rest of this paper is organized as follows. A brief overview of EM image classification

methods and ViTs is presented in Section 2, while the details of the proposed HTEM are pre-

sented in Section 3. In Section 4, the training details are described and comprehensive experi-

mental comparisons are discussed. Finally, the paper is concluded in Section 5.

2. Related works

2.1 EM image classification

With the development of computer and imaging technology, computer-aided EM classifica-

tion based on machine learning has achieved remarkable results. Kruk M. et al. [45] proposed
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a system for classifying soil EMs using shape, edge, and color features, which uses a random

forest to classify EM images. Cunshe C. et al. [46] proposed a method for classifying wastewa-

ter EMs using morphological features combined with principal component analysis. Xiaojuan

L. et al. [47] proposed a method for rapid classification and identification of bacteria in waste-

water using edge detection. Li C. et al. [48] proposed an EM classifier that captured edge fea-

tures and was based on a support vector machine. Although the above methods are able to

perform EM classification and identification, they require extensive feature engineering for

assisted learning and are not able to achieve automatic end-to-end classification.

In order to mitigate the reliance on feature engineering, more and more researchers have

adopted deep learning methods based on CNNs for EM classification tasks. Luo et al. [49]

used CNNs for classification studies of planktonic microorganisms. Połap et al. [50] proposed

a CNN model based on regional covariance to classify EMs and they demonstrated the classifi-

cation of rod-shaped and spherical bacteria with accuracies higher than 91% and 78%, respec-

tively. Bliznuks D. et al. [51] proposed a bacterial growth analysis system using a 3D CNN,

which also achieved high accuracy. Zihan Li Z. et al. [52] presented the fifth version of the

environmental microorganism dataset (EMDS-5) and used the VGG and InceptionV3 net-

works to classify microorganisms. Recently, Zhao P. et al. [37] proposed the EMDS-6 dataset

and conducted an EM classification study using typical CNNs.

However, it is known that CNNs are ineffective in capturing long-distance dependencies in

EM images [30]. Due to the better ability of transformers in capturing long-distance depen-

dencies, Zhao P. et al. [33] first proposed the use of ViTs for an EM image classification study

on the EMDS-6 dataset, which was a novel approach compared to others presented by that

time. The difference with the present work is that in this study a hybrid transformer-CNN

architecture is proposed instead of ViTs. This model combines the respective advantages of

CNNs and transformers to realize the EM image classification task on the EMDS-6 dataset.

2.2 Visual transformers

The first instance of transformers being used for CV tasks was ViT. This model achieves state-

of-the-art results when the corresponding dataset is sufficiently large, such as in the case of

ImageNet-22k, JFT-300M, etc. Subsequently, many models have been proposed in order to

obtain better results in image classification tasks [34, 53, 54]. For instance, Tokens-to-token

(T2T-ViT) [35] uses additional sliding windows to integrate multiple tokens, an operation that

increases the ability of the model to obtain local information but increases its complexity.

Recently, some efficient models have been proposed to avoid the reliance of ViT models on

large datasets. For instance, CeiT [41] first uses convolution to capture the input image fea-

tures, and then captures more local information through the integration of the depth-wise con-

volution module into the ViT. ConViT [55] utilizes gated position self-attention to simulate

the effect of convolutional operations so that the model can obtain the local contents. CvT [42]

enhances the ViT’s local feature processing capability by means of convolution operations

introduced in both linear projection and multilayer perceptron blocks.

These improvements allow the ViT to perform well even in the absence of large datasets,

and the models mentioned have achieved better results on medium-sized datasets (e.g., Ima-

geNet) [56]. However, for small datasets, the above models still fall behind similar-sized

CNNs. The key contrast between the proposed work and previous research is that a hybrid

transformer network is put forward, comprising a hierarchical structure and incorporating the

convolutions in the transformer’s core sections so that it can be trained effectively and effi-

ciently even on small datasets like EMDS-6.
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3. Methods

3.1 Overall architecture

The aim of this work is to present a new hierarchical transformer architecture with more con-

volution operations in the transformer’s core sections so that it can effectively classify data

after training using small datasets. Fig 1 shows an overview of the proposed HTEM model. In

this work, a multi-stage structure is used, where all stages utilize a similar structure comprising

of a CPSA block and an LFFN block.

One of the major differences of the proposed architecture is that it does not employ a fixed

patch size for token embedding as ViT does. Instead, a CTE block is utilized, consisting of a

convolution operation with a stride of 1 and an output channel of 16, followed by ReLU activa-

tion and a maxpooling layer with a stride of 2 to extract local information efficiently. Inspired

by the layout of CNNs, in order to extract the multi-scale feature maps, before each level a fea-

ture embedding layer comprising a convolution operation is used to reduce the size of the inter-

mediate feature maps (2×downsampling of resolution) and project it to a higher dimension.

From an input image, the proposed model produces four hierarchical feature maps with strides

of 4, 8, 16, and 32. With the above feature maps’ hierarchical architecture, the model can extract

multi-scale representations, which makes it more suitable and computationally efficient for EM

image classification. In each stage, several similar encoder blocks, comprising a CPSA block and

an LFFN block, are consecutively layered for feature transformation while maintaining the reso-

lution of the input feature maps. The encoder block not only reduces the computational com-

plexity and the over-flexibility of the transformer model but also simultaneously captures both

the local contents and long-range dependencies. A global average pooling layer, a fully con-

nected layer, and a softmax classification layer make up the model’s final block. In addition, this

model does not require any position embedding to aid the training process.

Fig 1. Overall architecture of HTEM. First, the inputs are fed to a Convolutional Token Embedding (CTE) to obtain patches.

