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Seminiferous tubular atrophy may involve indirectly the
disruption of estrogen receptor-a (ESR1) function in efferent
ductules of the testis. ESR1 helps to maintain fluid resorption
by the ductal epithelium and the inhibition or stimulation of
this activity in rodent species will lead to fluid accumulation
in the lumen. If not resolved, the abnormal buildup of fluid in
the head of the epididymis and efferent ductules becomes a
serious problem for the testis, as it leads to an increase in
testis weight, tubular dilation and seminiferous epithelial
degeneration, as well as testicular atrophy. The same
sequence of pathogenesis occurs if the efferent ductule
lumen becomes occluded. This review provides an
introduction to the role of estrogen in the male reproductive
tract but focuses on the various overlapping mechanisms that
could induce efferent ductule dysfunction and fluid
backpressure histopathology. Although efferent ductules are
difficult to find, their inclusion in routine histological
evaluations is recommended, as morphological images of
these delicate tubules may be essential for understanding the
mechanism of testicular injury, especially if dilations are
observed in the rete testis and/or seminiferous tubules.

Signature Lesion:
The rete testis and efferent ductules can appear dilated, as

if the lumens were greatly expanded with excess fluid or the
accumulation of sperm. Because the efferent ductules resorb
most of the fluid arriving from the rete testis lumen, one of
two mechanisms is likely to be involved: a) reduced fluid
uptake, which has been caused by the disruption in estrogen
receptor signaling or associated pathways; or b) an increased
rate of fluid resorption, which results in luminal occlusion.
Both mechanisms can lead to a temporary increase in
testicular weight, tubular dilation and atrophy of the
seminiferous tubules.
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Introduction

Testicular atrophy is one of the more easily recognized end-
points in male reproductive pathology; however, an interpreta-
tion of the mechanism causing seminiferous tubular atrophy is
not always easy to uncover. The observation of luminal dilation
in the rete testis and/or seminiferous tubules is a signature lesion
that could lead one to conclude that testicular atrophy may be a
long-term outcome. It has been known since 1924 that occlusion
of the efferent ductules near the rete testis will induce increased
pressure within the seminiferous tubules and lead to testicular
atrophy.1 Yet, the literature is filled with long-term studies show-
ing testicular atrophy, without histopathological evaluation of
the efferent ductule region. This is partially due to the difficulty
in finding these delicate tubules that are buried in the epididymal
fat pad of rodents,2 but also because for years most authors con-
sidered these ducts to be nothing more than a conduit from rete
testis to the epididymis.3 However, evidence began to reveal that
disruption of the kidney-like function of efferent ductules could
result in fluid accumulation within the rete testis and seminifer-
ous tubules and eventually testicular atrophy.4,5 One of the dis-
rupting pathways uncovered was estrogen receptor-a (ESR1).6

As early as the 1930’s, it was known that developmental expo-
sure to high doses of natural estrogens, as well as diethylstilbestrol
(DES) could induce malformation of the male reproductive
tract.7-9 However, the prevailing hypothesis to explain these data
was that estrogen exposure disrupted testosterone and its metabo-
lite 5a-dihydrotestosterone (DHT), the dominant male sex ste-
roid10 and that estrogen did not have a distinct function in the
adult male reproductive tract, but rather played a role in early
development during the ambisexual stage and in establishing
male behavioral patterns.11 In 1997, examination of the estrogen
receptor a knockout mouse (Esr1KO) revealed that ESR1 has a
major function in regulating fluid resorption in efferent ductules
of the testis,6 which is essential for increasing the concentration
of sperm and their maturational development in the head of the
epididymis.12-14

Efferent ductules are small, coiled tubules that transport
sperm rapidly from rete testis chambers to the epididymal head
(Fig. 1). In rodent species, efferent ducts are buried in the epidid-
ymal fat pad, beginning as 3-7 individual wide-lumen ducts but
merging into a single, highly convoluted tubule with a narrow
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lumen under the capsule of the initial segment of the epididy-
mis.5 In man and larger mammals, these ductules are more
numerous than in rodent species and open independently into
the epididymis at multiple sites in the caput epididymis. Most
importantly, these ductules form the major portion of the caput
region within a densely organized connective tissue that is
attached to the tunica albuginea of the testis.5 The discovery that
ESR1 is essential for male fertility altered our view of the role
that efferent ductules play in the head of the epididymis and pro-
vided the basis for testing new hypotheses to explain numerous
observed pathologies in the testis and epididymis.3,4,15-18 Several
reviews have been written about estrogen’s function in the male
reproductive tract and should be examined for a more detailed
understanding of its molecular interactions and physiological rel-
evance.12-14,19,20 However, histopathological changes in testis
and epididymis following ESR1 disruption were found to be sim-
ilar to those observed after exposures to several environmental

compounds and some classes of thera-
peutic biological products, as well as
surgical ligation of the ductules. There-
fore, this review will focus on some
common histopathological responses of
the efferent ductules and head of the
epididymis that induce fluid accumula-
tion in the testis, which may contribute
to the atrophy of seminiferous tubules.

