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ABSTRACT

The SUPERFAMILY resource provides protein
domain assignments at the structural classification
of protein (SCOP) superfamily level for over 1400
completely sequenced genomes, over 120 meta-
genomes and other gene collections such as
UniProt. All models and assignments are available
to browse and download at http://supfam.org. A
new hidden Markov model library based on SCOP
1.75 has been created and a previously ignored
class of SCOP, coiled coils, is now included. Our
scoring component now uses HMMER3, which is in
orders of magnitude faster and produces superior
results. A cloud-based pipeline was implemented
and is publicly available at Amazon web services
elastic computer cloud. The SUPERFAMILY refer-
ence tree of life has been improved allowing the
user to highlight a chosen superfamily, family or
domain architecture on the tree of life. The most sig-
nificant advance in SUPERFAMILY is that now
it contains a domain-based gene ontology (GO) at
the superfamily and family levels. A new methodo-
logy was developed to ensure a high quality GO
annotation. The new methodology is general
purpose and has been used to produce domain-
based phenotypic ontologies in addition to GO.

INTRODUCTION

SUPERFAMILY (1) is a publicly available resource that
provides the prediction of protein domains of known
structure in amino acid sequences. The database
contains a periodically updated library of expert-curated
hidden Markov models (HMM) representing all protein

domains of known structure. The classification of these
domains is taken from the structural classification of
protein (SCOP) database (2). SCOP groups protein
domains hierarchically, according to their nature of simi-
larity (sequence, evolutionary and structural), into Class,
fold, superfamily and family. The SUPERFAMILY
database is particularly focused on the superfamily level.
Two domains are put in the same superfamily (or evolu-
tionary) level if, and only if, there is structural functional
and sequence evidence for a common ancestor (3).
The SUPERFAMILY website (http://supfam.org)

offers a variety of methods to analyze proteins and
superfamilies. A keyword search facility is available
from all pages on the website. At the genomic level the
user can investigate under- and over-represented
superfamilies (3), phylogenetic trees, domain architectures
and networks (4) and examine the distribution of
superfamilies across the tree of life (5).
Here, we describe several improvements introduced into

the SUPERFAMILY 1.75 release of the database since
last publication (5). In the next section we summarize
the updates in SUPERFAMILY 1.75, then we describe
new features incorporated in the database as well as
improvements in the back end and underlying procedure.
In the last section we explain in detail a new proced-
ure to create domain-centric functional and phenotypic
annotations from individual protein-level annotations.

SUMMARY OF THE UPDATES

Themost significant advance is that SUPERFAMILY now
contains domain-based gene ontology annotation (GOA)
at both the family and superfamily levels. To obtain a
high-quality GOA with associated significance scores it
was necessary to develop a novel methodology. The new
methodology is of general use and we have already further
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applied it ourselves to provide SUPERFAMILY with
domain-based phenotypic ontology in addition to GO.
On the protein structure side we have not only extended

the HMM library to be up to date with the current release
of SCOP (1.75), but a major addition is the entire class of
‘coiled coil’ proteins which was until now excluded. On the
sequence side, we remain up to date with the rapidly
growing number of genomes and the expanding size of
UniProt (6); we have expanded to include over 120
meta-genomes from environmental sequencing projects,
and have explicitly added 2354 plasmids and over 2473
viral genomes and their taxonomy.
The SUPERFAMILY reference tree of (sequenced) life

has been significantly improved: it now uses a probabilistic
method constrained by known taxonomy with organisms
ordered intuitively. The visualization tool now has the
facility to highlight a chosen superfamily, family or
domain architecture on the tree of life. In fact in combin-
ation with the GO it is now possible to annotate the tree of
life with any chosen function term.
In addition to the outwardly facing changes listed

above, there have been major changes to the internal
structure of the resource that will affect users. Our (as
yet unpublished) analysis has shown that the HMM
scoring component of the new HMMER3 (7) produces
superior results to that of SAM (8) and therefore, we
have converted to HMMER3 scoring. HMMER3 is
orders of magnitude faster than SAM or HMMER2
and has enabled us to move to a software cloud-based
pipeline. In fact we make available an Amazon web

services (AWS) elastic computer cloud (EC2) instance
image eliminating the need for users of the package
to install or run locally. We have also re-designed
the fundamental internal SQL database structure so
that sequences and their assignments have only one
instance; however, many genomes or sequence sets they
participate in.