Second, the feature maps are processed using a feature embedding layer and repeated transformer-encoder blocks consisting of CPSA

and LFFN blocks in each stage. Finally, a global average pooling block is employed to obtain the class token.

https://doi.org/10.1371/journal.pone.0277557.g001
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In the following, we first demonstrate the implementation of a novel projection method

using the CPSA block. Then, we describe the LFFN block and how its efficient design boosts

the performance of the network.

3.2 Convolutional Parameters Sharing Multi-head Attention (CPSA)

In order to allow the proposed HTEM to capture more local features while at the same time

maintaining computational efficiency, in this paper the adoption of a CPSA block is proposed

instead of the multi-head attention (MHA) block employed in the original transformer archi-

tecture. Fig 2A shows the original MHA block, which employs a linear projection to extract

the attention feature, while Fig 2B shows the proposed CPSA block, which uses the convolu-

tional parameters’ shared projection to calculate the attention score of the model.

In order to decrease the complexity of the HTEM model and achieve high accuracy, the

sharing between the key and value is enabled, which results in the shared parameter matrix S.

This means that the proposed CPSA block employs a query Q, a shared parameters matrix S to

replace Q, a key K, and a value V to obtain an attention feature. First, the CPSA block uses a

convolutional projection to reduce the dimensions of input feature maps. The convolutional

projection is implemented through a depth-wise separable convolution with a kernel size of s
and a stride of s. This operation enhances the ability of the model to capture local information

while improving its computational efficiency. Then, the tokens are compressed into 1D

sequence features, thus generating the shared parameters matrix for subsequent processing.

This is expressed mathematically as follows:

S ¼ FlattenðDWConv2dðxi; s; sÞÞ ð1Þ

where S denotes the shared parameter matrix used for calculating the attention feature, xi
denotes the input feature maps before the convolution projection, DWConv2d denotes depth-

wise separable convolution operation, Flatten indicates the conversion of a 2D feature map to

1D sequence features, and s represents the size of the depth-wise convolution kernel and its

stride, which in the following will be referred to as “reduction rates”.

Fig 2. (A) Multi-Head Attention (MHA) block in ViT [30]. (B) Convolutional Parameters Sharing multi-head Attention

(CPSA) block in HTEM.

https://doi.org/10.1371/journal.pone.0277557.g002
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Inspired by [30], in order to guarantee the consistent dimensionality of the output tokens,

Q always maintains its original dimensions and is not processed through the convolutional

projection. To obtain Q, the feature maps are reshaped from 2D to 1D feature maps. Then, the

relationship between the tokens is modeled through the similarity between the Q-S pairs,

which results in the generation of the attention score, which can be mathematically expressed

as follows:

AttentionðQ; SÞ ¼ Softmax
QST
ffiffiffiffiffiffiffiffiffi
dhead

p

 !

S ð2Þ

where Attention() denotes the output attention features after the attention operation, the Soft-
max function is applied to the rows of the similarity matrix and dhead denotes the dimension of

each attention head.

The effectiveness of the proposed HTEM is ensured by three crucial factors in the CPSA

block. First, the utilization of depth-wise separable convolution introduces only s2C additional

parameters compared to MHA in the original transformer, which is negligible compared to

the total number of parameters in the model. Second, matrix sharing reduces the number of

key and value parameters in half. This approach results in a diminished network learning

capacity, but in the case of small EM datasets like EMDS-6, it also prevents overfitting. Third,

each convolution projection operation is analogous to a matrix downsampling operation. Con-

sequently, the number of S parameters is decreased by a factor of s, and the computational cost

of the later corresponding multi-headed attention mechanism is lowered by a factor of s2.

3.3 Local Feed-Forward Network (LFFN)

In the original Transformer, an FFN block is appended after the attention layer. However, the

FFN block only utilizes two fully-connected layers to achieve feature representation and can-

not capture the correlation among neighboring tokens in the spatial dimension. Therefore, it

would be useful if local dependencies could be effectively added to the fully connected net-

work. The expansion of the hidden dimension between fully-connected layers is reminiscent

of the sandglass block in MobileNeXt [44]. As shown in Fig 3, in this paper an LFFN block is

proposed instead of the FFN block in the original transformer. The LFFN block allows the

HTEM to capture more local features at different dimensions by introducing a sandglass block

consisting of depth-wise separable convolution, thus improving the local information acquisi-

tion capability of the model.

The LFFN block performs the following operations. First, in order to improve the informa-

tion interaction between adjacent pixels, the 1D feature inputs i.e., the tokens xhi 2 R
N�C

pro-

duced by the CPSA block, are transformed to 2D features as shown in Fig 3. The feature

representation is

xS
i ¼ Reshape2Dðxhi Þ; x

s
i 2 R

ffiffiffi
N
p
�
ffiffiffi
N
p
�C

ð3Þ

where xs
i denotes the transformed 2D features, N denotes the number of feature inputs, C

denotes the feature dimension, and Reshape2D denotes the conversion of 1D sequence features

to 2D feature maps. Second, in order not to lose low-dimensional local feature information, a

depth-wise separable convolution with a kernel size of k is employed to process the 2D fea-

tures. The computation could be represented as

xdð1Þ
i ¼ DWConv2dðxs

iÞ; x
dð1Þ
i 2 R

ffiffiffi
N
p
�
ffiffiffi
N
p
�C ð4Þ

where xdð1Þ
i denotes the new feature maps after the depth-wise separable convolution operation
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DWConv2d. Then, the feature dimension is expanded using convolution with a kernel size of 1

to generate a new feature, i.e.,

xlð1Þi ¼ Convðxdð1Þi Þ; x
lð1Þ
i 2 R

ffiffiffi
N
p
�
ffiffiffi
N
p
�ðe�CÞ ð5Þ

where xlð1Þ
i denotes the feature maps after the dimension expansion, Conv denotes a convolu-