Source of Estrogen in the Male
Reproductive Tract

Estrogen synthesis is controlled by
the aromatase enzyme complex of cyto-
chrome P450 (P450arom) encoded by
the CYP19 gene and a ubiquitous
NADPH cytochrome P450 reductase.21

Testis is a major site for estrogen synthe-
sis in the male and for many years it was
assumed that Sertoli cells were the pri-
mary source during development, but
in the adult only Leydig cells produced
estrogen.22 Immunolocalization of
P450arom was a major challenge, but in
1993 Nitta et al.23 became the first lab-
oratory to demonstrate its presence in
the mammalian spermatid (Fig. 2) and
cytoplasmic droplets of sperm traversing
the epididymis.24,25 The high concentra-
tions of systemic androgens throughout
the body are a blunt force on nearly
every tissue in the male, but the unique
system of estrogen synthesis in the male
reproductive system creates a sequestered
androgen/estrogen balance that can be
focused specifically on cells expressing
the requisite steroid receptors.

It was surprising that the P450arom knockout mouse
(AromKO) did not show histopathological results26-29 similar to
the Esr1KO mouse.6,12 Testicular degeneration in the AromKO
male began with ageing and was independent of the efferent
ductule abnormalities found in the Esr1KO. Several explanations
have been proposed and some have been tested. First, ESR1
expression in the efferent ductule epithelium is constitutive and
thus continues to be expressed in the absence of natural
ligand29,30 and could be activated in a ligand-independent man-
ner.31-33 It is also possible that an ever-present ESR1, in the
absence of estradiol, could bind a metabolite of DHT or other
steroids that are present in high concentrations in the male.34

Finally, dietary phytoestrogens have also been shown to be suffi-
cient for activation of Esr1-mediated pathways in the AromKO
male28 and to increase the concentration of cauda epididymal
sperm in Wild-type and Esr1KO mice35 It has been suggested
that dietary phytoestrogens may be ‘agonistic’ in the absence of

Figure 1. Basic organizational patterns of the rete testis and efferent ductules in small and large
mammals. (A) In smaller mammals, such as rats and mice, the rete testis forms flattened chambers
adjacent to the tunica albuginea of the testis, where sperm and tubular fluids are released into 3-7
efferent ductules that merge to form a single, highly convoluted common duct that enters the initial
segment epididymis. (B) In larger mammals, including dogs and man, the rete testis forms flattened
chambers surrounded by dense connective tissue within the mediastinum of the testis, which drains
toward the efferent ductules that occupy a major portion of the caput epididymis. Most of the efferent
ductules open individually into the caput epididymis.
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endogenous estrogen but ‘antagonistic’
when endogenous estrogens are pres-
ent.12 Treatment with an aromatase
inhibitor36-38 also showed no effect on
efferent ductule morphology, but did
decrease the expression of ESR2 and
GPER, while increasing androgen
receptor (AR) in the rat. It also
delayed the development of the head
of the epididymis. Thus, disruption of
estrogen pathways in the male can lead
to subtle or delayed histopathological
results and depend on the presence or
absence of its receptors, which are con-
stitutively expressed in efferent
ductules.29,30

Estrogen Receptors in the
Male

The presence of the female hor-
mone in the male reproductive tract
suggested that the target cell and tissue
for this luminal estrogen could be the
epididymal epithelium, luminal sperm
or even the female reproductive tract. Classical mediation of
estrogen function is through two estrogen receptors, ERa
(ESR1) and ERb (ESR2), which are members of the nuclear
receptor family of transcription factors and bind to estrogen
response elements to mediate gene transcription.39-41 It has been
known for 35 years that an estrogen receptor-like protein exists
in male reproductive tissues42 and that estradiol binding is very
strong in efferent ductules and the initial segment epididymis.43

Subsequent studies confirmed this hypothesis, as the efferent duc-
tules were found to express Esr1 mRNA 3.5-fold greater than
uterine tissue44 and immunohistochemistry13,14,19 revealed
intense co-localization of ESR1 and AR in both ciliated and non-
ciliated cells of the epithelium (Fig. 3).

In contrast, localization of ESR1 in the testis and epididymis
has been a challenge, as major differences are found between spe-
cies, as well as between individuals within a species. Results differ
between immunohistochemical localization and mRNA analysis
of testicular tissues and depend upon antibody source, age of
development and experimental design.12-14,16,19,45-52 In general,
most studies have concluded that testicular expression of ESR1 is
low, but under certain conditions and in some species can be
found in germ cells of the testis and sperm.12 On the other hand,
ESR2 is expressed nearly ubiquitously throughout the male
reproductive system.12,47 Therefore caution must be exercised
when studying estrogen action in the testis. ESR1 expression in
epididymis is also controversial, due to some studies showing no
immunohistochemical staining while others using better fixation
and optimal staining have found the protein both in cytoplasm
and the nucleus.13

In addition to the genomic effects of estrogen, rapid non-
genomic and membrane-associated responses have finally been
recognized as indisputable pathways contributing to estrogen’s
role in specific cellular functions, including the male reproductive
system.50,53-59 ESR1 and ESR2 are involved in rapid, non-geno-
mic transduction effects of estradiol, but the G protein-coupled
estrogen receptor-1 (GPER-1) also mediates multiple down-
stream signaling pathways.59-67 However, this area of investiga-
tion has become complicated because some studies have shown
an ER antagonist inhibiting GPER-1 activity,68 while other stud-
ies show activation.69,70

Histopathology of Estrogen Receptor Dysfunction
in Efferent ductules and Epididymis

Our acceptance of estrogen and its receptor, ESR1, having a
major role in regulating fluid physiology in the male reproductive
tract began with the analysis of the Esr1 knockout mice6,29,35, 71-
87 and treatment of rodents and other species with the pure anti-
estrogen ICI 182,780 (ICI).6,37,46,51,58,67-69,75,80,85,88-116 Dele-
tion of Esr1 gene caused male infertility, not only due to a
disruption in male sexual behavior,31 but also because the sperm
failed to mature properly in the male reproductive tract.117,118

Treatment with ICI induced subfertility at first, but over time
complete infertility88,89 and resulted in numerous histopatholog-
ical changes that were similar to those found in testes, efferent
ductules and epididymides of the Esr1KO.

