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ABSTRACT: Optimal design of polymers is a challenging task due to their
enormous chemical and configurational space. Recent advances in
computations, machine learning, and increasing trends in data and software
availability can potentially address this problem and accelerate the molecular-
scale design of polymers. Here, the central problem of polymer design is
reviewed, and the general ideas of data-driven methods and their working
principles in the context of polymer design are discussed. This Review
provides a historical perspective and a summary of current trends and outlines
future scopes of data-driven methods for polymer research. A few
representative case studies on the use of such data-driven methods for
discovering new polymers with exceptional properties are presented.
Moreover, attempts are made to highlight how data-driven strategies aid in
establishing new correlations and advancing the fundamental understanding of
polymers. This Review posits that the combination of machine learning, rapid
computational characterization of polymers, and availability of large open-sourced homogeneous data will transform polymer
research and development over the coming decades. It is hoped that this Review will serve as a useful reference to researchers who
wish to develop and deploy data-driven methods for polymer research and education.
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1. INTRODUCTION

Polymers are highly correlated many-body systems with
complex structures and dynamics spanning a wide range of
length and time scales. Their relaxation processes involve
complex phenomena such as vitrification, jamming, gelation,
and semicrystallization, which are highly process-dependent and
for which no comprehensive theoretical framework and
understanding exist. These phenomena are strongly influenced
by the chemical details of a polymer’s building blocks. Optimal
use of polymers in future technologies such as electronics,
medicine, and energy devices demands a deeper understanding
of the connections between molecular chemistry and materials
processing while establishing strategies for their rapid and
rational design.1−3 Advancement in experimental, theoretical,
and computational polymers research and their close integration
can potentially improve the current understanding of polymers
and accelerate their design by generating a large volume of data.
However, rapid production of polymer structure−property data
and their utilization for new material development require
synergies among several fields of STEM (Science Technology
Engineering Mathematics) including data science, high-
performance computing, machine learning, numerical optimi-
zation, automation science, and materials informatics along with
polymer physics, chemistry, and processing. There are several
challenges in integrating these disciplines including translating
polymer chemistry into machine readable fingerprints, stand-

ardization of materials data formats, data sharing, mining and
learning from data that are explainable and interpretable,
developing transferable predictive models from data, and
reverting fingerprints into chemical formulas.4−9 Addressing
these challenges is vital for moving from traditional trial-and-
error polymer development toward rational data-driven polymer
design.
Unlike biomolecules where informatics-based design has been

accelerated by the availability of large, open, and homogeneous
structure−property relation databases such as the Protein Data
Bank,10,11 similar data banks in synthetic polymers are sparse,
heterogeneous, and often outright unavailable.12,13 Moreover,
due to a general lack of rapid, parallelizable techniques for
measuring polymer properties, building such databases de novo
for a specific design problem is often challenging and resource-
prohibitive. Molecular simulations, machine learning (ML), and
advanced optimization methods can potentially address these
challenges and accelerate polymer design. Such data-driven
materials design strategies are on the rise, and they have shown
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success in many materials design problems.14−28 Toward this
end, in recent times, large materials databases have been created
to accelerate this data-driven paradigm of material research. A
list of publicly available databases can be seen elsewhere.26,29

Although such data-driven approaches were initially started for
inorganic materials and small organic molecules,7,30−35 they
have subsequently gained popularity and potential in polymer
and soft matter research.20,36−41 Many databases are now
available for synthetic polymeric materials as well.42−46 These
databases contain mostly computationally estimated structure−
property data and a lesser amount of experimentally measured
data. This is because the high-throughput large-scale data
generation via experimentation is still a substantial challenge.
However, computational methods are now routinely used to
generate large-scale materials data. In particular, molecular
modeling and simulation of polymers have now grown into a
matured field and provide efficient methods for the reliable
estimation of polymer properties.47−63 These methods are now
implemented in open-sourced software that are highly scalable
with system size in a HPC (High Performance Computing)
environment. Some of the popular large-scale classical polymer
simulation packages are LAMMPS,64,65 GROMACS,66,67,67

