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Hepatocellular carcinoma (HCC) is an aggressive gastrointestinal malignancy with a
high rate of mortality. Multiple studies have individually recognized members of RAP
gene family as critical regulators of tumor progression in several cancers, including
hepatocellular carcinoma. These studies suffer numerous limitations including a small
sample size and lack of analysis of various clinicopathological and molecular
features. In the current study, we utilized authoritative multi-omics databases to
determine the association of RAP gene family expression and detailed molecular and
clinicopathological features in hepatocellular carcinoma (HCC). All five RAP genes
were observed to harbor dysregulated expression in HCC compared to normal liver
tissues. RAP2A exhibited strongest ability to differentiate tumors from the normal
tissues. RAP2A expression was associated with progressive tumor grade, TP53 and
CTNNB1 mutation status. Additionally, RAP2A expression was associated with the
alteration of its copy numbers and DNA methylation. RAP2A also emerged as an
independent marker for patient prognosis. Further, pathway analysis revealed that
RAP2A expression is correlated with tumor-infiltrating immune cell composition and
oncogenic molecular pathways, such as cell cycle and cellular metabolism.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth leading cancer in incidence and the fourth most
common cause of cancer mortality in the world (Bray et al., 2018). It is the most common type of
primary liver cancer that usually arises on the background of chronic liver disease, hepatitis B or
C virus infection, or nonalcoholic steatohepatitis (Bruix et al., 2011; Villanueva, 2019). For
locally advanced cancers without cirrhosis, the 5-years survival rate of patients is only 36–70%
and 60–70% with successful surgical resection or liver transplantation, respectively. Further,
postoperative recurrence and metastasis are common in HCC, which pose a challenge in the
management of this disease. Therefore, biomarkers to predict prognosis in HCC are highly
needed. The common indicators of prognosis of HCC include tumor size, degree of cirrhosis,
tumor differentiation and microvascular invasion (Villanueva, 2019). The recent emergence of
high throughput sequencing data by multiple studies has enabled researchers to describe
molecular features of HCC in detail and has provided several potential biomarkers for the
prediction of patient prognosis (Wheeler and Roberts, 2017).
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RAP proteins (Ras proximate proteins) are members of the
Ras GTP binding family sharing 50–60% sequence homology
with the Ras family. The diversity and specificity of Ras and RAP
proteins are contributed by different sets of GEFs (guanine
nucleotide exchange factors) and GAPs (GTPase-activating
proteins). Five different genes of the RAP family, RAP1A,
RAP1B, RAP2A, RAP2B, and RAP2C have been identified in
the human genome (Bokoch, 1993). RAP proteins primarily
function in cell adhesion, migration, and polarity (Bokoch,
1993; Ehrhardt et al., 2002; Di et al., 2015b; Qu et al., 2016;
Meng et al., 2018). The effect of RAP activation depends on the
context-specific interaction of RAP with their regulators and
downstream effectors.

Oncogenic functions of RAP proteins have been well
established in multiple cancer types, such as breast (Di et al.,
2015a), lung (Fu et al., 2009; Wu et al., 2014; Xie et al., 2015; Peng
et al., 2016), ovary (Che et al., 2015; Lu et al., 2016), stomach
(Zhang J. et al., 2020), cervix (Li et al., 2018), prostate (Bigler et al.,
2007) and brain (Wang et al., 2017). Accumulating evidence
suggests that RAP proteins also play critical roles in
hepatocellular carcinogenesis and tumor progression. Single
nucleotide polymorphism (SNPs) in RAP1A gene rs494453
has been shown to associate with higher incidence and
recurrence after liver transplantation (Mo et al., 2018; Zhang
R. et al., 2020). Further, higher activity of the NF-κB/RAP1
signaling pathway is associated with tumorigenicity in HCC
cells (Mo et al., 2018). Some studies have also provided strong
links between RAP1A expression and liver inflammation, a risk
factor for liver carcinogenesis. RAPGEF1, the GEF for RAP1A has
also been shown to be overexpressed in HCC (Sequera et al.,
2018). A previous study reported that HBV replication promotes
liver carcinogenesis through upregulation of RAP1B (Sheng et al.,
2014). Further, overexpression of RAP1B enhances the
proliferation and migration of HCC cells by regulating Twist-1
gene expression (Tang et al., 2018). Overexpression of RAB2B has
also been reported in HCC and its inhibition reduces cell
proliferation and invasion (Zhang et al., 2017). Recently,
Zheng et al. reported that HCC tissues exhibit significantly
higher mRNA and protein expression of RAP2A, which is
associated with tumor size, metastasis, pathological
differentiation, and vascular invasion (Zheng et al., 2017).
Furthermore, they also demonstrated that higher protein levels
of RAP2A are independently associated with poor overall survival
in HCC.