Figure 2. Immunohistochemical localization of P450 aromatase protein in the mouse testis and
epididymis. (A) Aromatase protein was localized in the cytoplasm of round (RS) and elongated sperma-
tids (ES) in the mouse seminiferous epithelium. (B) Caput epididymal lumen. Aromatase protein was
localized in the cytoplasmic droplet (Cd) and along the thin tails of the spermatozoa.
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There are two basic mechanisms known to cause fluid accu-
mulation and backpressure atrophy of the testis (Fig. 4): a) Inhi-
bition of fluid resorption by the efferent ductule epithelium
causing luminal dilution, and b) Compaction of the luminal con-
tents causing occlusion of the efferent ductules. ESR1 disruption
(Table 1) involves the first mechanism in rodent species because
rodent efferent ductules have essentially a funnel-like design
(Fig. 1). When the accumulation of luminal fluids exceeds the
capacity of the single common duct exit, fluid pushes back into
the testis causing dilation of rete testis and the seminiferous
tubules.13,14,19

Histopathological changes in the male reproductive system
following Esr1 disruption were consistent with the inhibition
of fluid reabsorption by the efferent ductule epithelium.6

Severe dilation of the lumen (Fig. 5) was observed in the
efferent ductules, rete testis and seminiferous
tubules.6,29,35,71,74,76,78,79,86 Estrogen action through ESR1
regulates directly a number of major genes or indirectly sev-
eral proteins involved in ion exchange and water transport in
the efferent ductule epithelium. Most notably, ESR1 helps to
maintain the activity of sodium/hydrogen exchanger-3
(SLC9A3) and aquaporins 1 and 9 (AQP1, AQP9), which
facilitate the resorption of NaC and water. Also ESR1 pro-
vides an inhibitory influence on the Cl- transporters cystic
fibrosis transmembrane conductance regulator (CFTR) and
Slc26a3 (DAR), as well as NaC/KC ATPase a1 (Slc9a1),
which would decrease the secretion of Cl- and movement of
water at the luminal surface, while balancing the removal of
cytoplasmic NaC at the basal plasmalemma. Fluid resorption
is further dependent on the endocytic apparatus of the nonci-
liated cells,119 which was also disorganized after the disrup-
tion of ESR1 activity.6,76,88,89,95

Recent studies have shown that
estrogen works through the classical
activation function (AF) domain, AF-
1, but is regulated by the AF-2
domain.97 However, it also maintains
a capability for ligand-independent
activation in the efferent ductule epi-
thelium, possibly working through
phosphorylation of the AF-1
domain,120 or even its membrane
receptor.13,50,53-59 Disruption of this
ESR1 activity alters the luminal fluid
composition, resulting in an alkaline,
hypo-osmotic environment that
resulted in abnormal sperm morphol-
ogy.117,121 Treatment of the Esr1KO
sperm with cAMP rescued all defec-
tive motility parameters.

In addition to the fluid-transport
genes, estrogen also regulates several
structural proteins responsible for main-
tenance of the efferent ductule epithe-
lium. Loss of ESR1 activity resulted in
significant alterations in epithelial mor-

phology (Fig. 6). There was a 52% reduction in epithelial height,
decreases in the endocytic apparatus, a dramatic reduction in the
number and size of microvilli and also cilia.6,29,37,47,74-76,89,90,122

Thus, both direct effects (those regulating proteins necessary for
ions and water fluxes) and indirect (epithelial morphology) were
mediated by ESR1 inactivation in this critical region of the male
tract.

Several other gene manipulation models and chemical treat-
ments (Table 1) also inhibit fluid resorption in the efferent duc-
tules, resulting in dilation of rete testis and seminiferous tubules.
However, many of these appear to either decrease ESR1 activ-
ity97,123-125 or inhibit ESR1 associated pathways.77,126,127 Sur-
prisingly, the knockout of two genes regulated by ESR1, Slc9a3
and Car2, produced normal epithelial morphology in the effer-
ent ductules, while exhibiting luminal dilations of the ductules
and rete testes that were greater than those observed in the
Esr1KO.77 Thus, from a histopathological viewpoint, fluid accu-
mulation with luminal dilation may or may not be associated
with altered epithelial morphology. One explanation might be
that efferent ductules adapt to the accumulation of fluid in the
Slc9a3 and Car2 knockout mice and simply show excessive
growth during development. When evaluating global gene
knockout mice, it becomes difficult to separate developmental
versus adult functions of a gene. This problem was seen in
Esr1KO model, as the rete testis and efferent ductules were are
already dilated at 10 days of age, prior to puberty.78 Therefore,
treatment of the adult male with the antiestrogen ICI was neces-
sary to show ESR1 regulation of both epithelial morphology
and physiological function, separate from any developmental
influence.