The tree of (sequenced) life

The SUPERFAMILY reference species tree of
(sequenced) life is now generated with RAxML (9) using
the gamma model of rate heterogeneity. Trees are con-
strained to the NCBI taxonomy (10) and plotted online
as scalable vector graphics (SVG) using an extended
version of TreeVector (11), and can be downloaded in a
variety of formats. Superfamilies, families, architectures,
GO terms and phenotype terms can now be highlighted
individually or as combinations on the phylogenetic tree
of all sequenced genomes, visually illustrating the evolu-
tionary history of the set across the tree of sequenced life
(Figure 1). Users can choose to highlight over the entire
tree of all sequenced genomes, the highest tree node con-
taining all highlighted species, or a manually selected list
containing solely the clade of interest. In addition,
TreeVector can now assign priorities to leaf nodes so
that species/clades of greater interest appear at the top
of the tree. Trees are linked to at the bottom of the
‘Taxonomic Distribution’ tab and from the GO and
phenotype terms pages.

Figure 1. Presence/absence of the fibronectin type III superfamily in selected genomes by automatic highlighting of branches of the phylogenetic tree
that contain the superfamily in green.
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Text query searches

In the SUPERFAMILY 1.75 release we added a full text
query for SCOP descriptions and species names resulting
in more efficient and accurately ranked search results. The
relevance score returned by full text queries is used to rank
the search results.

The search functionality covers SCOP descriptions,
species names including common names plus sequence,
SUPERFAMILY HMM, SCOP, PDB (12) and InterPro
(13) identifiers. For multi-word searches an ‘entire phrase’
(aka AND) search is performed first. An ‘any word’ (aka
OR) search is perfomed if the entire phrase search fails.
Common words like ‘and’, ‘the’ are removed. Commonly
occurring but specialized words like ‘domain’, ‘superfam-
ily’, ‘protein’ and ‘gene’ will also be removed.

Coiled coils

HMMs for the domains in the previously unused SCOP
coiled-coil class have been included in the
SUPERFAMILY HMM library facilitating the produc-
tion of a sister resource, Spiricoil (http://supfam.org/
SUPERFAMILY/spiricoil/) that deals with the evolution
and identification of this super-secondary structure.

It has long been believed that coiled coils are a problem
class due to their tendency to contain low complexity or
repeat regions. Because of this they have previously been
omitted in terms of homology-based domain prediction.
We have, however, succeeded in constructing new HMMs
covering all of the domains belonging to the 55
superfamilies in this class. These have now been added
to the SUPERFAMILY HMM library and are integrated
into the SUPERFAMILY pipeline.

We also identified all coiled coil containing families and
superfamilies in other classes. Annotation of the position
and oligomeric state of the coiled coils from those struc-
tures and from the SCOP coiled class were used within
Spiricoil (14) to explore their evolution across genomes
as well as to enable prediction of their oligomeric state.

Cloud computing

Computer performance improvements generally
follow ‘Moore’s Law’; doubling every 18–24 months.
Sequencing throughput, on the other hand, has a 5-fold
growth rate per year (15). With new sequencing
technologies such as the third generation sequencing we
will soon be able to scan entire genomes, microbiomes
and transcriptomes and assess epigenetic changes directly
in just minutes and for an affordable price (16,17). Large-
scale projects such as the 1000 genomes project are already
generating petabytes of raw information (18).