NAMD,68,69 DL_POLY,70 DL_MONTE,71 and Cassandra.72,73

These classical simulation packages can be utilized for reliable
estimation of a wide range of equilibrium and steady-state
properties including structure factor, radius of gyration, phase
equilibria, viscosity, thermal conductivity, surface tension, ion
diffusion, gas permeation, and many other properties of
polymeric materials. Quantum level simulations can be
performed for band gap, dielectric constant, refractive index,
and other properties relevant to the electronic scale. VASP,74,75

QUANTUM ESPRESSO,76−78 and Gaussian79 are very
commonly used packages for quantum chemical simulations.
These packages have been used regularly to perform large-scale
molecular simulations in advanced computing hardware with a
large number of CPU (central processing unit) cores in
combination with powerful GPUs (graphics processing units)
in MPI (message passing interface) architectures for rapid
characterization of large number polymer systems simulta-
neously. The large amounts of simulated data can be utilized to
downselect a few promising candidates for a target application
and direct the experimental investigations to a very narrow
region of the search space. Hence, this increasing trend in the
availability of polymer data and rapid computation of polymer
properties are poised to shorten the materials development time
scale, which is typically 15−25 years.80,81
However, the optimal design of polymers cannot be addressed

solely by building large amounts of computational or
experimental databases. The primary bottleneck in the optimal
design of a polymer is its astronomically large combinatorial
sequence space. For instance, a linear copolymer chain with an n
number of possible monomers and m type of chemical moieties
will have mn/2 sequences. The denominator is to eliminate the
double-counting of a polymer, as a sequence and its reverse
sequence represent one copolymer. Even for an AB type
copolymer, i.e., two types of chemical moieties with a chain
length of 50, the total combination is 249, which is over 1015. In
practice, many copolymers possess more than two chemical
moieties and several hundreds of monomer units. Given that
such an enormous sequence space needs to be explored to
identify the best candidate for a given application, it is highly
desirable to minimize the number of property measurements
(computer simulations or experiments) to complete a design

task within a reasonable time. ML and advanced optimization
techniques can play an important role in reducing the number of
property measurements in a design cycle.82,83 Pre-existing and
open-source data (both experimental and simulation data) can
serve as a starting point for such rational exploration of polymer
search space.39,84−86 More importantly, global optimization
techniques and ML models can guide the data generation
toward unknown regions of a polymer’s physicochemical space
and, thus, help in avoiding repeated sampling in the same region
of the space. How much data are required to identify an optimal
polymer and how to choose an efficient algorithm for a specific
polymer design problem are important open questions in data-
driven polymer research.
This Review surveys the multiscale featurization of polymers,

summarizes MLmethods for predicting polymer properties, and
examines various ways of integrating first-principle methods,
ML, and optimization methods for polymer design problems. I
note that DFT, MD, and other physics-based theoretical
computations and experimental measurements of polymer
properties are referred as first-principle methods in this Review.
A few representative case studies on the application of data-
driven methods in polymer design problems are discussed, and
their key findings are reported. I note that Ferguson has reported
an excellent review article which can be referenced for an
introduction to machine learning methods, particularly
unsupervised methods, that are suitable for soft matter
research.87 Here, I particularly focus on the supervised methods
and other data-driven strategies that are suitable for the design of
polymers. Furthermore, Audus and de Pablo have reported a
viewpoint on some of the challenges and opportunities in
polymers informatics.88 Jackson, Webb and de Pablo have also
reported a review of recent advances in machine learning toward
multiscale soft materials design.37 Ramprasad and co-workers
have reviewed the roadmap for rational polymer design.38,89

