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Abstract

Light microscopy applied to the domain of histopathology has traditionally been 
a two‑dimensional imaging modality. Several authors, including the authors of this 
work, have extended the use of digital microscopy to three dimensions by stacking 
digital images of serial sections using image‑based registration. In this paper, we give 
an overview of our approach, and of extensions to the approach to register multi‑
modal data sets such as sets of interleaved histopathology sections with different 
stains, and sets of histopathology images to radiology volumes with very different 
appearance. Our approach involves transforming dissimilar images into a multi‑
channel representation derived from co‑occurrence statistics between roughly 
aligned images.
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INTRODUCTION

A number of authors have addressed the problem 
of reconstruction of volumetric data from serial 
histopathology sections. These approaches may be 
divided into those approaches that rely on the tissue 
only,[1] and those that use a form of three‑dimensional 
(3D) imaging (radiology, or block face imaging) to 
aid the reconstruction.[2,3] Within both groups, image‑
based registration is usually based on either an iterative 
optimization  of a similarity metric,[4] or feature detection 
and matching.[5] Either approach has drawbacks. 
Optimization‑based approaches can find local optima of 
the similarity function. With volumetric reconstruction, 

it is necessary to either perform a large number of 
registrations (one per section),[5] or optimization in a very 
high dimensional space,[4] either increasing the likelihood 
of failure. With feature detection‑based methods, the 
features must be appropriate to the data, and thus a 
truly generic method is not possible. We have previously 
presented an alternative approach based on combining 
multiple local rigid registrations into a single non‑rigid 
transform using a robust statistical estimator.[6] We use a 
closed form method of rigid registration based on phase 
correlation[7,8] to perform local rigid registration. This was 
selected as it is computationally efficient (four Fourier 
transforms, and a fixed set of multiplies and adds), and 
is guaranteed to find the maxima of similarity as it is 
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equivalent to an exhaustive search. The drawback of this 
method when applied to multi‑modal data is that it is 
based on greyscale similarity. The conventional approach 
to multi‑modal registration is to use mutual information 
(MI) as a similarity metric.[9] However, this implies 
an iterative method with associated computational 
complexity and risk of local optima. Our alternative 
approach is to transform pairs of multi‑modal images into 
pairs of multi‑channel “tissue class probability” images 
based on co‑occurrence statistics of roughly aligned 
images. MI is used within the process of forming these 
emergent tissue classes from the image pair (a rather 
different use of MI than the conventional similarity 
metric in registration). Once the multi‑channel tissue 
class probability images have been formed, registration 
proceeds as with the single stain registration, excepting 
for the fact that there are N sets of local registrations 
(one per emergent tissue class). These are combined as 
before within our multi‑level robust statistics framework 
to form a single B‑spline based registration. The 
remainder of this paper is as follows: Section 2 details the 
basic robust statistical framework used in both the single 
stain and multi‑modal registrations; Section 3 details the 
formation of the multi‑channel “tissue class probability” 
images from roughly aligned images; Section 4 presents 
some case studies of applications of the technology; and 
Section 5 presents a discussion and conclusion.

VOLUMETRIC RECONSTRUCTION FROM 
SERIAL SECTIONS USING ROBUST 
STATISTICS

The main idea behind our method is that a single 
non‑rigid registration for a pair of large images may be 
performed as a set of rigid registrations on sub‑images, 
which are subsequently combined. This has the dual 
advantage of computational efficiency (memory and 
processor usage) and robustness (a single registration 
failure is not catastrophic as there is redundancy). In 
order to implement this idea, images are padded to 
the same size and pre‑aligned rigidly, in order to that 
(roughly) corresponding regions may be extracted by 
dividing the images into regular grids. The basic workflow 
of our robust statistical framework is:

For images n = 1:N‑1:
•	 Pad images to the same size.
•	 Rigidly align images n and n + 1 using greyscale 

phase correlation (image n = static image, image n 
+ 1=moving image).

•	 Divide each image pair into equal sized 50% 
overlapping patches, and rigidly align corresponding 
patches using a form of phase correlation that 
recovers rotation and translation .[6]

•	 For each local registration construct five transform 
vectors (one at each corner, and one in the middle) 

from each registration.
•	 Approximate the set of vectors by a rigid transform 

using a least squares minimizing method, and 
subtract this transform from each vector.

•	 Approximate the “residual transform vector” 
set using a B‑spline using a robust least squares 
minimizing method.[10]

•	 Use transformed image n + 1 as static image for 
image n + 2.

In practice, steps 3–6 are repeated at multiple scales 
(from coarse to fine) and increasing degrees of freedom 
of the B‑spline. The first  reference image is selected 
by hand as an image with minimal distortion (to avoid 
propagating distortions to subsequent images). This 
approach has been applied successfully to reconstruct 
several hundredvolumes of different tissue types and 
chemical stains. A number of examples are visualized in 
Figures 1 and 2.