While the current literature suggests that RAP genes might
play critical roles in the pathophysiology of HCC, these studies
are limited by determining individual genes of the RAP
signaling pathway, limited number of clinical samples used in
different studies. Further, studies focused on determining the
association of RAP genes with genetic alteration and molecular
alterations remain limited. In the current study, we utilized
authoritative multi-omics databases to determine the
association of RAP gene family expression and detailed
molecular and clinicopathological features. Furthermore, we
also determined their association with multiple survival
parameters to determine their prognostic value.

MATERIALS AND METHODS

Data Retrieval
For mRNA expression analysis, RNA seq data of TCGA-LIHC
dataset, which was originally sourced from Broad GDAC
Firehose (http://gdac.broadinstitute.org/) (Wheeler and
Roberts, 2017) was extracted using UCSC XENA webserver
(Goldman et al., 2020). Clinicopathological and molecular
characterstics of the TCGA-LIHC dataset has been given in
Table 1. Microarray gene expression data from multiple
studies was accessed through the TNMplot webserver (Bartha
and Gy}orffy, 2020). This web server hosts data from multiple
HCC studies, where gene expression data has been normalized for
all available studies and can be used for comparison between the
collective groups of all normal samples with tumor samples.
Multi-Omics dataset of hepatocellular carcinoma released by
Clinical Proteomic Tumor Analysis Consortium (CPTAC)
(https://cptac-data-portal.georgetown.edu/cptacPublic/) was
utilized to analyze both mRNA and protein levels of RAP genes.

DNA Methylation Analysis
DNA methylation of RAP genes in TCGA cancer dataset was
estimated and visualized using MEXPRESS web server
(https://mexpress.be) (Koch et al., 2015; Koch et al., 2019)
and TCGA Wanderer (Díez-Villanueva et al., 2015). The
MEXPRESS web server uses DNA methylation data of
cancer and normal tissues from TCGA datasets, which
were originally developed on the Illumina Human
Methylation 450 BeadChip platform. The predesignated
methylation probes for each gene were taken into
consideration.

TABLE 1 | Patient charcterstics in TCGA-LIHC dataset.

Characterstics Total (370) %

Age (years) ≤50 75 20.67
>50 288 79.33

Gender Male 245 67.30
Female 119 32.7

Stage I + II 253 73.76
III + IV 90 26.24

Grade I + II 227 63.23
III + IV 132 36.77

AFP levels # 400 212 76.81
> 400 64 23.19

History of alcohol consumption No 233 66.57
Yes 117 33.43

Postoperative ablation embolization No 317 91.88
Yes 28 8.12

Radiation therapy No 336 97.67
Yes 8 2.33

TP53 mutation No 252 70.19
Yes 107 29.81

CTNNB1 mutation No 266 74.09
Yes 93 25.91

PCLO mutation No 320 89.13
Yes 39 10.87

ALB mutation No 315 87.74
Yes 44 12.26
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Survival Analysis
Kaplan-Meier survival analysis was performed using the tool
available in the KM-plotter (Nagy et al., 2018). For Kaplan-Meier
analysis, patients were distributed in high and low expression
groups based on median expression value as a cut-off point for
each gene. For survival analysis using univariate and multivariate
Cox proportionate hazard model, RAP2A gene expression was
taken as a continuous variable with multiple survival parameters
for the TCGA-LIHC dataset, as recommended (Liu et al., 2018).

Correlation and Pathway Enrichment
Analysis
Similarly, whole transcriptome correlations of RAP2A in the
TCGA-LIHC study were downloaded from the cBioPortal
website (https://www.cbioportal.org/) (Cerami et al., 2012; Gao
et al., 2013). After applying a filter for a cutoff of FDR corrected
p-value of 0.05 for Spearman’s r-value, 10,980 genes with
Spearman’s correlation q value <0.05 were filtered and used
for gene set enrichment analysis in GSEA software (Broad
Institute, http://www.broad.mit.edu/gsea/). Hallmark gene set
(version 7.1) (Subramanian et al., 2005) from predefined
molecular signature database was used as a reference gene set
for pathway enrichment (Liberzon et al., 2015).