Along these lines, there are other excellent review articles that
focus on the applications of ML and data science in various
polymers and soft matter research.90−93 This review aims to
provide complementary perspectives of data-driven polymer
research and highlights some of the recent works on data-driven
synthetic polymers design that have not been covered in
previous review articles. It specifically discusses the application
of data-driven methods for single-chain polymer design,
polymer-membrane, polymer compatibilizer, polymer dielec-
trics and heat conducting polymer research.
The flow of the article is organized as a roadmap for a polymer

design study. First, the fingerprinting of a polymer and defining
its design space are discussed in section 2. Then, the data
generation and ML model development procedures are
described in section 3. Section 4 presents the polymer design
workflows that integrate optimization algorithms, ML models,
and/or first-principle methods. Five representative case studies
are presented in section 5. In each of these sections, current
practices, limitations, and yet-to-be-solved challenges are
discussed and some interesting and important works that have
attempted to tackle these challenges are cited. Moreover, future
research opportunities are highlighted in section 6. I hope that
this Review will be useful to make an informed-decision to set up
a new polymer design study from the plethora of tools that are
offered by data science and computational techniques and to
stimulate methodological advancement for efficient data-driven
polymer design.
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2. POLYMER FEATURIZATION AND DESIGN SPACE
Optimization algorithms, ML-model development, storing,
sorting, and accessing large volumes of structure−property
data need to represent polymers in a machine-readable
numerical representation.94 Significant efforts have been
dedicated to establish and validate such numerical representa-
tion of molecules for machine learning and computer aided
design. These numerical representations are known as finger-
prints or descriptors or features. There are several classes of
mapping reported, and they are typically decided based on the
scale of representation. For instance, for a sequence design
problem, a very common strategy is to represent the sequence of
chemical moieties as a binary number. In several other
applications, polymer structures are represented as a graph or
image that describes each and every atom of a molecule or a
polymer subunit explicitly. Often, a polymer subunit is
represented by a chemical tree, where each node is an atom or
a group of atoms. Such representation is useful for developing a
recursive neural network model for predicting polymer proper-
ties.95 In this regard, one of the popular descriptors of
macromolecules is SMILES96 (Simplified Molecular Input
Line Entry System) string representation. The SMILES string
representations are heavily used for the chemical space
exploration of polymers.90 The SMILES string representation
of a restricted chemical space can be converted into a two-
dimensional binary matrix representation that can also serve as
an input to machine learning model for predicting polymer
properties.97,98 Similarly, deep learning methods can be
employed for autonomous extraction of descriptors.99,100 This
process of utilizing domain knowledge for creating features that
will be inputted into a computer algorithm is known as feature

engineering in ML literature. As features impact the perform-
ance of anMLmodel, efficient featurization of polymers are very
important for data-driven polymer design. Also, the features
must be compatible as inputs of an ML model. For example, a
numerical representation of a polymer is required for building an
artificial neural network (ANN) model, while the convolutional
neural network (CNN) needs an image-based representation of
the polymer as its input. The ranges of these variables define the
feature space of a given polymer. The number of descriptors or
the dimension of the feature space of a polymer depends on the
nature of exploration. Typically, a design problem starts with
defining a search space, which is usually a subspace of the feature
space, and restricting the search in a specific region of
physicochemical space based on our interests, a priori
understanding and feasibility within limited resources. Here, I
describe very common and popular featurization schemes that
have recently been used for synthetic polymer design at
sequence and subunit levels. Featurization at subunit levels is
preferred for homopolymers where all the repeating subunits are
chemically identical. On the other hand, sequence level
featurization is essential for copolymers wheremultiple chemical
moieties are sequentially connected in polymer topologies.

2.1. One-Hot Encoding (OHE) of Polymer Sequence

In machine learning and data science literature, converting text
and other categorical data into a numerical representation is
commonly called one-hot encoding. One-hot encoding yields a
numerical data structure that can be used as the input of an ML
model.101,102 The central part of feature engineering for ML
model/algorithm development is OHE. A simple example of
OHE is the mapping of a long copolymer with two chemical