MULTI-STAIN AND MULTI-MODAL 
REGISTRATION

In this section, the generation of mapping functions to 
map images of different appearance to multi‑channel 
images of more similar appearance is described. The 
outline of the method is as follows:

•	 Represent each pixel of each image by a feature 
vector derived from local intensity, color, and texture. 
These features in include the output of Gaussian 
filters on color and greyscale channels, and a novel 
derivative based texture feature.[11]

•	 Quantize the set of features separately for each 
image such that each pixel is represented by a 
prototype label (L1x,y, L2x,y).  Clustering is performed 
using a binary PCA‑tree method.[11] This method was 

Figure 1: Single stain reconstruction results (stack views, 1 line 
per image) (a) bowel cancer in human liver (50 µm slice spacing, 
paraffin-embedded, H & E stained), (b) rat glomerulus (0.5 µm slice 
spacing, plastic embedded, H&E stained)
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selected for its computational efficiency, and ability 
to work with variation of different scales.

•	 Consider a pair of hypothesized mapping functions 
that map the prototypes to a finite set of common 
tissue classes: C1x,y = M1 (L1x,y) C2x,y = M2 (L2x,y).

•	 For a given pair of mapping functions, it is possible 
to generate a tissue class co‑occurrence matrix. The 
MI calculated from this matrix is a measure of the 
similarity between the two images under that pair of 

mapping functions (and that feature set). A greedy 
search of potential mapping functions is performed 
in order to maximize MI, and select the best 
mapping functions.

•	 The method is repeated with different feature sub‑
sets in order to perform feature selection. The feature 
sub‑set with highest MI is selected.

Once the mapping functions for each image have been 
determined, the construction of probability images for 
each tissue class for each image is simply a matter of 
considering the co‑occurrence of prototype labels in 
one image with tissue classes in the other. Counting 
these co‑occurrences and normalizing gives P( Tissue 
Class|Prototype), which is mapped to a pixel value by 
multiplying by 255. Figure 3 illustrates results of applying 
this process for both multi‑stain histopathology pairs and 
histopathology: Magnetic resonance imaging (MRI) pairs. 
Once the images have been constructed registration is 

Figure 2: Liver tissue quantification. (a) Left: Original data, right: 
“Stacks view” of reconstructed data (one row from each image). 
(b) Volume rendering of reconstructed liver tissue
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Figure 3:  Tissue class images: (a) Two histopathology images with different stains (left: Original images and sub image, right: 3 “tissue class 
probability images” corresponding to each image/tissue class, (b) histopathology image and magnetic resonance imaging image)
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applied as described in Section 2, with 5 x Nc vectors 
per block (where Nc is the number of tissue classes). 
Initial rigid alignment is using the same greyscale phase 
correlation method as described previously, which works 
on such multi‑modal data (at low resolution) because of 
the clear distinction between foreground and background 
at low resolution in histopathology images. Full details 
may be found in Song et al.[11]

APPLICATION TO VOLUMETRIC 
RADIOLOGY DATA

For multi‑stain histopathology data sets, the 3D 
correspondence (slice to slice) is explicit in the data 
set. For histopathology to radiology registration, a two‑
dimensional (2D) oblique slice needs to be determined 
in order to compute tissue class probability images and 
subsequently perform 2D:2D non‑rigid registration. 
Initially, this is performed manually for a single 
histopathology image using an interactive tool (MIM 
Medical Image Manager, HeteroGenius Ltd, Leeds, 
UK http://www.heterogenius.co.uk). Once one section 
is aligned, its 3D location can be optimized locally by 
maximizing MI between prototype labels (MI [L1,L2]) 
over a 3D rigid transform using Levenberg Marquart 
(LM) optimization.[12] LM is an iterative gradient‑based 
optimization method. Subsequent sections can be 
placed in 3D space with reference to their theoretical 
geometric relation to the initial slice(s) (i.e., parallel 
with known normal offset based on section thickness/
separation). Again, their location can be optimized by 
local optimization. Once placed in 3D space registrations 
to slices above and below (as Section 3) can be 
performed, in addition to registration to the volumetric 
radiology data. Accuracy of the method is demonstrated 
in Figure 4a. Typically, registration is accurate to within 
200 µ (evaluated by measuring the distance between 
corresponding landmarks, such as blood vessels, in 2D), 

although larger deformations (such as tissue folds, and 
severe deformation) cannot be corrected for.