Tumor Immunity Associations
Tumor immune estimation score (TIMER) webserver (https://
cistrome.shinyapps.io/timer/), which utilizes the RNA
sequencing data from TCGA for estimation of correlation
between gene expression and level of immune cells, present in
the tumor samples (Li et al., 2017). We utilized TIMER to
calculate the association between RAP2A gene expression with
infiltration of six immune cells including B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells in
TCGA-LIHC datasets. Default parameters were used in the
TIMER database for the gene-specific analysis module.

Further, CIBERSORT (Cell-type Identification By Estimating
Relative Subsets Of RNA Transcripts) analysis data of TCGA-
LIHC were extracted from a previously published study (Chen
et al., 2018; Thorsson et al., 2018). This provided relative fractions
of 22 different immune cells from a mixture of gene expression
profiles (TCGA-LIHC study) and was used to correlate with
RAP2A expression using Spearman’s correlation test. A total of
360 HCC samples were available with both gene expression data
and CIBERSORT analysis estimated fractions of immune cells.
Heatmap of the immune cell profiling data was generated along
with hierarchical clustering using HemI (Deng et al., 2014). The
default parameters of hierarchical clustering using the average
linkage method and Pearson distance were used.

Statistical Analysis
Data analysis was performed using Graphpad (version 6) and
Stata software (version 11). Mann-Whitney U-test was used for
comparison among histological subtypes, molecular subtype and
grades (***p < 0.001; **p < 0.01; *p < 0.05; ns, p > 0.05). Pearson
correlation analysis was used to determine the association of
DNAmethylation of RAP2A to its expression in the TCGA-LIHC

dataset. Kaplan-Meier survival analysis was performed using the
log-rank test. A p-value < 0.05 was considered statistically
significant.

RESULTS

Expression Pattern of RAPs in HCC
Further, RNA sequencing data from TCGA-LIHC study was
utilized to compare RAP gene expression in tumor tissues
with both tumor adjacent normal tissues from the same
dataset and with non-tumor associated normal hepatic tissue.
RAP1A, RAP1B, RAP2A and RAP2B exhibited significant higher
expression in tumors compared to other two groups
(Figures 1A,C,E,G). Although RAP2C expression was higher
in tumors compared to adjacent normal tissues, but both these
groups exhibited lower expression of RAP2C compared to
normal tissues from GTEx (Figure 1I). Furthermore, tumor
adjacent normal tissues also exhibited higher expression of
RAP1A and RAP2B, while no difference was observed for
RAP1B and RAP2A. Comparison between 50 paired normal
and tumor tissues from TCGA-LIHC also revealed that all
RAP genes exhibit higher expression in tumor tissues
compared to tumor adjacent normal tissues (Figures
1B,D,F,H,J). Among all RAPs, RAP2A displayed most robust
upregulation in tumor tissues in TCGA dataset (Figure 1F).
Further, we utilized multiomics data of hepatocellular carcinoma
developed by CPTAC study, where both mRNA and proteomic
data was available. The expression analysis in CPTAC data also
suggested that expression of RAP genes differ between normal
and tumor tissues both at themRNA and protein level. In CPTAC
data also, RAP2A exhibited most robust upregulation of mRNA
and protein levels in tumor tissues compared to normal tissues,
while expression of RAP2C was found to be reduced in tumor
tissues compared to normal tissues (Supplementary Figure S1).

We further performed receiver operating characteristic (ROC)
curve analysis to determine potential of RAP gene expression in
differentiating tumor tissues from normal liver tissues.
Interestingly, among five RAP genes, RAP2A exhibited highest
area under curve (AUC) of 0.8676 in TCGA-LIHC mRNA data
(Figure 2A). Similarly, analysis of CPTAC mRNA data also
suggested highest AUC of RAP2A (AUC: 0.9173, Figure 2B)
compared to other RAP genes. Interestingly, analysis of AUC in
CPTAC protein expression data revealed that RAP2C exhibit
highest AUC of 0.8445 followed by RAP2A with AUC of 0.8172
(Figure 2C).