tion operation with a kernel size of 1, and e denotes the expansion ratio in the LFFN block. In

order to obtain additional high-dimensional local contents, a depth-wise convolution is

applied with a kernel size of k. That is,

xdð2Þi ¼ DWConv2dðxlð1Þ
i Þ; x

dð2Þ
i 2 R

ffiffiffi
N
p
�
ffiffiffi
N
p
�ðe�CÞ

ð6Þ

where xdð2Þ
i denotes the new higher-dimension feature maps after the depth-wise separable

convolution operation. Finally, the output feature maps xlð2Þ
i of the LFFN block are generated

through the application of a dimensionality reduction operation in the form of a convolution

with a kernel size of 1. The operation can be represented as

xlð2Þi ¼ Convðxdð2Þi Þ; x
lð2Þ
i 2 R

ffiffiffi
N
p
�
ffiffiffi
N
p
�C

ð7Þ

Note that the depth-wise convolutions introduce the most of the additional computational

overhead of the LFFN block, but it is negligible compared to the total number of parameters in

the whole model.

4. Results

In this section, the proposed HTEM model is evaluated using the EMDS-6 and WHOI data-

sets. Moreover, ablation investigations are conducted to confirm the efficacy of each compo-

nent of the proposed architecture.

Fig 3. Local Feed-Forward Network (LFFN) in HTEM. DW Conv denotes depth-wise convolution.

https://doi.org/10.1371/journal.pone.0277557.g003
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4.1 Experimental settings

4.1.1 Network architecture. The proposed HTEM architecture used for the experiments

of this study is presented in Table 1. The CTE block consisted of a convolutional layer with a

kernel size of 3 and a stride of 1, and generated 16 enriched channels. To ensure stable train-

ing, a BatchNorm layer was also introduced. Then, a max-pooling layer was used with a kernel

size of 3 and a stride of 2. The CPSA and LFFN blocks employed are shown in brackets, with

the numbers of blocks stacked. In each CPSA block of stage i, hi, and si are the number of

heads and reduction rates, respectively, while e denotes the expansion ratio in the LFFN block,

and k is the depth-wise convolutions’ kernel size in the LFFN block.

4.1.2 Dataset description and preprocessing. In this experiment, the model performance

is evaluated using the EMDS-6 and WHOI datasets.

EMDS-6 is an EMs dataset containing 840 distinct EM images in 21 categories of 40 images

each. Because the EMDS-6 is a very small dataset, 37.5% of the dataset was selected as the train-

ing set, 25% as the validation set, and 37.5% as the test set. as in [33]. In the data augmentation

experiment, the same five geometric enhancements as in [33] were adopted to enhance the

EMDS-6 dataset, namely rotation by 90˚, 180˚, and 270˚, as well as up-down and left-right

mirror transformations. After data augmentation, the resulting dataset size was 6 times that of

the original. In addition, following [33], in the imbalanced data experiments, after the data

augmentation, each of the 21 types was viewed as a positive sample in turn, while the remain-

ing 20 types of samples are considered negative samples. In this way, 21 new imbalanced data-

sets were obtained and used to validate the performance of the proposed model on imbalanced

datasets.

WHOI is a dataset of cells and other planktonic particles that Imaging FlowCytobot col-

lected from the water at Woods Hole Harbor. The dataset includes 6600 manually categorized

photos that have been divided into equal-sized training and testing sets. There are 22 catego-

ries of photos, and each category has an equal number of examples (150 training and 150 test

samples). The ratio between training and testing samples employed in our experiment was the

same as that in [57].

4.1.3 Evaluation method. To evaluate the classification performance of the deep learning

models objectively, the indicators of [33] were adopted, namely precision, recall, accuracy,

Table 1. Detailed settings of HTEM.

Output Layer Name HTEM

112×112 CTE Conv:3×3, 16, stride = 1

Maxpooling:3×3, stride = 2

56×56 Feature Embedding 2×2, 24, stride = 2

Stage 1 CPSA

LFFN
h1 ¼ 1; s1 ¼ 8

e ¼ 4; k ¼ 3

" #

� 2

28×28 Feature Embedding 2×2, 32, stride = 2

Stage 2 CPSA

LFFN
h2 ¼ 2; s2 ¼ 4

e ¼ 4; k ¼ 3

" #

� 2

14×14 Feature Embedding 2×2, 48, stride = 2

Stage 3 CPSA

LFFN
h3 ¼ 4; s1 ¼ 2

e ¼ 4; k ¼ 3

" #

� 4

7×7 Feature Embedding 2×2,64, stride = 2

Stage 4 CPSA

LFFN
h4 ¼ 8; s4 ¼ 1

e ¼ 4; k ¼ 3

" #

� 2

https://doi.org/10.1371/journal.pone.0277557.t001
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F1-score, AP, and mAP. Precision is the ratio between the true positive samples and the total

number of samples predicted as positive, while recall is the ratio of true positive samples pre-

dicted compared to all the positive samples. The F1-score is the harmonic mean of precision

and recall. Accuracy refers to the ratio of the number of correctly predicted samples to the

total number of samples. AP refers to the average value of the recall rate and ranges from 0 to

1. The mAP is the arithmetic average of all AP. The specific equations of these metrics are

shown in Table 2. In Table 2, TP, FP, TN, and FN refer to the number of true positives, false

positives, true negatives, and false negatives, respectively.

4.1.4 Implementation details. The experiments were performed on an NVIDIA Quadro

RTX 4000 GPU and the same training strategy used in [33] was adopted. Specifically, the learn-

ing rate was set to 0.002 and the batch size was set to 32. The model was trained for 100 epochs.