Due to the ever-growing number of genomes we imple-
mented our pipeline for assigning protein domains, from
all completely sequenced genomes, in the Amazon EC2
cloud (see Tables 1 and 2 for details). The cloud not
only allows us to analyze the genomes more quickly but
also provide a scalable source of computing power to
guarantee the future provision of the SUPERFAMILY
resource to the community. We provide a publicly
available cloud image with our pipeline, allowing users

to run the assignment analysis on their own genomes
very simply using the Amazon EC2 cloud. The image is
provided automatically via E-mail upon registration for
the SUPERFAMILY package and downloads.

HMMER3

The HMMER software package for hidden Markov
model (HMM) analysis of biological sequences recently
underwent a major new release. The scoring component
of the new HMMER3 package performs better than either
HMMER2 or SAM when tested against the SCOP
database (as yet unpublished); the two older packages
were previously shown by us to be of similar performance
when it comes to scoring (19). Amazingly, HMMER3
scoring is also orders of magnitude faster. For these
reasons, and because HMMER is more commonly used
by others, we have converted our pipeline and web services
to use HMMER3 scoring. This should be of great benefit
to users of the HMM library and is a significant contri-
bution to the sustainability of the resource. To comple-
ment the increased speed of HMM scoring we have also
streamlined and accelerated the post-processing software
and added multi-threading support. The limit for
submitting to the web server for processing has conse-
quently been increased from 20 sequences to 1000
sequences.

New structures and sequences

Since the last update of SUPERFAMILY was published
the database has moved to the current 1.75 version of
SCOP. This includes the addition of nearly 200 new
superfamilies and nearly 500 families represented by
1392 new HMMs. All of the genome assignments have
been recalculated on the new model library.

Table 1. SUPERFAMILY 1.75

Release date September 2010

Number of HMM models 15 438
Number of completely sequenced genomes,
strains and collections

1628

Eukaryotes 341
Archeabacterial 87
Eubacterial 1077
Metagenomes 118
Plasmids 2354

Table 2. SUPERFAMILY 1.75 statistics

Protein with
assignments (%)

Amino acid
coverage (%)

Eukaryotes 59.11 38.9
Archeabacteria 65.13 61.67
Eubacteria 68.08 63.4
Uniprot 64 56
Metagenomes 51.47 54.1
Plasmids 47 47
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New genomes are continually added to SUPERFAMILY
as they become available.We also now provide assignments
to all structures not yet in SCOP, automatically updated
weekly with the protein data bank (PDB). Since the last
publication we have added over 400 genomes, 120
metagenomics sequence sets and we now explicitly list
over 2473 viruses and 2355 plasmids. There are now �30
million sequences in the database (including redundancy
with UniProt). The percentage of sequences with an assign-
ment in a genome has increased slightly, but the total amino
acid sequence coverage has in some cases dropped slightly.
The latter is due to a characteristic of HMMER3. The
number of domains assigned in each genome has increased,
but the average length has decreased (Table 2).