Furthermore, expression data of RAP gene family in
hepatocellular carcinoma tissues and normal tissues from
multiple other datasets was assessed through TNMplot web
server. The analysis revealed that RAP1A, RAP1B, RAP2A,
and RAP2B genes exhibit significantly higher expression in
HCC tissues compared to normal tissues in comparison of
both available paired (Supplementary Figure S2, left panel)
and unpaired tissues (Supplementary Figure S2, right panel).
However, RAP2C did not exhibit significant difference in
expression in paired tissue analysis (Supplementary Figures
S2J). Considering robust upregulation of RAP2A in tumors,
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FIGURE 1 | Expression of RAP genes in tumor tissues compared with adjacent normal tissues and normal tissues from GTEx study. GTEx, Genotype-Tissue
Expression project; TANCT, tumor adjacent non-cancerous tissue. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, p > 0.05.
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and its established involvement in cell migration, we compared
expression of RAP2A in metastatic tissues with both normal
and primary tissues, which revealed highest expression of
RAP2A in metastatic tissues compared to other two groups
(Figure 2D).

Association of RAP Family Expression and
Clinicopathological Features in HCC
We further assessed the association of RAP genes with
clinicopathological including pathological age, gender, stage,
tumor grade, blood AFP levels. Among all RAP genes, higher
expression of RAP1B was associated with advanced-stage
(Figure 3A). Higher expression of RAP2A and RAP2B, and low
expression of RAP1A was associated with advanced grade
(Figure 3B). High RAP2A expression was associated with
younger age (<50 years, Supplementary Figure S3A) and
female gender (Supplementary Figure S3B). Higher expression
of RAP2A was also associated with increased AFP levels
(Figure 4A). A history of alcohol consumption was associated
with lower levels of RAP2A and RAP2C expression (Figure 4B).

Association of RAP Family Expression and
Genetic and Epigenetic Alterations in HCC
To further determine whether the expression of RAP genes is
associated with genetic alterations in HCC, we compared their
expression in tumors with mutated or wild type TP53, CTNNB1,
ALB, PCLO, and LRP1B. TP53 mutation was observed to be
associated with higher expression of RAP1A, RAP1B, RAP2A,
and RAP2B (Figure 5A). Further, CTNNB1 mutation was
significantly associated with reduced levels of RAP1B, RAP2A,
and RAP2B expression (Figure 5B). No RAP gene exhibited
association with PCLO andALBmutation status (Supplementary
Figures S4A,B respectively), while higher expression of RAP1A
was associated with LRPB1 mutant tumors (Supplementary
Figure S5).

To determine the potential role of copy number alterations and
DNAmethylation in the regulation of RAP2A expression in HCC,
we utilized a TCGA-LIHC study where copy number variation,
DNA methylation, and gene expression data were available. The
DNA methylation data in TCGA study was developed on
“Illumina HumanMethylation450 Beadchip” platform, where
representative CpG sites from different regions of most genes

FIGURE 2 | (A) ROC curve for the utility of RAP gene expression to differentiate between liver tumor tissues and normal tissue group in (A) TCGA mRNA data (B)
CPTAC mRNA data, and (C) CPTAC protein expression data. For (A), normal tissue group consisted of tumor-adjacent normal tissues from TCGA study and normal
tissues from non-disease controls from the GTEx study. (D) Comparison of RAP2A gene expression among normal tissue, tumor tissue, and metastatic tissues
assessed through TNM webtool.
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are captured. Interestingly, RAP2A gene expression was reduced
in tumor tissues and exhibited a negative correlation with DNA
methylation at several sites within the RAP2A promoter regions
and gene body (Figures 6A,B). A similar association was also
observed for normal liver tissues (Supplementary Figure S6). We
observed that in both normal and tumor tissues, DNA
methylation at an intragenic region represented by cg03608515
was most negatively correlated with gene expression, suggesting
this region, but not promoter region is the major regulatory site
for the expression (Figure 6C). Furthermore, a comparison of 47
paired normal and tumor tissue also revealed significantly
reduced methylation levels of cg03608515 in tumor tissues.,
these results strongly suggest the role of DNA methylation in

aberrant expression of RAP2A in HCC. Additionally, the
expression of RAP2A was also positively correlated with its
copy number (r � 0.450, p < 0.001). Further, analysis of CNV
data revealed frequent alterations in RAP2A copy number in
HCC tissues was associated with its higher expression with copy
number gain (Figure 6D, Kruskal-Wallis test, p < 0.0001).