Finally, understanding estrogen activity in the epididymis has
been a challenge because androgens have the primary role in its

Figure 3. Androgen receptor (AR) and estrogen receptor-a (ESR1) protein in the efferent duct-
ule epithelium of the hamster. (A) AR protein shows intense nuclear staining in both ciliated (Ci)
and nonciliated (Nc) cells of the proximal efferent ductule epithelium. (B) ESR1 protein also shows
intense nuclear staining in ciliated (Ci) and nonciliated (Nc) cells of the proximal efferent ductule
epithelium.
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regulation.128 Historically, others have used castration followed
by estrogen treatment models to study estrogen function in the
epididymis. However, such studies must now be reinterpreted
because ESR1 is constitutively expressed in efferent ductules after
castration and high dosages of estradiol down-regulated both AR
and ESR1.30,91 Thus, an interpretation of the castration model
as being representative of estrogen’s function in the epididymis
appears to be invalid.

Histopathology of Occlusions in Efferent Ductules
and the Epididymal Head

Compaction of the luminal contents with occlusion of the
efferent ductules is the second basic mechanism known to cause
fluid accumulation and backpressure atrophy of seminiferous
tubules (Fig. 4). If sperm production and Sertoli cell secretions
continue uninhibited following efferent ductule blockage, the

Figure 4. Two mechanisms lead to efferent ductule dysfunction and fluid accumulation in the testis. The central drawing illustrates the two mecha-
nism of efferent ductule dysfunction that will result in the accumulation of luminal fluids and cause backpressure damage to the seminiferous tubules.
The ‘inhibition’mechanism involves the blockage of fluid resorption by inhibiting NaC and water update and possibly an increase in Cl- and water move-
ment into the lumen, thereby diluting the sperm and exceeding the drainage capacity of the ductules into the epididymis. The ‘occlusion’ mechanism
involves excessive resorption and possibly an inhibition of Cl- secretion into the lumen. This mechanism results in a more viscous luminal environment,
sperm stasis and eventually the occlusion or blockage of the ductule. (A) Control testis showing normal cross-sectional widths of the seminiferous tubu-
lar lumens. (B) Testis showing dilation of the seminiferous tubular lumen caused by the inhibition mechanism. Spermatogenesis appeared normal but
there was thinning of the epithelium. (C) Testis showing dilation of the tubules caused by the occlusion mechanism. Sloughing of germ cells into the
lumen (arrows) was also involved. (D) Testis showing seminiferous tubular atrophy (At), with some evidence of residual dilation after long-term occlusion
of the efferent ductules. (E) Rete testis region showing excessive buildup of fluid and dilation, adjacent to atrophic (At) seminiferous tubules following
the inhibition of fluid resorption. The yellow highlighted area (*) illustrates an edematous buildup around the atrophic tubules, which occurs in some
cases but not in others. (F) Testis showing a mixed response following long-term occlusion of the efferent ductules. Atrophic tubules (At) are mixed with
normal spermatogenesis (N) and degenerative changes (Deg). (G) Control efferent ductules in the conus region showing a normally narrow luminal
diameter. (H) Efferent ductules at the proximal/conus junction following the inhibition of fluid resorption show excessive dilation and thinning of the epi-
thelium. (I) Compaction of sperm within the lumen of the efferent ductules leads to dilation of the lumen and occlusion. This response caused the recruit-
ment of polymorphonuclear leukocytes (neutrophils) into the wall lining the epithelium. (J) A long-term consequence of efferent ductule occlusion is the
formation of sperm granulomas. The hyaline area shows the beginning of fibrosis.
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Table 1. Causes of efferent ductule dysfunction, with potential for the induction of testicular atrophy

CAUSE DESCRIPTION POTENTIAL TARGETa REFERENCES

CHEMICAL
ICI 182,780 Fulvestrant Inhibition of fluid resorption; blocks ESR1 and

ESR2; similar to Esr1KO

6,76, 78, 88-90

GR40370X 5-hydroxytryptamine receptor agonist;
Serotonin-like, monoamine neurotransmitter

Inhibition of fluid resorption;
vasoconstriction of venous plexus

156

PDE4 inhibitor Phosphodiesterase-4 inhibitor Inhibition of fluid resorption followed by
occlusion; sperm granulomas

147

Uranyl nitrate hexahydrate Dietary long-term exposure; proximal
convoluted tubules of kidney sensitive

Inhibition of fluid resorption; progressive
dilation of seminiferous tubules

157

LTI-1 Leukotriene A(4) hydrolase inhibitor Occlusion; dysregulation in fluid
reabsorption; sperm granuloma

2

6-chloro-6-deoxysugars a-chlorohydrin-like chemicals Occlusion; dysregulation of fluid resorption;
sperm granuloma in efferent ductules; initial

segment epididymis necrosis; inhibit
glyceraldehyde-3-phosphate dehydrogenase

148,158-165

Isoproterenol Beta-adrenergic agonist Potential increase in rate of resorption;
upregulates endothelin receptor-A; Et-1

increases Slc9a3 and inflammation

166-168

Benomylb Methyl [1-[(butylamino)carbonyl]-1H-
benzimidazol-2-yl]carbamate

Occlusion; microtubule disruption; germ cell
sloughing; sperm granuloma

4, 130, 131, 135, 136, 169, 170

2-Methylimidazole Polymerization cross-linking and catalytic
curing agent for epoxy resins

Occlusion; efferent duct sperm granuloma
near caput epididymis

171

EDS Ethane-1,2-dimethyl-sulfonate Occlusion; alkylating agent, cellular toxicity;
sperm granuloma