All images were cropped to 224×224 pixels.

4.2 Experimental results and analysis

4.2.1 Classification performance on EMDS-6. The accuracy and loss curves of HTEM

on EMDS-6 are shown in Fig 4. In Tables 3 and 4, we also evaluate the effectiveness of the pro-

posed HTEM models in comparison to state-of-the-art classification models, including trans-

former-based models (ViT, DeiT, T2T-ViT, and BotNet) and representative CNN-based

models (Xception, ResNet18, ResNet34, MobileNetV2, Googlenet, Densenet121, Densenet169,

and VGG11). All the other models’ implementations were obtained from [33].

As shown in Fig 4A, the accuracy on the training set is significantly higher than that on the

validation set. The accuracy of the HTEM model training set increases rapidly, approaching its

highest point of 90% after 80 epochs. After 40 epochs, the accuracy on the validation set

approaches 50%, which is its maximum. As shown in Fig 4B, after 80 epochs, the HTEM train-

ing set loss curve begins to gradually taper out toward its minimum value. However, in the val-

idation set, this occurs after only 30 epochs.

As shown in Table 3, we compared the proposed HTEM model with the other models on

the validation set of EMDS-6. Compared to the CNN-based models, HTEM achieves an accu-

racy of 53.00%, which is higher than Xception, ResNet34, and GoogleNet by 7.29, 10.14, and

11.09 percentage points (pp.), respectively. Compared with Densenet121, Densenet169,

ResNet18, MobileNetV2, and VGG11, HTEM even exceeds 10pp. in classification accuracy

improvement. Similarly, HTEM achieved the highest recall, precision, and F1-score values in

the validation set results, which are 53.00%, 56.82%, and 53.33%, respectively, and outper-

formed all the other models on EMDS-6. This is a surprising result since the size of HTEM is

one-sixtieth the size of the Xception model. Compared to the transformer-based models, our

model achieves greater accuracy over DeiT, ViT, T2T-ViT, and BotNet by 13.95, 15.86, 18.72,

Table 2. Evaluation metrics for EM image classification.

Assessments Formula

Precision (P) TP
TPþFP

Recall (R) TP
TPþFN

F1-score 2� P�R
PþR

Accuracy TPþTN
TPþTNþFPþFN

AP
1

M

XM

i¼1

PrecisionmaxðiÞ

mAP
1

K

XK

j¼1

APðjÞ

https://doi.org/10.1371/journal.pone.0277557.t002
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and 22.52pp., respectively, while the number of parameters is only one-twelfth that of

T2T-ViT.

To further illustrate the performance of the HTEM model proposed in this paper, we again

compared all models on the test set of EMDS-6, as shown in Table 4. On the test set, the perfor-

mance of all models decreased compared to that on the validation set because the test set com-

prised image data that were unknown to the models, and because of the performance of the

test set reflects the models’ generalization ability. Compared to the models on the test set, the

proposed HTEM model still achieved the highest recall, precision, F1-score, and accuracy

results, at 47.02%, 48.81%, 46.72, and 47.02%, respectively. It should be noted the HTEM

model required the least training time and performed inference faster than the other models,

while still achieving higher accuracy on EMDS-6, as shown in Tables 3 and 4. The experimen-

tal results show that HTEM’s transformer configuration can be trained to achieve high

Fig 4. The accuracy and loss curves of the proposed HTEM model.

https://doi.org/10.1371/journal.pone.0277557.g004

Table 3. Comparison of classification results of different models on the validation set.

Model R(%) P(%) F1_score(%) Accuracy(%) Params Size (MB) Time(s)

BotNet 30.48% 32.61% 30.06% 30.48% 72.2 894

VGG11 31.43% 41.20% 29.97% 31.43% 491 864

T2T-ViT 34.29% 38.17% 34.54% 34.28% 15.5 825.3

ViT 37.14% 41.02% 35.95% 37.14% 31.2 715

Deit 39.05% 39.37% 37.70% 39.05% 21.1 817.27

MobileNetV2 39.52% 39.57% 37.01% 39.52% 8.82 767

ResNet18 40.95% 45.55% 41.05% 40.95% 42.7 739

Densenet169 40.95% 43.62% 39.89% 40.95% 48.7 988

Densenet121 40.95% 43.61% 40.09% 40.95% 27.1 922

Googlenet 41.90% 42.83% 40.49% 41.91% 21.6 772

ResNet34 42.86% 45.33% 42.31% 42.86% 81.3 780

Xception 45.71% 52.48% 44.95% 45.71% 79.8 996

HTEM 53.00% 56.82% 53.33% 53.00% 1.3 342

P denotes Precision, and R denotes Recall.

https://doi.org/10.1371/journal.pone.0277557.t003
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accuracy on EMDS-6 through the proposed hierarchical structure and incorporation of local

feature information. This outcome is consistent with this study’s main objective.

4.2.2 Classification performance on WHOI. To further validate the effectiveness of our

proposed model on a different EM dataset, we evaluated the proposed HTEM on the publicly

available dataset used in [57], which reports classification benchmarks on the WHOI plankton

datasets. The accuracy and F1_score of our model were compared with that of the best models

in [57]. As shown in Table 5, the HTEM model outperformed all the previous methods. the

proposed HTEM demonstrated an accuracy of 2.5pp. and 1.7pp. compared to individual CNN

models, i.e., InceptionV3 and EfficientNet B7. Compared to the ensemble models, i.e., Bes-

t_6_avg and Best_6_stack, HTEM showed slight improvements in terms of accuracy and

F1-score. The experimental results show that the proposed HTEM can achieve the desired clas-

sification performance on the WHOI dataset, further validating the rationality of our model

design.