Prognostic Significance of RAP Genes in
Hepatocellular Carcinoma
To determine the association of RAP gene family expression with
patient prognosis, we utilized the TCGA-LIHC dataset where
information for overall survival (OS), disease-specific survival

FIGURE 3 | Expression of RAP genes in tumor tissues compared between different stage (A) and grade (B). ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns,
p > 0.05.
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(DSS), disease-free interval (DFI), and progression-free interval
(PFI) was available. We performed survival analysis by
constructing a Kaplan-Meier plot for all RAP genes using
median expression levels for allotting patients into high and
low groups. We observed that higher expression of RAP2A was
significantly associated with poor OS (HR � 1.72, CI �
1.21–2.45, p � 0.0023, Figure 7A) and DSS (HR � 1.9, CI �
1.2–2.99, p � 0.005, Figure 7B), while no significant
association was observed with DFI and PFI (Figures 7C,D,
respectively). In light of the high positive correlation of
RAP2A with other RAP genes, we also assessed their

association with patient survival (Supplementary Figure
S7). Among other RAPs, higher expression of RAP1A and
RAP1B was also associated with poor overall survival
(Supplementary Figures S7A,B). We further performed
univariate and multivariate survival analysis for RAP2A
expression and other clinicopathological features, such as
age, gender, stage, grade, alcohol intake history,
radiotherapy status, and embolization status using Cox
proportionate hazard model. Interestingly, higher RAP2A
expression was also associated with poor OS, DSS, and PFI
in both univariate and multivariate survival analysis (Tables 2,

FIGURE 4 | Association of RAP expression in TCGA-KIRC dataset with (A) AFP levels, and (B) alcohol history. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05;
ns, p > 0.05.
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3, respectively). This suggested that RAP2A expression is
independently associated with poor outcome in HCC patients.

RAP2A Associated Cellular Pathways in
Hepatocellular Carcinoma
To determine RAP2A associated cancer-related pathways,
gene expression data of the TCGA-LIHC study was used.
GSEA analysis revealed that RAP2A expression is positively
correlated with cell cycle associated pathways such as
mitotic spindle (Figure 8A), G2M checkpoint

(Figure 8B), and E2F targets (Figure 8C) besides protein
secretion (Figure 8D). Further, negatively correlated genes
were enriched in metabolism associated pathways, such as
oxidative phosphorylation (Figure 8E), xenobiotic
metabolism (Figure 8F), fatty acid metabolism
(Figure 8G), bile acid metabolism (Figure 8H),
adipogenesis (Figure 8I), reactive oxygen species
(Figure 8J) and others such as coagulation (Figure 8K),
peroxisome (Figure 8L), interferon-alpha response
(Figure 8M), DNA repair (Figure 8N) and Myc target
genes (Figure 8O).

FIGURE 5 | Association of RAP expression in TCGA-KIRC dataset with (A) TP53mutation, and (B) CTNNB1mutation. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p <
0.05; ns, p > 0.05.
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FIGURE 6 | Association of mRNA expression of RAP2A with its copy number variation and DNA methylation in TCGA-LIHC dataset. (A) Comparison of DNA
methylation level of RAP2A between tumor tissues and normal tissues. (B) Correlation of RAP2A mRNA expression of RAP2A with its copy number variation and DNA
methylation in tumor tissues. (C) Comparison of DNA methylation level of RAP2A at an intragenic site associated probe cg03608515. (D) Comparison of RAP2A gene
expression among different copy number based groups in TCGA-LIHC dataset. ***p < 0.001; **p < 0.01; *p < 0.05. Insignificant associations (p > 0.05), are faded.
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Association of RAP2A Expression With
Tumor Immunity
Considering the previously described role of RAP genes in
immune cell functions (Carvalho et al., 2019a), we analyzed
the association of RAP2A expression with the level of immune
cell infiltration. Using the TIMER tool, we determine tumor
purity normalized spearman correlation of RAP2A expression
with infiltration level of six different immune cells. This analysis
revealed a positive correlation between RAP2A expression with
B cells (r � 0.3, p � 1.37e-08), CD8+ T cells (r � 0.237, p � 9.06e-
06), CD4+ T cells (r � 0.474, p � 1.16e-20), macrophages (r �
0.469, p � 4.56e-20), neutrophils (r � 0.374, p � 7.19e-13), and
dendritic cells (r � 0.401, p � 1.36e-14) in HCC (Figure 9A).
Furthermore, we utilized CIBERSORT analysis to determine the
association of RAP2A gene expression with the relative
abundance of 22 different types of immune cells in the

TCGA-LIHC dataset (Figure 9B, Supplementary Table S2).
Among immune cells, RAP2A expression was positively
correlated to CD4 Memory Resting T cells, resting dendritic
cells, neutrophils, M0 type macrophages, and naïve B cells,
while it exhibited negative correlations to monocytes, activated
NK cells, CD4 naïve T cells, CD8 T cells.