DOMAIN-CENTRIC FUNCTIONAL AND
PHENOTYPIC ANNOTATIONS

A full understanding of a protein’s functions requires
knowledge of its building blocks, particularly functional
aspects of 3D structural domains. This knowledge is also
vital to make sense of the sequenced genomes and their
evolution. The promising use in comparative and func-
tional genomics, of domain-centric functional annotations
lags far behind the protein-level annotations. By conven-
tion, functional annotations are assigned onto individual
proteins ignoring the context of the structural domains.
For instance, the GOA project (20) provides high-quality
GOAs directly associated to proteins in the UniProt
Knowledgebase (UniProtKB) (6) over a wide spectrum
of species. Even worse, the lack of comprehensive struc-
tural domain information further discourages functional
annotations at the domain level, although the number
of experimentally resolved structural proteins deposited
in PDB (21) continues to increase. Fortunately, the
domain annotations of a protein can be routinely
assigned using HMMs (22,23) based on SCOP (24).
For example, the current SUPERFAMILY database
provides high-coverage domain assignments for proteins
in UniProtKB. Beyond that, we have recently taken
advantage of manually derived GOA and comprehensive
domain assignments for proteins in UniProtKB, to statis-
tically infer domain-centric functional annotations. Such
statistical inference is based on the assumption: if a GO
term tends to annotate proteins containing a domain, then
such a term should also confer functional signals for that
domain. Respecting the hierarchical structure of GO as
well as the domain composition of proteins, we have
generated the first GOAs for evolutionarily close
domains (at the SCOP family level) and distant domains
(at the SCOP superfamily level). Here we emphasize the
GOAs of domains at SCOP family and superfamily levels,
which will greatly enrich the other existing resources
(13,25,26). In particular, we expect that the domain
mappings between SCOP and InterPro (and Pfam) will
benefit each other in terms of their relevance to GO.
Moreover, we have initialized a trimmed-down version
of GO, which is the most informative for annotating
domains. This resource represents an ongoing effort to
develop a structural domain functional ontology

(SDFO). We expect domain-centric GOAs, together
with other resources and tools in the SUPERFAMILY
web server, will greatly facilitate our understanding of
functional genomics across the tree of life.

The strategy described above can easily be generalized
for detecting other ontology relatedness to structural
domains. For example, structural domains can bridge
gaps between sequences of proteins and their phenotypic
outcomes. We reason that proteins sharing the same struc-
tural domain, upon being genetically disrupted, lead to
certain phenotypes probably related to a mutation
occurring in that domain. Based on this, domain-centric
phenotypic annotations can be similarly inferred from the
mammalian phenotype ontology (MPO) curated by the
mouse genome informatics (MGI) (27) and from the
Human Phenotype Ontology (HPO) which is built on
the online Mendelian inheritance in man (OMIM) (28).
Promisingly, domain-centric phenotypic annotations can
serve as an alternative starting point to explore genotype–
phenotype relationships.

Functional and phenotypic annotations of structural
domains at the SCOP superfamily and family levels

The GO and phenotype data are available for download
and accessible via the web interface by selecting from the
navigation bar on the left or in the ‘structural classification’
tab on the page for an individual superfamily or family.

The pipeline of building domain-centric GOAs

The procedures to create domain-centric GOAs from in-
dividual protein-level annotations are summarized in
Figure 2. The motivations behind them are: (i) from the
biological point of view, structural domains constitute
functional units of proteins and thus their functions are
inherent in the protein-level GOAs; (ii) from the methodo-
logical point of view, such inherent GOAs for a domain
can be reversely inferred if the number of domain-
containing GO-annotated proteins is significantly higher
than would be expected by chance. To realize the motiv-
ations, we started with the primary sources of high-quality
GOAs for individual proteins as well as their high-
coverage domain compositions (as assigned by HMMs
in SUPERFAMILY) at SCOP family and superfamily
levels. Following tests based on the hypergeometric distri-
bution, two types of enrichments were performed to infer
the overall and relative associations between a domain and
a GO term; two sets of proteins (i.e. singleton domain
proteins and all proteins including multiproteins) were
used to support associations. To make sure that each as-
sociation is truly domain-centric, we combined the results
from the tests above. To the best of our knowledge, these
GOAs are the first resource tailored to evolutionarily close
domains (at the SCOP family level) and distant domains
(at the SCOP superfamily level), which can be further used
to initialize a SDFO.

GOAs of proteins in UniProtKB and their domain
assignments by SUPERFAMILY

The primary source of protein-level GOAs is taken from
UniProtKB-GOA. To reduce false-positives and avoid
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data circularity from InterPro (13) and Pfam (29), we only
consider those annotations supported by experimental or
manual evidence codes (30). Due to the availability of
relatively complete domain assignments for UniProt
provided by SUPERFAMILY, filtering GOA does not
shrink our analyzable UniProt sequence space (i.e. those
UniProt sequences annotated with at least one GO term
and containing at least one domain). Notably, the large
UniProt sequence space in this study allows us to ensure
that statistical inference has adequate power to reveal sig-
nificant associations between a GO term and a domain
from protein-orientated GOAs.