158, 172

Cadmium Chemical element, Cd Occlusion; vascular endothelium; sperm
granuloma

173, 174

1,3-dinitrobenzene m-Dinitrobenzene Occlusion; impaired oxygen transport; sperm
granuloma

175, 176

Dibutyl phthalate (DBP) Di-n-butyl phthalate Occlusion; prenatal exposure; epididymal
malformation

177

Linuron N - (3,4-dichlorophenyl)-N’-methoxy-N’-
methylurea

Occlusion; herbicide; prenatal exposure;
epididymal malformation

178

DES Diethylstilbestrol Neonatal exposure; decreases androgen
receptor; sperm granuloma; dilation of

lumen

179-185

Estradiol b-estradiol 17-cypionate; 17b-estradiol;
estradiol benzoate; ethinyl estradiol

Neonatal exposure; sperm granuloma;
dilation lumen

181, 182, 186-188

GENE MANIPULATIONd

Esr1 KO Estrogen receptor-a Inhibition of fluid resorption; decreases in
SLC9A3, CA2, AQP-1, AQP-9, CAR14, SLC4A4;

increases in CFTR, SLC9A1, SLC26A3

6, 19, 35, 47, 74, 75, 77-80, 97

AF2ERKI MT ESR1 AF-2 mutation Inhibition of fluid resorption; blocks ESR1 AF-
2 domain; similar to Esr1 KO

97

Slc9a3 KO Sodium/hydrogen exchanger-3 Inhibition of fluid resorption 77

Car2 MT Carbonic anhydrase II Inhibition of fluid resorption 77

Gpr64 KO G protein-coupled receptor 64 (He6) Inhibition of fluid resorption 126

He6 KO GPR64; orphan member of the LNB-7TM (B
(2)) subfamily of G-protein-coupled receptors

Inhibition of fluid resorption; proximal
efferent ductules; partial sperm stasis

126

Lgr4 KO or MT G protein-coupled receptor Inhibition of fluid resorption; decreased
expression of ESR1 and SLC9A3; also

occlusion

123, 124

Prkar1aC/¡ Protein kinase A (PKA) type Ia regulatory
subunit (RIa)

Inhibition of fluid resorption; inhibition of
Slc9a3 by over phosphorylation

127

Fst OE Follistatin; inhibitor of activin Inhibition of fluid resorption or ductule
contraction; sperm stasis; decreased

expression of ESR1

125

Lfng KO O-fucosylpeptide 3-beta-N-
acetylglucosaminyltransferase

cNotch signaling; blocked connection with
efferent ducts

189

Notch1 OE Notch homolog 1, translocation-associated cTransmembrane, oncogene, efferent
ductule overgrowth

190

(continued on next page)
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following sequence of events will occur: a) proximal efferent duc-
tules dilate and attempt to resorb the excess fluid; b) sperm
become more compacted as fluid is resorbed; c) the rete testis
begins to dilate and press into the testicular parenchyma; d) dila-
tion of the seminiferous tubular lumens begins in regions proxi-
mal to the rete testis junction; e) tubular dilation in all regions of
the testis may occur; f) spermatogenesis appears to be normal at
first, but over time degenerative changes can appear; g) long term
blockage of the proximal efferent ductules leads to cessation of
spermatogenesis and tubular atrophy. From a practical point of
view, one of the most sensitive indicators of fluid accumulation is
the rapid increase in testis weight, which is often unilateral.129-
133 However, the increase in testis weight, as well as severity of
the tubular dilation and degeneration depends on a number of
factors, including: how many efferent ductules were occluded;
time elapsed since the onset of the occlusions; dosage of the
offending compound; whether the compound also has direct
effects on the seminiferous epithelium; if the common duct near
the epididymis is involved; and species (mice show more resis-
tance than rats to total atrophy).129-134

There are several potential mechanisms that could lead to
the development of efferent ductule occlusions (Table 2).
However, microtubule disruption provides one of the best
examples of this category of histopathological responses, as
illustrated by a single dose of the fungicide benomyl or its
metabolite carbendazim.4,130,135 The response begins with a

massive sloughing of elongated spermatids due to chemical
disruption of microtubule polymerization in the Sertoli cells,
which is followed by rapid transport of the sloughed cells
into the epididymal lumen. Originally, it was hypothesized
that the sloughed cells plugged the common efferent ductule
lumen, but microdissection of treated ductules revealed that
the occlusions were located primarily in the proximal region
near the rete testis.136 Furthermore, several other compounds
are known to induce sloughing of germ cells without induc-
ing occlusions;137-141 thus, carbendazim appears to have
direct effects on the ductal epithelium, as well as its known
effects on the seminiferous epithelium.