DISCUSSION

HCC is one of the leading causes of cancer-related deaths
worldwide. Significant advancement has been made in the
treatment of this malignancy over the past decade, however,
clinical response is highly heterogeneous. Further, treatment
strategies have been highly adapted to be based on the
progression of the disease at the time of diagnosis.

FIGURE 7 | Kaplan-Meier survival analysis of RAP2A in TCGA-LIHC dataset, including (A) OS, overall survival (B) DSS, disease specific survival (C) DFI, disease
free interval and (D) PFI, progression free interval. HR, hazard ratio; ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, p > 0.05.
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Nevertheless, several molecular biomarkers have been
determined with high prognostic value and future studies are
required to determine novel molecular features as therapeutic
targets and prognostic biomarkers. In the current study, we
uncovered distinct genomic and epigenomic features of RAP
family genes in HCC. Our study revealed that among five RAP
genes, RAP2A expression is highly altered in HCC and is
associated with multiple oncogenic features in HCC.

Little is known about the specific roles of RAP2A; in its active
form RAP2A interacts with several effectors including MINK1,
TNIK, and MAP4K4 and activates various signaling pathways
involved in cytoskeletal rearrangements, cell migration, cell
adhesion, and cell proliferation (Mittal and Linder, 2006).
RAP2A interacts directly with upstream MAPK signaling
element MAP4K4, and thus, increased RAP2A activity can

enable downstream signaling (Machida et al., 2004). So far, the
role of RAP2A in human malignancies remains controversial,
with some suggesting it as a tumor suppressor gene while other
studies refer to it as an oncogene. Upregulation of RAP2A has
been observed in several human malignancies such as follicular
thyroid cancer (Prabakaran et al., 2011), prostate cancer (Bigler
et al., 2007), renal cancer (Wu et al., 2017), gastric cancer (Zhang
J. et al., 2020) and bladder cancer (Wang et al., 2020).

In prostate cancer cells, RAP2A promotes androgen
hypersensitivity and cell growth (Bigler et al., 2007). In lung
cancer cells, ectopic expression of RAP2A enhances the migration
and invasion of the cells (Wu et al., 2014). In bladder cancer cells,
the expression of RAP2a was found significantly higher as
compared to normal cells. The proliferation and invasion of
cells were repressed by miR-3127 through directly targeting

TABLE 2 | Univariate analysis for association of RAP2A expression with patient prognosis in HCC.

OS DSS DFI PFI

Haz.
ratio

P [95% Conf.
interval]

Haz.
ratio

P [95% Conf.
interval]

Haz.
ratio

P [95% Conf.
interval]

Haz.
ratio

P [95% Conf.
interval]

Age 1.014 0.056 1.000–1.028- 1.007 0.419 0.990–1.025 0.998 0.742 0.985–1.011 0.996 0.449 0.984–1.007
Gender 1.229 0.259 0.859–1.758 1.243 0.353 0.786–1.965 0.891 0.525 0.625–1.272 1.072 0.662 0.785–1.465
Stage 1 (Ref.) (Ref.) (Ref.) (Ref.)
2 1.535 0.086 0.941–2.504 1.734 0.118 0.869–3.462 1.708 0.014 1.116–2.614 1.943 0.001 1.321–2.857
3 2.728 0.000 1.774–4.193 4.169 0.000 2.342–7.424 2.829 0.000 1.876–4.265 2.721 0.000 1.874–3.952
4 5.318 0.002 1.892–14.950 9.331 0.000 2.731–31.878 23.214 0.002 3.055–176.362 6.951 0.000 2.483–19.456

Grade 1 (Ref.) (Ref.) (Ref.) (Ref.)
2 1.269 0.387 0.740–2.175 1.316 0.443 0.653–2.653 1.489 0.156 0.859–2.582 1.189 0.451 0.758–1.865
3 1.268 0.409 0.721–2.230 1.413 0.351 0.683–2.924 1.724 0.056 0.986–3.015 1.347 0.209 0.846–2.142
4 1.514 0.458 0.507–4.519 0.689 0.724 0.088–5.411 1.002 0.998 0.291–3.446 0.920 0.877 0.320–2.647