CASE STUDIES

Liver disease quantification
We used the original volumetric reconstruction algorithm 
(Section 2) to generate volumes from liver tissue with 
five different types of liver disease (alcoholic liver disease; 
hepatitis C virus; primary biliary cirrhosis; primary 
sclerosing cholangitis; and polycystic liver disease) plus a 
healthy control [Figure 2]. Two 1 cm3 tissue samples were 
taken for each disease and sectioned with a microtome 
to give approximately 100 sections per tissue sample 
(separation 100 µm). These were stained with picrosirius 
red and scanned using an aperio T2 or T3 scanner 
(Aperio Inc., San Diego) at ×20 objective. Figure 2 shows 
liver nodules (stained brown/yellow) are surrounded 
by patterns of fibrotic tissue (stained red). The size, 
shape, and connectivity of nodules were quantified by (i) 
interactively segmenting nodules from other pixels using 
our in house Volume Viewer software (Volume Viewer, 
University of Leeds, Leeds, UK)  with inplane resolution 
1/64 of  native resolution, (ii) separating nearby nodules 
using a 3D sub‑voxel anisotropic morphological opening 
procedure, and (iii) assigning statistics to connected 3D 
components (size, elongation, etc.) using C++ code 
based on the Insight Toolkit (Kitware Inc., NY). The 
number of connected components and size of connected 
components showed a statistically significant variation 
between diseases, which is an indication of the (loss of) 
liver function in different diseases. Full results will be 
presented elsewhere.

CARDIAC COLLAGEN QUANTIFICATION

The purpose of this study was to quantify the effect 

Figure 4: Rat heart collagen quantification (a) histology to magnetic resonance imaging (MRI) registration (b) three-dimensional 
segmentation of MRI based on the AHA heart model
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of sub‑sampling sections on collagen quantification in 
rat hearts. Previous works[13] had used small number of 
sections 1–3 to quantify collagen density in different 
parts of the heart. The problem with using very 
sparse sections is twofold; (i) accurate identification 
of the cardiac regions and (ii) the collagen density is 
heterogeneous and as such, sampling by taking a single 
section could introduce an undersampling error. To 
quantify the degree of the undersampling error, we took 
1000 5 µm serial sections from each of two rat hearts (a 
male normal Wistar rat and a male Wistar rat in right 
heart failure) and aligned them to high resolution MRI 
volumes of the same hearts pre‑sectioning scanned using 
a FLASH (fast low angle shot) MRI sequence in a Bruker 
(Ettlingen, Germany) 9.4T spectroscope with spatial  
resolution of 50 µm × 50 µm × 50 µm[18].  Each MRI 
volume was manually segmented into regions as defined 
by a modified American Heart Association model [Figure 
4b],[14] which enabled labeling of each co‑registered 
histopathology image. Collagen quantification was 
carried out in 2D using a standard method,[15] using all 
1000 sections, and also subsets of 100, 50, 10 sections. 
Results showed acceptable quantification down to 100 
sections (100 µm spaced sections), but thereafter sub‑
sampling resulted in increased variance over different 
data sub‑sets. The lesson to be learned from this is that 
quantification using a single (or small numbers of) 2D 
section is potentially subject to sampling noise, even if 
the whole 2D sample is analyzed. A more robust way of 
performing the quantification is to take a larger number 
of samples of the tissue and aggregate the results. Full 
results are presented by Gilbert et al.[16]

COMPUTATIONAL MODELING OF SPINAL 
DISCS FROM MULTIPLE DIFFERENT STAINS

Data driven computational models are a tool that 
can help understand the disease and the implication 
of clinical actions (e.g., surgery). In the domain of 
musculoskeletal medicine, physics‑based models (e.g., 
Finite Element models) may be constructed based 
on MRI or MicroCT data.[17] Such data only provide 
one value per voxel (Density in the case of MicroCT). 
Chemical stains used in histopathology can provide a 
wealth of other functional information like collagen 
density (relating to elasticity), cell density, etc. However, 
such data are 2D only and as such, not suitable for 
use in building 3D models. We have run experiments 
to reconstruct 3D data sets from multiple interleaved 
sections stained with different chemical stains using the 
methods described in Section 4. Data used was from 
an ovine intervertebral disc. In all five stains were used 
(Alcian Blue, ERSR, FAST, Elastic Pico Sirius Red and 
Sirius Red) to build a multi‑parametric 3D representation 
of the data. This volumetric data was also aligned with 
high resolution MRI (scanner as in the previous section) 

to provide further anatomical information. The aim is 
to build multi‑scale physics‑based models based on the 
anatomical and functional data provided by this rich data 
set. The modeling work is ongoing.

DISCUSSION

Reconstructing microscopic functional and anatomical 
datasets in 3D using multiple 2D digital images 
is a powerful tool in a number of research areas 
including disease quantification and computational 
modeling. In this paper, we have described how 
multiple sources of information (multiple chemical 
and immunohistochemical stains, radiology) may be 
combined in a similar manner to stacking single stain 2D 
datasets using an information theory based image pre‑
processing method. In order to facilitate such research, 
the process of volumetric reconstruction must be as 
robust as possible. We have tackled this challenge using 
a combination of fast local analysis, robust statistics, 
a multi‑scale approach, and a minimal (but important) 
amount of manual intervention. The combined 
method has been demonstrated to outperform iterative 
optimization‑based techniques both in terms of accuracy 
and run‑time.[11] Our techniques have been applied in a 
number of different areas, and we continue to explore 
applications and collaborations in surgical planning, 
radiology sequence development validation, disease 
quantification, and a number of other areas.
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