Inferring domain-centric GOAs

Given sets of UniProt sequences with manually derived
GO terms from GOA as well as their structural domains

assigned by SUPERFAMILY, potential associations
between a GO term and a domain can be reversely
inferred by examining whether the observed number of
domain-containing GO-annotated UniProt sequences is
significantly higher than would be expected by chance.
The statistical significance of inference is assessed based
on the hypergeometric distribution, followed by multiple
hypotheses testing in terms of false discovery rate (FDR).
More importantly, we have addressed two issues regarding
the hierarchical structure of GO and the nature of domain
composition for multi-domain proteins.
First, we respect the hierarchical structure of GO, which

is organized as a directed acyclic graph (DAG) by viewing
individual terms as a node and its relations to parental
terms (allowing for multiple parents) as directed edges.
Specifically, we perform statistical inference of possible

Figure 2. Functional and phenotypic annotations of structural domains at the SCOP superfamily (SF) and family (FA) levels. (A) Flowchart of
inferring domain-centric GOAs using UniprotKB-GOA database and domain assignments in SUPERFAMILY database. (B) Illustration of the
procedure to create SDFO based on information theoretic analysis of Domain2 GOA profiles. (C) Venn diagram in which the area of each region is
proportional to the differences and intersections among domains annotated to a GO term ‘DNA binding’ [GO:0003677] using all UniProt sequences
(90, circled in green), domains annotated to the term only using singleton domain UniProt sequences (20, circled in blue), and domains in DBD
which can be found in at least one UniProt sequence annotated to the term (24, circled in red). (D) Venn diagram showing the differences and
intersections among domains annotated to a GO term ‘transcription regulator activity’ [GO:0030528] using all UniProt sequences, only using
singleton domain UniProt sequences, and in DBD which can be found in at least one UniProt sequence annotated to the term. (E) The total
number (shown in parenthood) of domains annotated to ontologies. GO depicts three biological concepts: BP, Biological Process; MF, Molecular
Function; CC, Cellular Component. Results are based on Domain2 GOAs supported both by singleton domain UniProt sequences and all UniProt
sequences. In MPO, it describes mammalian phenotype (MP) related to the mouse with a specific genetic mutation. HPO has three sub-ontologies:
IN, inheritance; ON, onset and clinical course; OA, organ abnormality.
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associations between a GO term (say t) and a domain (say
d), not only in terms of all UniProt sequences [see
Equation (1)], but also in the context of those UniProt
sequences annotated to all direct parents of that GO
term [see Equation (2)], These dual constraints [see
Equation (3)], ensure that only those most informative
GO terms are retained. When simultaneously comparing
multiple hypothesis tests, statistical significance of
domain-GO term associations can be assessed by the
method of FDR (31) [see Equation (4)]. The resultant
FDR was used to determine the significance of
domain-GO term associations.

Pwhole ¼
XminfM,Kg

i¼X

K
i

� �
N�K
M�i

� �
N
M

� � , ð1Þ

where N is the number of UniProt sequences annotated
with at least a GO term and containing at least a domain,
M for the number of UniProt sequences containing the
domain d, K for the number of UniProt sequences
annotated with the GO term t, X for the observed
number of UniProt sequences annotated with the GO
term t as well as containing the domain d, and Pwhole is
the expected probability of observing X or more UniProt
sequences under the hypergeometric distribution.

Prel ¼
XminfMpa,Kg

i¼X

K
i

� � Npa�K
Mpa�i

� �
Npa

Mpa

� � , ð2Þ

where Npa is the number of UniProt sequences annotated
with all direct parents of that GO term t in DAG, Mpa for
the number of UniProt sequences containing the domain
d after intersecting with those UniProt sequences in Npa,
K for the number of UniProt sequences annotated with
the GO term t, X for the observed number of UniProt
sequences annotated with the GO term t as well as con-
taining the domain d, and Prel is the expected probability
of observing X or more UniProt sequences under the
hypergeometric distribution.