4.3 Extended experiment

4.3.1 Classification performance on EMDS-6 after data augmentation. We compared

the proposed HTEM model with all the models on the EMDS-6 after data augmentation, as

shown in Tables 6 and 7. All the other models’ implementations were obtained from [33]. On

the validation set, although all the CNN-based models’ performance was improved after data

augmentation, the proposed HTEM model still outperformed the second-best Xception on its

recall, precision, F1-score, and accuracy values by 6.93, 9.48, 8.01, and 6.93pp., respectively. In

Table 4. Comparison of classification results of different models on the test set.

Model R(%) P(%) F1_score(%) Accuracy(%) Params Size (MB) Time(s)

BotNet 25.40% 29.65% 26.04% 25.39% 72.2 6.5

VGG11 27.61% 29.64% 26.00% 27.62% 491 4.98

ViT 31.75% 33.84% 31.47% 31.74% 31.2 3.77

Deit 32.39% 34.40% 32.74% 32.38% 21.1 5.43

Densenet121 33.01% 39.20% 33.79% 33.02% 27.1 9.27

ResNet18 33.33% 38.10% 32.36% 33.33% 42.7 4.92

Densenet169 33.65% 36.55% 33.79% 33.65% 48.7 11.13

T2T-ViT 34.29% 38.17% 34.54% 34.28% 15.5 4.44

MobileNetV2 34.29% 38.21% 33.07% 34.29% 8.82 5.13

Googlenet 35.23% 37.70% 34.21% 35.24% 21.6 5.97

ResNet34 36.51% 42.92% 36.22% 36.51% 81.3 6.14

Xception 40.33% 49.71% 41.41% 40.32% 79.8 5.63

HTEM 47.02% 48.81% 46.72% 47.02% 1.3 3.12

P denotes Precision, and R denotes Recall.

https://doi.org/10.1371/journal.pone.0277557.t004

Table 5. Comparison of classification results of different models on the WHOI dataset.

Model Accuracy(%) F1_score(%)

InceptionV3 96.5% 89.3%

EfficientNet 97.3% 91.6%

Best_6_avg 97.6% 93.0%

Best_6_stack 97.7% 92.5%

HTEM 99.0% 94.2%

https://doi.org/10.1371/journal.pone.0277557.t005
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addition, it also outperformed the Xception network in terms of training time, as it required

only one-third of Xception’s time. Compared with ResNet18, the proposed HTEM model has

a similar training time but its accuracy is superior by 15.11pp. Compared with MobileNetV2,

VGG11, ResNet34, Googlenet, Densenet121, and Densenet169, HTEM achieves the best classi-

fication performance with the least training time in all cases.

Compared to the transformer-based models, the performance of T2T-ViT, ViT, and Deit

did not improve significantly after data augmentation. This is because the geometric augmen-

tation has a greater impact on local dependencies and does not affect long-range dependencies.

The BotNet model had a greater performance improvement because it introduces the attention

module of the transformer in the ResNet network, which has the ability to capture both long-

range dependencies and local information. However, BotNet still fell behind the HTEM in

terms of accuracy by 22.96pp. This is because the proposed HTEM model introduces more

Table 6. Comparison of classification results of different models on the validation set after data augmentation.

Model R(%) P(%) F1_score(%) Accuracy(%) Params Size (MB) Time(s)

T2T-ViT 35.56% 38.43% 36.19% 35.56% 15.50 1385.62

BotNet 36.59% 36.38% 35.59% 36.59% 72.2 2000.17

ViT 39.05% 43.50% 38.52% 39.05% 31.20 902.27

Densenet169 42.14% 48.04% 42.79% 42.14% 48.70 2526.61

Densenet121 42.38% 46.91% 42.39% 42.38% 27.10 2169.11

Deit 43.34% 46.62% 43.29% 43.33% 21.10 1306.99

Googlenet 44.29% 47.16% 43.50% 44.29% 21.60 1257.33

ResNet18 44.44% 51.87% 43.03% 44.44% 42.70 1090.39

ResNet34 46.10% 47.85% 44.68% 46.11% 81.30 1335.87

VGG11 48.10% 52.40% 48.44% 48.10% 491.00 1745.73

MobileNetV2 49.67% 51.91% 48.82% 49.68% 8.82 1237.49

Xception 52.62% 52.05% 50.63% 52.62% 79.80 2636.08

HTEM 59.55% 61.53% 58.64% 59.55% 1.18 901.31

P denotes Precision, and R denotes Recall.

https://doi.org/10.1371/journal.pone.0277557.t006

Table 7. Comparison of classification results of different models on the test set after data augmentation.

Model R(%) P(%) F1_score(%) Accuracy(%) Params Size (MB) Time(s)

ViT 28.58% 29.63% 27.86% 28.57% 31.2 3.72

T2T-ViT 30.48% 35.88% 30.85% 30.48% 15.50 5.41

Deit 32.39% 34.40% 32.74% 32.38% 21.1 4.41

BotNet 36.50% 39.12% 36.35% 36.51% 72.2 6.44

VGG11 37.14% 38.81% 36.70% 37.14% 491 4.96

Densenet169 37.14% 41.51% 37.37% 37.14% 48.7 11.04

Googlenet 37.46% 43.55% 37.92% 37.46% 21.6 6.03

ResNet34 38.73% 42.25% 37.84% 38.73% 81.3 6.07

Densenet121 38.73% 40.28% 38.20% 38.73% 27.1 8.98

ResNet18 39.05% 44.82% 39.22% 39.05% 42.7 4.90

MobileNetV2 42.54% 47.56% 43.07% 42.54% 8.22 5.04

Xception 45.71% 50.43% 46.15% 45.71% 79.8 5.49

HTEM 54.73% 57.52% 54.91% 54.73% 1.18 3.02

P denotes Precision, and R denotes Recall.

https://doi.org/10.1371/journal.pone.0277557.t007
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convolution operations in the transformer and can capture both long-range dependencies and

a large amount of local features at the same time, so data augmentation results in substantial

performance gains.