The potential direct effect of carbendazim on efferent ductules
appears to be through the disruption of microtubule-dependent
pathways responsible for membrane recycling along the microvil-
lus border of the nonciliated cells. Although this hypothesis has
not be tested in efferent ductules, in other tissues the turnover
and displacement of ion and water transport proteins was dis-
rupted with microtubule poisons,142-146 which could cause an
increased rate of fluid resorption, sperm stasis and luminal com-
paction. Carbendazim has also been shown to increase the activ-
ity of NaC/KC-ATPase along the basolateral border of the
nonciliated cells,136 which could be a normal response to an
increase in NaC flux at the luminal surface. However, other
potential mechanisms should also be explored. For example, a
carbendazim-like sperm granuloma with seminiferous tubular

Table 1. Causes of efferent ductule dysfunction, with potential for the induction of testicular atrophy (Continued)

CAUSE DESCRIPTION POTENTIAL TARGETa REFERENCES

Pkd1 KO Polycystic kidney disease 1 homolog Abnormal epididymal development; dilation
of efferent ductules

191

TE rat MT Outbred Wistar strain Autoimmune disorder; sperm granuloma 192

Dax1 KO Nr0b1; transcription cOcclusion; overgrowth of Sertoli cell and
efferent duct epithelium

193

ProxE-AR or CEAR KO Androgen receptor knockout in initial
segment or caput epididymis

Occlusion; differentiation failure in caput
epididymis; sperm granuloma

194, 195

Dicer1KO Endoribonuclease; RNA interference Occlusion; abnormal growth and blockage 196

HUMAN DISEASE
Von Hippel-Lindau disease Papillary cystadenoma of the epididymis;

also cystic kidney
Dysregulation of HIF1a; upregulation of
vascular endothelial growth factor (VEGF)

197-201

Young’s syndrome Chronic sinopulmonary infections;
azoospermia

Abnormal secretion or resorption; occlusion
of caput and middle epididymis

202-205

Varicocele Dilation of veins near rete testis and efferent
ductules

Occlusion; compression of excurrent ducts
and edema; blockage

206

Spontaneous granuloma Caput epididymis efferent ductules Occlusion; sperm granuloma; fibrosis;
recanalization

207-209

Renal failure Renal dialysis; renal malformations; renal
cysts

Dilation of rete testis and epididymis; can
lead to occlusion; intraductal calcium oxalate

deposits

210-216

PHYSICAL
Ligation of ductules Surgical blockage Fluid accumulation; greater testicular effects

when occluded closer to the rete testis

1, 129, 133, 150, 151, 217-225

Arterial occlusion Superior epididymal artery Occlusion; localized ischaemia, sperm
granuloma

151, 226, 227

aPotential target for mechanisms in efferent ductules and rete testis, not necessarily testis or other organs.
bIncluding its metabolite carbendazim.
cOcclusion involves overgrowth of epithelium in rete testis and efferent ductules, but may also involve disruption of fluid reabsorption.
dGene knockout (KO); overexpression (OE); mutation (MT).

www.landesbioscience.com e979103-7Spermatogenesis



atrophy can be induced by a phosphodiesterase-4 inhibitor,
which appears to inhibit fluid resorption rather than increase the
rate of uptake.147 The unknown factor in both cases is the stimu-
lus for polymorphonuclear leukocyte recruitment and subsequent
formation of sperm granulomas.

Multiple pathways are likely involved in the onset of granu-
loma formation and ductal blockage and both mechanisms could
overlap in some instances. For example, it has been known for
many years that a-chlorohydrin inhibits glyceraldehyde-3-phos-
phate dehydrogenase (G3PDH) activity in spermatozoa but also
induces efferent ductule sperm granulomas, similar to those
observed with carbendazim. The occlusions were thought to be
due to a disruption in blood flow.4,148 However, subsequent
studies revealed that G3PDH is a microtubule-associated protein
and 24 hours following a-chlorohydrin treatment b-tubulin dis-
appears in the initial segment epithelium.149 If a similar effect is
observed in the efferent ductule epithelium, then the mechanism

leading to compaction of
luminal sperm and forma-
tion of sperm granulomas
following a-chlorohydrin
treatment may overlap
with that of carbendazim
and indirectly be increas-
ing the rate of fluid
resorption.

Complications of
histopathological
interpretations

The interpretation of
histopathological changes
in the testis and head of
the epididymis will
depend on several com-
mon factors but also differ
depending on which
mechanism is causing the
accumulation of fluid
(Table 3). A major com-
plication occurs if the
seminiferous tubules and
rete testis are dilated, but
histological sections of the
efferent ductules and ini-
tial segment epididymis
have not been preserved.
This is a serious problem
because partial or total
occlusion of the efferent
ductules will produce
fluid accumulation in the
testis similar to the
Esr1KO mouse; however,
different mechanistic
interpretations are

required for each condition. Another major problem is time post
exposure or post development. Occlusions of the proximal effer-
ent ductules produce rapid increases in testicular weight and dila-
tion of the tubules.150,151 However, when an occlusion or the
inhibition of fluid resorption occurs further away from the rete
testis, there can be a delay in the onset of increased testicular
weight, with the delay taking up to several weeks.6,88,89 The
more distal an occlusion occurs, the greater the surface areas of
normal efferent ductule epithelium that will remain for contin-
ued resorption of luminal fluid, while the ductal wall stretches in
diameter to accommodate the continual release of sperm and
fluid from the testis.