Embolization 0.859 0.633 0.461–1.602 1.350 0.361 0.709–2.568 2.302 0.000 1.443–3.674 2.218 0.000 1.457– 3.375
Radiation 0.959 0.943 0.304–3.021 0.986 0.984 0.241–4.024 1.590 0.310 0.649–3.892 1.544 0.297 0.683–3.494
Alcohol
history

1.050 0.799 0.719–1.535 1.466 0.099 0.930–2.311 1.130 0.502 0.791–1.616 1.043 0.794 0.760–1.432

RAP2A 1.325 0.000 1.132–1.550 1.429 0.001 1.166–1.750 1.099 0.216 0.946–1.276 1.189 0.011 1.040–1.359

OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval; HR, hazard ratio; CI, confidence interval.

TABLE 3 | Multivariate analysis for association of RAP2A expression with patient prognosis in HCC.

OS DSS DFI PFI

Haz.
ratio

P [95% Conf.
interval]

Haz.
ratio

P [95% Conf.
interval]

Haz.
ratio

P [95% Conf.
interval]

Haz.
ratio

P [95% Conf.
interval]

Age 1.028 0.003 1.009–1.047 1.009 0.410 0.987–1.032 1.002 0.809 0.986–1.018 1.000 0.982 0.987–1.013
Gender 0.971 0.899 0.611–1.542 1.136 0.679 0.622–2.073 0.873 0.540 0.564–1.349 0.980 0.918 0.662–1.449
Stage 1 (Ref.) (Ref.) (Ref.) (Ref.)
2 1.615 0.096 0.918–2.839 2.143 0.047 1.012–4.538 1.895 0.010 1.165–3.082 2.100 0.001 1.358–3.246
3 2.851 0.000 1.775–4.581 4.439 0.000 2.405–8.193 3.901 0.000 2.451–6.210 3.311 0.000 2.193–5.000
4 5.230 0.030 1.176–23.267 7.137 0.012 1.532–33.252 33.053 0.001 4.123–265.000 8.346 0.001 2.362–29.483

Grade 1 (Ref.) (Ref.) (Ref.) (Ref.)
2 1.126 0.726 0.580–2.185 1.849 0.191 0.736–4.648 1.505 0.211 0.793–2.855 1.173 0.568 0.678–2.028
3 1.323 0.418 0.672–2.603 1.837 0.209 0.712–4.741 1.837 0.067 0.957–3.527 1.224 0.484 0.695–2.154
4 1.593 0.487 0.429–5.924 1.479 0.725 0.168–13.052 0.979 0.978 0.214–4.487 0.886 0.850 0.253–3.101

Embolization 1.017 0.966 0.470–2.203 1.661 0.224 0.733–3.766 3.658 0.000 2.075–6.446 2.966 0.000 1.746–5.037
Radiation 1.057 0.928 0.319–3.498 1.031 0.967 0.239–4.448 0.996 0.993 0.388–2.556 1.185 0.698 0.503–2.789
Alcohol
history

0.955 0.849 0.597–1.529 1.682 0.085 0.931–3.040 1.077 0.740 0.696–1.667 1.244 0.270 0.844–1.834

RAP2A 1.296 0.011 1.062–1.581 1.334 0.028 1.032–1.724 1.063 0.528 0.879–1.287 1.199 0.037 1.011–1.423

OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval; HR, hazard ratio; CI, confidence interval.
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the 3′-UTR of RAP2A and associated with poor overall survival in
bladder cancer patients (Wang et al., 2020). In gastric cancer, the
role of RAP2A was also observed in drug resistance where
expression of RAP2A increased the viability, migration, and
metastasis of cells by suppressing apoptosis and DNA damage
(Zhang J. et al., 2020). In renal cancer, overexpression of RAP2A

enhances the protein levels of p-Akt and promotes migration and
invasion of cells by increasing p-Akt expression (Wu et al., 2017).
Contrary to these, RAP2A seems to play tumor suppressor
functions in glioma as its downregulation is associated with
glioma progression and its inhibition in the glioma cell line
reduces migration and invasion (Wang et al., 2014). Results of

FIGURE 8 |Gene set enrichment analysis of RAP2A correlated genes in TCGA-LIHC dataset. (A–D) depicts positively enriched pathways (E–L) depicts negatively
enriched pathways with normalized enrichment score (NES), false discovery rate (FDR), and p-value depicted inside the respective pathway.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 67797912

Kumari et al. RAP Genes in Liver Cancer

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


the current study indicate that in hepatocellular carcinoma,
RAP2A may act as an important oncogene and its mRNA
expression is strongly associated with patient prognosis in
HCC. Furthermore, other RAP genes also exhibit a strong
positive correlation with RAP2A expression. This might be
due to the conservation of regulatory sequences during
evolution. We were further interested in whether RAP genes
share common features for association with molecular
characteristics in HCC.