On the test set, HTEM achieved an accuracy of 54.73%, which is higher than Xception,

MobileNetV2, and ResNet18 by 9.02pp., 12.19pp., and 15.68pp., respectively. Similarly, it

achieved 54.73%, 57.52%, and 54.91% in its recall, precision, F1-score and outperformed the

aforementioned transformer-based and CNN-based models. As shown in Table 6, the accu-

racy of the Xception model decreased by 6.91%, while the HTEM model decreased by only

4.82%. This is due to the fact that HTEM inherits the strong generalization ability of the trans-

former. In addition, although the amount of data increased, the HTEM model still had the

smallest training and inference times. The experimental results show that HTEM benefits

from the advantages of both CNNs and transformers at the same time, further validating the

rationality and effectiveness of the proposed model’s design.

4.3.2 Statistics analysis on EMDS-6. For the experiments presented in this section, the

EMDS-6 dataset was randomly divided three times to obtain training, validation and test sets.

The effectiveness of the proposed HTEM models was also evaluated in comparison to state-of-

the-art classification models, including transformer-based models (ViT and BotNet) and rep-

resentative CNN-based models (Xception, ResNet18, ResNet34, and MobileNetV2). All the

other models’ implementations were obtained from [33]. The average results of the three

experiments are shown in Table 8, where it can be seen that under the original dataset, the pro-

posed HTEM model has the highest classification performance of all the models. After data

augmentation, HTEM still yields the highest classification performance, outperforming Xcep-

tion, MobileNetV2, ResNet34, ViT, and BotNet by 8.95pp., 8.96pp., 14.03pp., 23.02pp., and

20.69pp., respectively. The classification performance of all models was improved except for

ViT. This is because the pure transformer model is insensitive to geometric transformation-

based data augmentation. These experimental results further verify the superiority and effec-

tiveness of the model proposed in this paper.

4.3.3 Feature information analysis. Fig 5 presents the confusion matrix of the HTEM

model regarding the EM images on the test set of EMDS-6 after data augmentation. 164 out of

the total of 315 EM images were classified into the correct category. The HTEM model per-

formed well on the Paramecium, Codosiga, and K. Quadrala image classification because these

three EMs have more obvious and less confusing characteristics, as shown in Fig 6. The predic-

tions of the Epistylis and Phacus classes were slightly inaccurate, as evidenced by the result that

10 out of the 15 Epistylis images were identified incorrectly. The misclassification was usually

caused by the very similar features of the two EMs, as shown in Fig 7, causing the Epistylis

images to be easily confused for Vorticella images. In fact, these EM images are very difficult

Table 8. Comparison of different deep learning models on EMDS-6 test sets. (In [%]).

Model Original Data Augmented Data

R(%) P(%) F1_score(%) Accuracy(%) R(%) P(%) F1_score(%) Accuracy(%)

BotNet 29.00 31.11 28.46 28.99 33.02 34.29 32.45 33.02

ViT 33.24 34.92 32.63 33.23 30.69 32.49 30.08 30.69

ResNet34 37.14 41.96 36.93 37.14 39.68 43.15 39.54 39.68

MobileNetV2 34.50 37.24 33.86 34.50 44.75 48.31 44.82 44.75

Xception 39.37 44.25 39.07 39.37 44.76 47.97 44.53 44.76

HTEM 47.01 48.56 46.05 47.01 53.71 57.31 53.45 53.71

P denotes Precision, and R denotes Recall.

https://doi.org/10.1371/journal.pone.0277557.t008
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for non-experts to distinguish. In summary, the proposed HTEM model can assist in the task

of EM classification, but for EMs with particularly similar features, further confirmation of the

categories by professionals using appropriate instrumentation is still required.

4.3.4 Imbalanced training on EMDS-6. In this section, to validate the classification abil-

ity of the proposed HTEM model on imbalanced datasets, the EMDS-6 dataset is restructured.

The procedure was repeated 21 times and 21 different unbalanced EMs datasets were obtained.

The specific data reorganization method is shown in Section 4.1.2. The AP of the deep learning

models was calculated after training on each dataset version. Table 9 shows the AP and mAP

for each model on the validation set. CNN- and transformer-based models such as ResNet50,

Inception-V3, Xception, and ViT were selected respectively for comparison. All the other

models’ implementations were obtained from [33]. It is evident from Table 9 that the mAP of

Fig 5. Confusion matrix of HTEM model on the test set after data augmentation. In the confusion matrix, 0, 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 represent Actinophrys, Arcella, Aspidisca, Codosiga, Colpoda,

Epistylis, Euglypha, Paramecium, Rotifera, Vorticella, Noctiluca, Ceratium, Stentor, Siprostomum, K. Quadrala,

Euglena, Gymnodinium, Gymlyano, Phacus, Stylongchia, Synchaeta.

https://doi.org/10.1371/journal.pone.0277557.g005

Fig 6. Images of Paramecium, Codosiga, and K. Quadrala.

https://doi.org/10.1371/journal.pone.0277557.g006
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the HTEM model is the highest, at 60.50%. HTEM obtains the highest AP on the 10th dataset

version, with an AP of 81.56%, and the lowest AP on the 16th dataset, at 41.24%. Compared to

the CNN-based models, the proposed model achieves greater accuracy over Xception, Incep-

tion-V3, and ResNet50 by 3.89, 17, and 19.47pp., respectively. This is mainly due to HTEM’s

ability to capture both local information and long-range dependencies. In addition, it should

be noted that HTEM’s performance constitutes a significant improvement over the ViT

model, outperforming by 25.57pp. This is because of the greatly improved ability of the model

to acquire local features via the convolution operations integrated in the transformer model.