Prior to seminiferous tubular atrophy, testicular histopathol-
ogy can show a wide range of responses to fluid accumulation fol-
lowing ductal occlusions, depending on numerous factors already
stated. Testicular dilation may be mild to moderate, with normal
spermatogenesis or severe dilation with thinning of the

Figure 5. Testis and efferent ductules in the wild type (WT) and Esr1KO mice. (A) WT testis showing the narrow
width of the rete testis and normal seminiferous tubules (St). (B) WT head of the epididymis region showing the coiled
common efferent ductule (Ed) adjacent to the initial segment epididymis (Ep). (C) WT proximal region of the efferent
ductules have a wider lumen than the common duct and show a PASC endocytic and brush border of microvilli (En)
on the nonciliated cells and long cilia (Ci) protruding in the lumen from the ciliated cells. (D) Esr1KO testis showing
dilated rete testis (RT) filled with fluid and causing dilation of seminiferous tubules (St). (E) Head of the epididymis
region in the Esr1KO showing dilated efferent ductules (Ed) adjacent to the initial segment epididymis (Ep). (F) Esr1KO
showing the dilated proximal region of the efferent ductules. The epithelium is shorter in height and appears to have
lost PASC endocytic and brush border lining (En) on the nonciliated cells. Cilia (Ci) are noted but they appear to be
thinner in density.
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seminiferous epithelium and cellular
degeneration.131,150,151 Degenerative
changes in the seminiferous epithelium
may included the formation of multi-
nucleated germ cells, sloughing of
immature germ cells, epithelial vacuo-
lation, hypospermatogenesis, and apo-
ptosis.131,147,150-153 However, the testis
and head of the epididymis have a
remarkable capacity to adapt to the
accumulation of fluid, as some testes
having only one unobstructed efferent
ductule still exhibited normal sper-
matogenesis in a limited number of
seminiferous tubules,134 although an
increase in atrophy was noted over a
70-day period.

Species considerations are always
complicated, not only from a metabo-
lism and target organ perspective, but
also because the histopathology may dif-
fer significantly, without an obvious rea-
son. Estrogen receptor studies provide a
good example. The Esr1KOmouse testis
showed an increase in testis weight and
dilation of rete testis and seminiferous
tubules over an 80-day period post
birth,6 after which testis weight declined
until total atrophy was observed. How-
ever, the knockout mouse was lacking
ESR1 from development, therefore the
pure antiestrogen ICI was used to deter-
mine if the same response would occur
in the adult male. In the rat a similar
time response was noted with testis
weight and seminiferous tubular dila-
tions, followed by total atrophy of the
testis.89 However, the same treatment in
the pubertal mouse gave confusing
results.88 In the mouse, by day 8 post-treatment the efferent ductule
lumen was dilated and epithelial structural integrity was already
compromised, but the rete testis did not dilate until day 59. Fur-
thermore, the mouse testis never increased in weight out to day 125
and atrophy was observed in only about 30% of the seminiferous
tubules. Thus, the interpretation became complicated and we were
never able to determine why backpressure atrophy did not occur
with ICI treatment, even though the efferent ductules and rete testis
exhibited nearly identical histopathological changes as seen in the
Esr1KOmouse.

In the case of inhibited fluid resorption, it is unclear
whether tubular atrophy is due to the fluid backpressure or a
direct effect of the chemical, such as the antiestrogen ICI, on
the seminiferous epithelium? In the Esr1 knock-in mouse
(ENERKI), in which a point mutation in the ligand-binding
domain of ESR1 allows for ligand-independent signaling,33

the efferent ductules were basically normal but with aging the

testes showed focal seminiferous tubular atrophy similar to
the ICI-treated mouse. Thus, blockage or physical ligation of
the proximal efferent ductules of every species will result in
testicular swelling and seminiferous tubular atrophy through
rapid pressure-sensitive mechanisms,3 but long-term testicular
effects of fluid accumulation following the inhibition of fluid
resorption by the efferent ductule epithelium will depend on
the species, the response time and other factors not yet
uncovered.

Aberrant or blind-ending efferent ductules are an additional
complication for histopathologists, as these small tubules are
present in about 60% and 40% of the control testes/epididymi-
des in rats and mice, respectively. The lumen of a blind-ending
ductule is continuous with that of the male reproductive tract
but is connected only at one end, presumably due to a failure in
development from the mesonephric system of the embryo.74,154

In rodents, blind-ending tubules are smaller in diameter, have a

Figure 6. Efferent ductules from control and antiestrogen ICI 182,780 treated mice. (A) Light
microscopy of the control proximal efferent ductule epithelium. Nc, nonciliated cell; Ci, ciliated cell. (B)
Transmission electron microscopy of the control proximal efferent ductule epithelium. The nonciliated
cell (Nc) has a short columnar height (double red arrow) and a prominent brush border of microvilli
(Mi). The ciliated cell (Ci) has an abundance of basal bodies (red arrows) supporting the ciliary struc-
tures that protrude into the lumen. (C) Light microscopy of the ICI-treated proximal efferent ductule
epithelium. The epithelium is shorter than normal and nonciliated cells (Nc) have a scant cytoplasm
compared to the control. Ci, ciliated cell. (D) Transmission electron microscopy of the ICI-treated proxi-
mal efferent ductule epithelium. The nonciliated cell (Nc) is shorter in height (double red arrow) and is
missing the normal finger-like projections of the microvillus border (*). The number of basal bodies
(red arrows) supporting cilia (Ci) is greatly reduced.
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Table 2. Potential mechanisms for inducing occlusions in the head of the epididymis

Cause Potential Mechanismsa References

Fluid resorption Increase in the rate of NaC uptake at the lumen; upregulate endothelin-1 or ET(A);
increase in ESR1 expression

126, 136, 149, 166-168, 196, 228

Microtubule disruption Indirect effect on fluid resorption; disruption of epithelial recycle of apical vesicles and
membrane proteins associated with ions and water transport