P ¼ max Pwhole,Prel
� �

, ð3Þ

where P is defined as the maximum P-values in terms of
overall enrichment test and relative enrichment test.

FDRj ¼ min
L

i¼j
min

L

i
Pr
i ,1

�	 �	
, ð4Þ

where FDR is calculated using the Benjamini–Hochberg
(BH) derived step-up procedure, Pi

r is the i-th ranked P in
an ascending manner, L for the number of all possible
domain-GO term associations.
Second, we respect the nature of the domain compos-

ition of proteins. The contribution of each domain in a
multi-domain protein to its functions may be dominant or
trivial or between. Because we here aim to generate truly
domain-centric functional annotations, the resulting GO
terms for a given domain should account for both single-
ton domain proteins and multi-domain proteins contain-
ing that domain. To such end, we calculated significance
[FDR, see Equations (1–4)] of associations only using

singleton domain UniProt sequences and using all
UniProt sequnces (including multi-domain sequences).
The criteria for identifying the domain-GO associations
were based on stringent FDR (<0.001), supported both
by singleton domain sequences and all sequences.

Since GO depicts three complementary biological
concepts including biological process (BP), molecular
function (MF) and Cellular Component (CC), and
SCOP classifies evolutionary-related domains into super-
family level and family level, we have accordingly
generated the domain-centric GOAs for each of the
three concepts at the two domain levels.

Initializing SDFO

Here, we are aiming to get lists of GO terms that are the
most informative in terms of annotating structural
domains. To do so, we applied information theory to
define information content (IC) of a GO term based on
domain-GOA profiles [see Equation (5)]. For any domain,
GO terms annotated to that domain constitute a
domain-GOA profile in DAG, including direct annota-
tions as well as inherited annotations according to the
true-path rule. Considering the nature of dependencies
among GO terms (or so-called true-path rule), a
domain/protein directly annotated to a specific GO term
(termed as direct annotations) should be inheritably
annotated to its parental terms (terms as inherited anno-
tations). GOAs generated above can be considered as
direct annotations. The complete GOAs (direct and
inherited) are used to calculate IC for all GO terms.
Actually, the IC of a GO term gives a measure of how
informative it is to annotate all annotatable domains. For
example, a GO term (i.e. BP or MF or CC) with an IC of 0
would be expected to annotate all domains. More import-
antly, those GO terms with similar IC can represent a
partition that has been used to produce the GO partition
database (32). Similarly, we have developed a procedure
(Figure 2B) to create meta-GO terms as a proxy for struc-
tural domains functional ontology (SDFO). Briefly, the
algorithm iteratively identifies GO terms closest to a pre-
defined IC (say 1) as a seed until all paths have been
searched in the DAG, on the condition that one and
only one GO term can be identified per path. If multiple
GO terms with identical IC are identified in the same path,
we filter out those parental terms. Once a GO term is
identified, all terms in the path in which that term is
located will be marked for being immune from further
search. The outputs are those identified GO terms with
IC falling in the range (say, 1±0.25). We run the algo-
rithm using each of four seed ICs (i.e. 0.5, 1, 1.5 and 2) to
create SDFO, respectively corresponding to GO terms
with four levels (least informative, moderately informative,
informative, highly informative).