The experimental results show that HTEM can achieve high classification performance on the

imbalanced versions of the EMDS-6 dataset, further validating its effectiveness.

4.3.5 Classification performance of EMDS-6 test set in the presence of noise. In this

section, the classification performance of the proposed HTEM model in the presence of noise

is verified. To achieve this, salt-and-pepper and Gaussian noise was added to the images of the

EMDS-6 test set and the latter was input to the model trained on the clear images to verify the

model’s generalization ability in the presence of noise. We report the results in Table 10. We

also evaluated the accuracy of the proposed HTEM models in comparison to state-of-the-art

Fig 7. Images of Epistylis, and Vorticella.

https://doi.org/10.1371/journal.pone.0277557.g007

Table 9. AP and mAP of different models in imbalanced training. (In [%]).

Model 1 2 3 4 5 6 7 8 9 10 11

ViT 30.77% 44.99% 18.43% 48.51% 74.47% 76.17% 50.98% 15.32% 31.12% 60.74% 54.02%

ResNe50 30.58% 45.96% 14.24% 68.19% 66.15% 43.10% 71.24% 46.51% 31.87% 62.19% 36.79%

Inception-V3 37.75% 36.79% 33.41% 56.37% 55.77% 43.51% 59.52% 41.18% 38.40% 75.03% 69.26%

Xception 37.66% 51.16% 29.72% 68.32% 73.66% 67.96% 79.19% 65.41% 55.84% 82.97% 55.91%

HTEM 56.04% 51.23% 46.95% 71.54% 72.21% 65.56% 80.02% 68.48% 49.35% 81.56% 56.59%

Model 12 13 14 15 16 17 18 19 20 21 mAP

ViT 15.24% 17.84% 25.46% 6.74% 13.95% 48.61% 7.26% 60.33% 23.07% 9.53% 34.93%

ResNe50 15.59% 42.12% 68.57% 24.94% 17.49% 47.52% 6.64% 49.04% 16.73% 56.10% 41.03%

Inception-V3 15.09% 49.09% 64.11% 37.91% 15.00% 43.98% 15.84% 54.40% 10.78% 60.38% 43.50%

Xception 54.16% 52.28% 65.06% 46.36% 30.61% 60.41% 31.21% 61.14% 45.50% 74.36% 56.61%

HTEM 53.22% 53.02% 71.54% 70.00% 41.24% 58.06% 38.66% 62.35% 49.75% 73.21% 60.50%

https://doi.org/10.1371/journal.pone.0277557.t009
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classification models, including transformer-based models (ViT, DeiT, and T2T-ViT) and rep-

resentative CNN-based models (Xception, ResNet18, ResNet34, MobileNetV2, and Googlene).

To better illustrate the effect of noise on the classification accuracy of the models, we used the

classification accuracy of each model on the test set in the absence of noise as a benchmark. As

shown in Table 10, the proposed HTEM model again achieved the highest classification accu-

racy on the noisy test set, achieving 46.67% and 46.07% in the salt-and-pepper and Gaussian

noise cases, respectively. In addition, it is evident that noise has a greater impact on the CNN-

based models than on the transformer-based models. This is because transformer-based mod-

els have better generalization ability than CNN-based models, which mainly rely on local fea-

tures. The proposed HTEM, due to the combined advantages of both CNNs and transformers,

retains its high feature extraction capability in the presence of noise interference, further vali-

dating the rationality and effectiveness of the proposed model.

4.4 Ablation study

To confirm the viability of the proposed blocks introduced as novel transformer architectural

elements, five ablation studies were performed. First, the effect of the CPSA and LFFN blocks’

presence on the HTEM’s performance on EMDS-6 was analyzed. Then, it is demonstrated that

the position embeddings can be dropped from the model. Finally, the impact of the configura-

tion of three key parameters on network performance is discussed.

4.4.1 Effectiveness of CPSA and LFFN on EMDS-6 test set after data augmentation.

The proposed HTEM model differs in a number of ways from transformer-based models like

ViT, the most notable difference being the proposed CPSA and LFFN blocks. In the first exper-

iment, every block in the model was replaced by a transformer block while maintaining the

other parameters the same to investigate the effects of CPSA and LFFN on the performance of

the proposed HTEM. The modified model’s classification accuracy was then obtained on the

augmented EMDS-6 dataset. The model was trained for 100 epochs. The effects of each modi-

fication on the proposed HTEM model are presented in Table 11. It is evident that the CPSA

block has a greater impact on the classification accuracy of small EM datasets, while the LFFN

block also brings about a significant improvement on the classification effect compared to the

FFN of the original transformer. These findings suggest that adding CPSA and LFFN to the

transformer can help improve the classification accuracy in the case of small datasets like

EMDS-6.

4.4.2 Removal of position embedding on EMDS-6 test set after data augmentation.

Given the increased local information integrated into the HTEM model, the necessity of the

Table 10. Comparison of classification accuracy of different models on the test set in the presence of noise.