136, 142, 144-146, 149, 229-235

Inflammation Inhibition of immune tolerance; extravasation of luminal germ cells; influx of
macrophages and neutrophils; stretching of ductal epithelium

2, 147, 171, 236, 237

Leakage of fluid Damage to the tight junctions of the vascular endothelium; leakage at the efferent
ductal epithelium

124, 161, 173, 174, 209

Ischemia Inhibition of blood flow; dilation of veins; arterial occlusions; also damage to the
endothelium

151, 152, 156, 173, 174, 206, 226, 227, 238

Sperm stasis Inhibition of peritubular smooth muscle tone, either directly or indirectly through
inhibition of sympathetic nerves

147, 239, 240

Developmental malformations Abnormal growth that blocks the lumen 123, 124, 177, 178, 194, 195

aThese are suggested mechanisms based on collective data and not necessarily direct association with efferent ductules and epididymis.

Table 3. Complications associated with histopathological interpretations of inhibited fluid resorption and sperm granulomas formation in the head of the
epididymis

INHIBITION OF FLUID
RESORPTION

Potential Efferent Ductule Effects Histopathological Complications
Luminal dilation Dilation may differ depending on region of the ductule; a time-response may be involved; blind ending ducts may

confuse the interpretation 3, 88, 154

Epithelial height decreasea Can be absent even with large luminal dilation 77

Endocytic apparatus decreasea Can be absent even with large luminal dilation; could miss with poor fixation 77

Microvillus border decrease in
heighta

Can be absent even with large luminal dilation; could miss with poor fixation 77

Potential Testicular Effects
Testis weight increaseb Species and time dependent; this can be transient; correlated with tubular dilation; must examine over time; may be

unilateral 6, 88, 89

Luminal dilation of rete testis Species and time dependent; may be induced during development; may be unilateral; could miss observation in
histology section 78, 88, 89, 126

Luminal dilation of seminiferous
tubulesc

Species and time dependent; not all tubules will show equal effects; must section rete testis region, as this region may
be more severe; luminal diameter may be dilated but tubular diameter may not be enlarged; may be unilateral 88, 89,
126, 147

Seminiferous epithelial
degeneration (multinucleated
giant cells, vacuolation,
sloughing,
hypospermatogenesis,
apoptosis)

Species and time dependent; correlated with tubular dilation; must examine over time; ranges from normal to mild to
severe; rete testis proximity may be more severe; may lead to atrophy 88, 89, 124, 125, 147, 156

Atrophy of seminiferous tubulesb Must examine after long-term effects; not all tubules will show equal effects; may be unilateral 88, 89, 125

INDUCTION OF SPERM
GRANULOMA

Potential Efferent Ductule Effects Histopathological Complications
Luminal compaction of sperm Dose and time dependent; not all ductules will show equal effects; proportional to dosage; may be unilateral; could

miss observation in histology section 4, 130, 134, 135, 171

Neutrophilic granulocyte
inflammation

Dose and time dependent; not all ductules will show equal effects; may subside with the onset of fibrosis 4, 130, 134, 135

Fibrosis Must examine after long-term effects; may require serial sections
Recanalization Must examine after long-term effects; may require serial sections 135, 241, 242

Potential Testicular Effects
Testis weight increaseb Species and time dependent; this can be transient; correlated with tubular dilation; may be unilateral; must examine

over time 4, 130, 131

Rete testis lumen dilated Depends on location of occlusion and species; proportional to dosage; may be unilateral 129, 223-225

Seminiferous tubular lumen dilated Depends on location of occlusion and species; proportional to dosage; may be unilateral 129, 223-225

Atrophy of seminiferous tubulesb Depends on location of occlusion and species; proportional to dosage; may be unilateral 129, 171, 223-225

aAppears to be ESR1 related.
bTransient increase, then decrease following seminiferous epithelial degeneration.
cDepends on the species and age or time post treatment or developmental.
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collapsed lumen with no sperm, stain more intensely but lack the
typical number of lysosomes in their cytoplasm. In larger mam-
mals, such as the dog, bull and man, the blind-ending ductules
are capable of accumulating stagnant sperm, dilating in size and
forming sperm granulomas.155 Thus, the presence of these aber-
rant tubules must be taken into consideration when interpreting
the histopathological responses observed in the head of the epi-
didymis, but appear to be capable of contributing to ductal
occlusions only in the larger species.

Conclusion

Disruption of efferent ductule epithelial function results in the
accumulation of luminal fluids that is capable of backpressure
into the rete testis and seminiferous tubules, causing transient
dilation, epithelial degeneration and even testicular atrophy. This
histopathological sequence was originally discovered following
surgical ligation of the efferent ductules or treatment with

chemicals that induced sperm granulomas in the head of the epi-
didymis. However, a similar morphological sequela in the testis
was also observed following the disruption of ESR1 function in
the efferent ductules, which revealed the importance of preserv-
ing these delicate ducts for evaluation, but also brought attention
to the role that estrogen plays in maintaining fluid resorption by
the efferent ductal epithelium. Although efferent ductules are dif-
ficult to preserve for routine histological sectioning,2 their evalua-
tion is essential for determining the mechanism of testicular
injury if dilation is observed in the rete testis and/or seminiferous
tubules, but also when unexplained seminiferous tubular atrophy
is present in a long term study. Backpressure atrophy of the testis
can be rapid and once the efferent ductules are occluded the
lesion appears to be permanent.4
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