It was recently demonstrated that RAP2A expression is
regulated by p53 and RAP2A mediated cell migration and
invasive properties are driven by downstream activation of the
matrix metalloproteinases (MMP) MMP2 and MMP9 via
phosphorylation of AKT (Wu et al., 2015). Consistent with
this, we observed higher expression of multiple RAP genes,

including RAP2A in p53 mutant HCC. Further, we also
observed that expression of RAP1A, RAP1B, RAP2A, and
RAP2B were reduced in HCC tissues which harbor a mutation
in CTNNB1, the gene encoding for beta-catenin protein. This is
contrary with the previous report where RAP1B has shown to
activate Wnt/beta-catenin signaling in esophageal squamous cell
carcinoma (Jia et al., 2017). Further, RAPGEF2, a guanine
nucleotide exchange factor for RAP1, was shown to regulate
adherence junction (AJ) formation in radial glial cells through
ERK-mediated upregulation of β-catenin (Farag et al., 2017).
While CTNNB1 mutations in HCC are associated with higher
activity of Wnt-beta catenin signaling (Tornesello et al., 2013), its
association with RAP signaling appears to be negatively related in
this case. Therefore, our results suggested potential crosstalk of
Wnt-beta catenin signaling in RAP signaling in HCC tissues.

FIGURE 9 | Association of RAP2A gene with tumor immunity in TCGA-LIHC dataset. (A) TIMER analysis showing the correlation of RAP2A expression with an
abundance of six different immune cell types in TCGA-LIHC dataset. (B)CIBERSORT analysis showing relative fractions of 22 different immune cell types in HCC tissues
(represented by rows) arranged in order of high RAP2A expression (top) to low RAP2A expression (bottom).
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In light of its aberrant overexpression in HCC, we explored
whether the expression of RAP2A is driven by copy number
alteration and DNAmethylation in HCC. Our results collectively
demonstrated that the RAP2A harbors alterations in both of the
abovementioned features. Our results highlighted a specific
intragenic region in the RAP2A where DNA methylation was
highly reduced in tumor tissues compared to normal liver tissues.
Further, DNA methylation at this region is negatively correlated
to RAP2A gene expression in both tumor and normal tissues.
DNA methylation of RAP2A has not been previously studied in
cancer, therefore, epigenetic regulation of RAP signaling requires
detailed exploration.

While our study is based on mRNA expression, a recent study
by, Zheng et al. has also demonstrated that RAP2A protein
expression is associated with oncogenic features in HCC
(Zheng et al., 2017). Therefore, our findings further provide a
detailed understanding of the role of all five members of this
gene family involvement in HCC. Among all five RAPs,
RAP2A expression exhibited a strong ability to differentiate
tumor tissues from normal tissues. Further, its higher
expression also exhibited association with higher tumor grade,
metastasis, increased AFP levels, and poor patient prognosis.
Furthermore, our multivariate survival analysis including major
clinical and pathological features revealed that the RAP2A
expression is independently associated with poor overall
survival, disease-specific survival, and progression-free interval
in HCC.

Pathway analysis revealed strong associations of RAP2A
expression in HCC with several HCC relevant pathways,
including cell cycle-related pathways and metabolic
pathways. Interestingly, RAP1A expression has previously
been shown to be regulated during the cell cycle (Cruise
et al., 1997). The causal relationship between RAP2A
expression and these pathways requires further validation.
We also analyzed the immunological association of RAP2A
expression in HCC, which revealed that its expression is highly
associated with the immune composition of HCC tumors.
While, the role of RAP2A has been previously demonstrated
in the regulation of lipopolysaccharide induced innate cell
functions (Carvalho et al., 2019a; Carvalho et al., 2019b),
detailed role of RAP2A in the modulation of tumor
immunity remains to be studied in detail. Conclusively, the
current study provides detailed molecular and clinical features
associated with the expression of RAP genes in HCC, however,
some of these associations require further exploration for the
causal relationships. Further, these results support the potential

of RAP2A as a therapeutic target and prognostic biomarker in
this malignancy.
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