Model No noise Pepper-salt noise Gaussian noise

ViT 31.74% 30.83% (-0.91) 30.03% (-1.71)

Deit 32.38% 31.65% (-0.73) 30.75% (-1.63)

ResNet18 33.33% 27.31% (-3.12) 28.69% (-4.64)

T2T-ViT 34.28% 30.21% (-0.72) 32.39% (-1.89)

MobileNetV2 34.29% 31.27% (-3.02) 30.35% (-3.94)

Googlenet 35.24% 32.63% (-2.61) 31.25% (-3.99)

ResNet34 36.51% 33.95% (-2.56) 32.78% (-3.73)

Xception 40.32% 37.66% (-2.66) 36.80% (-3.52)

HTEM 47.02% 46.67% (-0.35) 46.07% (-0.95)

P denotes Precision, and R denotes Recall.

https://doi.org/10.1371/journal.pone.0277557.t010
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position embedding was analyzed. The results in Table 12 show that omitting the position

embedding has no negative effects on the proposed model’s performance. Therefore, the final

proposed configuration of the model omits the position embeddings. It should be noted that

since the T2T-ViT cannot capture more local features, a corresponding change of removing

the position embedding results in a performance loss of 4.12% on the EMDS-6. This further

demonstrates the effectiveness of the proposed HTEM. Since position embedding needs to be

implemented using a fixed-length learnable vector according to the size of the input image,

this greatly limits the model’s ability to adapt to inputs of different sizes. CPVT [58] tries to use

conditional position encoding to represent position embeddings to help transformer during

training. The HTEM can forego the position embedding completely, which constitutes a new

approach.

4.4.3 Different types of layout of each stage on EMDS-6 validation set. As CPSA and

LFFN are the two core blocks of the HTEM model, an interesting question is how to determine

the optimal number of these two blocks to achieve the best classification performance. In each

stage of the HTEM model, we used the same number of CPSA and LFFN blocks to form a

block unit, so this question is equivalent to determining the number of modular units in each

stage, which is called a "layout" design. For this purpose, several different layouts were com-

pared and the results are presented in Table 13. By selecting several common layout designs in

each stage, it was found that the model with the [2, 2, 4, 2] layout achieved the optimal classifi-

cation accuracy. When the number of block units was too small, the salient features of the

images could not be learned, while high classification accuracy also cannot be obtained with

too many block units due to the small size of the EMDS-6 dataset.

4.4.4 Different types of CPSA block on EMDS-6 validation set. In the CPSA module,

each attention head learns image features of different dimensions, while the convolution oper-

ations improve image local feature acquisition. A reasonable configuration of attention heads

and convolutional reduction rates can potentially improve the accuracy of the model. There-

fore, appropriate experiments were performed to study the effect of different head and reduc-

tion rate configurations. It was found that using progressively changing heads and reduction

rates at each stage improves the model performance effectively, as shown in Table 14.

4.4.5 Different types of LFFN block on EMDS-6 validation set. In the LFFN block, the

size of the kernel determines the size of the captured local information. Therefore, kernel sizes

of 1×1, 3×3, and 5×5 were tested and the results are presented in Table 15. The 1×1 type shows

poor performance compared to the baselines that do not employ depth-wise convolution as an

Table 12. Ablations on position embedding.

Model PE Accuracy(%)

T2T-ViT
p

30.48%

× 26.36%

HTEM
p

54.14%

× 54.73%

https://doi.org/10.1371/journal.pone.0277557.t012

Table 11. Ablations on CPSA and LFFN.

Model None CPSA LFFN Accuracy(%)

HTEM
p

34.61%
p

47.82%
p

45.35%
p p

54.73%

https://doi.org/10.1371/journal.pone.0277557.t011
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extension layer. This demonstrates that increasing the number of layers in the transformer will

not necessarily result in improvement. When the kernel size is increased, the block captures

more local content, and corresponding gains were improved for both the 3×3 and 5×5 sizes.

However, the kernel size of 3×3 was selected as the default option, as it achieved the best trade-

off between the training time and model accuracy.

5. Conclusion

In this work, we have presented a hybrid architecture comprising a transformer and a CNN

model, which is suitable for EM image classification tasks on small datasets. A series of studies

were conducted to investigate various components and the hierarchical architecture design

and the introduction of the CPSA and LFFN blocks was demonstrated as a critical factor for

the improved performance of the HTEM model. The model exhibits better performance than

previous works on the EMDS-6 and WHOI with accuracies of 47.02% and 99%, respectively,

while maintaining computational efficiency. Furthermore, the proposed model no longer

requires position embedding, as it can capture more local features due to the introduction of

the two blocks. By incorporating rational designs, we provide a new perspective for EM image

classification.

Although our model achieves high classification performance on small EM datasets, its

applicability to other types of image datasets still needs further study. In future work, the pro-

posed model will be applied to more image datasets such as facial image datasets to further val-

idate its generalization performance.

Table 13. Ablations study results on different types of layout of each stage.

Model Layout Accuracy(%)

HTEM [2,2,2,2] 44.34%

[3,3,6,3] 41.26%

[4,4,8,4] 37.56%

[2,2,4,2] 53.00%

https://doi.org/10.1371/journal.pone.0277557.t013

Table 14. Ablations study results on different configurations of attention heads and reduction rates.

Model Heads Numbers reduction rates Accuracy(%)

HTEM [3,3,3,3] [2,2,2,2] 42.55%

[8,8,8,8] [2,2,2,2] 39.25%

[3,3,3,3] [8,4,2,1] 46.56%

[1,2,4,8] [8,4,2,1] 53.00%

https://doi.org/10.1371/journal.pone.0277557.t014

Table 15. Ablations study results on the type of LFFN block.

Model Kernel Size Accuracy(%) Time(s)

HTEM X 49.59% 290

1×1 47.56% (-2.03) 315

3×3 53.00% (+3.41) 342

5×5 53.04% (+3.45) 417

https://doi.org/10.1371/journal.pone.0277557.t015
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