ICðGOiÞ ¼ � log10
#fdomains 2 GOig

#fdomains 2 GOrootg
, ð5Þ

where IC for a term GOi is defined as negative
log-transformation of the frequency of observing
domains annotated to that term.
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Comparing with existing manual annotation

Although it is hard to systematically evaluate the accuracy
of domain-centric GOAs without gold-standard bench-
marks, it is feasible to make comparisons with independ-
ent high-confidence annotations related to a specific
functional category. Since the procedures proposed
above are not biased toward a specific function, such com-
parisons can give us an intuitive overview of performance.
In this aspect, the DNA-binding domain (DBD) database
(33), containing a manually curated list of
sequence-specific DNA-binding domains at the SCOP
superfamily level, can be of use. For this comparison, we
treat the GO term ‘DNA binding’ [GO:0003677] as an
equivalent functional annotation for the DNA-binding
domains. Out of 38 domains in DBD, 24 can be found
in at least one UniProt annotated term, and thus can be
used for the comparisons in this study. As shown in Figure
2C, domains annotated to ‘DNA binding’, which are
inferred using all UniProt sequences, highly overlap with
those in DBD, taking up almost 75% accuracy (18/24).
Moreover, there are up to 3.75-fold increases in coverage
(90/24). Further inspection of those truly domain-centric
annotations supported by both singleton domain se-
quences and all sequences, 8 out of 14 domains can be
found in DBD. It indicates that at least half of
DNA-binding domains function independently as DNA
binding domains, regardless of the presence of other
domains in multi-domain proteins. Of note, the GO
term together with these 14 high-quality domain-centric
annotations, are included in SDFO at the informative
level. Since the GO term ‘DNA binding’ [GO:0003677]
may cover non-specific binding, which is excluded from
consideration in DBD, we also used other GO terms
(such as those related to transcription regulation) for com-
parison. Indeed, similar results can be obtained when
focusing on the GO term ‘transcription regulator
activity’ [GO:0030528] (Figure 2D).

This demonstration partially validates the power of our
procedure in developing domain-centric GOAs. First, it is
a good starting point for creating a compatible ontology
with protein-centric GO. Second, truly domain-centric
functional annotations make it possible to study the
extent of domain combinations on the neo-functions.
Last but not least, most users may not care too much
about whether annotations are truly domain-centric or
not, so it would be very convenient to get high-coverage
and high-quality lists of domains related to a specific func-
tional categories of interest. Practically, due to limitations
in the number of singleton domain proteins available for
statistical testing, we must use all proteins (including
multi-domain proteins) to perform the inference of pheno-
typic annotations below.

Extension to phenotypic annotations of structural domains

Like GO, phenotypic ontologies such as MPO and HPO
have been developed to classify and organize phenotypic
information related to the mouse and the human from the
very general at the top to more specific terms in the DAG.
MPO describes phenotypes of the mouse after a specific
gene is genetically disrupted (27), while HPO captures

phenotypic abnormalities that are described in OMIM,
along with the corresponding disease-causing genes (28).
Similar to statistical inference of domain-centric GOAs,
we were also motivated to annotate structural domains
with MPO (and HPO) that likely underlie the protein/
gene-level phenotypic abnormalities. Similar procedures
to those described in Figure 2A were applied except for
two modifications. First, we only consider the longest
transcript to ensure that the one-gene–one-protein
mapping is valid, as these phenotypic annotations are
gene orientated rather than protein based. Second, associ-
ations between domains and phenotypes are only sup-
ported by all proteins, due to the failure of statistical
testing using insufficient number of singleton domain
proteins in the mouse genome (or human genome).
Figure 2E summarizes the total number of domains that
can be annotated by MPO and HPO. This preliminary
summary reveals that some structural domains can be of
relevance to phenotypic studies. As the coverage and
accuracy of these primary databases improve, we expect
that much more domain-centric phenotypic annotations
will be generated using the proposed procedures.

FUTURE DIRECTIONS

The most important goal we hope to achieve in the long
term is to partially automate the model-building proced-
ure, and in collaboration with SCOP and ASTRAL to
move towards rolling weekly updates in place of the
periodic updates. We plan to continue to develop
SUPERFAMILY as a tool for understanding the evolu-
tion of protein domains and the genomes/metagenomes in
which they are found.
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