Figure 1. Feature space representation of polymers. (a,b) Binary string representation of a copolymer with two chemical moieties. (c) Property
coloring featurization of a coarse-grained polymer. Adapted with permission from ref 39. Copyright 2020 The Authors. (d) Poly(2,4-dichlorophenyl
methacrylate) structure, its chemical tree, numerical labels and connection table. Adapted with permission from ref 95. Copyright 2007 Elsevier. (e)
Converting chemical formula into a binary image for CNN model development. Adapted with permission from ref 97. Copyright 20202 Elsevier. (f)
Schematic representation of an autoencoder that maps the discrete molecular representation to a continuous latent space. Adapted with permission
from ref 35. Copyright 2018 AAAS. (g) Molecular motifs of several types: C2, C3, C4, O1, O2 and H1 are atom types, C2−C3, C3−C4 and O2−C4
are bond types, and C2−C3−C4, O2−C4−C4 and H1−O2−C4 are two bonds catenations. Adapted with permission from ref 14. Copyright 2015
American Physical Society.

ACS Polymers Au pubs.acs.org/polymerau Review

https://doi.org/10.1021/acspolymersau.1c00035
ACS Polym. Au 2022, 2, 8−26

10

https://pubs.acs.org/doi/10.1021/acspolymersau.1c00035?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00035?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00035?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00035?fig=fig1&ref=pdf
pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.1c00035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


moieties to a binary number in which “0” and “1” represent two
different moieties.103−106 The length of the binary string is
determined by the nature of the polymer. In the case of polymers
that consist of a repeating subunit, a binary number equivalent to
the repeating subunit will serve as a OHE representation for ML
model development, as shown in Figure 1a. In this case, the
design space is limited to the repeating unit. The number of
candidate polymers will be the total number of permutations
within the size of the repeating unit. However, for stochastic
sequences, the entire polymer sequence is mapped to a binary
string as shown in Figure 1b; and the number of possible
candidates grow exponentially with the polymer chain length.
Polymers with more than two chemical moieties and their
chemical connectivity including branching can be encoded into
such binary representation.39,84

2.2. Property Coloring

As an alternative to OHE of a polymer sequence, de Pablo and
co-workers have proposed a flexible featurization approach, viz.,
property coloring that encodes a polymer in an image as shown
in Figure 1c.39 The advantage of property coloring is that it
accounts for local physical and chemical environments along
with the sequence. A polymer is initially mapped to a three-
dimensional array. These three dimensions correspond to the
number of beads/chemical moieties in a monomer, properties of
the beads such as their size and interaction strength, and
sequence of monomers in the polymer chain. This array of
information is passed through filters to produce a convoluted
image. This image of the polymer can be used to build a CNN.
This featurization is found to be very efficient for ML model
development for coarse-grained polymer systems.39

2.3. Chemical Tree

Monomer and/or repeat unit level descriptions can be directly
represented by one of the above binary schemes. However,
atomic level description and subsequent design of chemical
composition of a polymer subunit can be conducted by forming
a chemical tree as shown in Figure 1d. The node of the tree is
labeled with the appropriate chemical groups. The molecular
graph is made by splitting the compound into atomic groups and
placing them in the vertexes. Solaro and co-workers have
proposed a “1-of-n” coding scheme that labels the chemical
symbols of the atomic groups by a numerical vector.95 The
chemical information is then stored in a connection table that
records the connections among the vertexes and their subtrees.
This tree representation of chemical structure is flexible and
allows definingmolecular fragmentation at the desired level. The
tree representation of the unit of a homopolymer is shown to be
very efficient for building recursive neural network model
(RNN) for predicting polymer properties.95,107,108 This
monomer level fingerprinting can be implemented with the
help of open-sourced tools such as RDKit.109

2.4. One-Hot Encoding (OHE) of SMILES Strings

The SMILES code is a line notation that encodes a molecular
structure into a string of characters. For small molecules and
periodic polymers, SMILES serves as an effective descriptive
code for text-based ML model development. These SMILES
representations can be converted into vector representation for
efficient ML algorithm development. For example, Miccio and
Schwartz have used an OHE scheme to transform SMILES
string into a binary image.97 The binary image is constructed
with the help of a dictionary that includes all possible SMILES
characters. As shown in Figure 1e, this encoding starts with

establishing a binary matrix of size nd × nposmax. Here, nd is the
number of characters in the dictionary and nposmax is the
number of characters in a SMILES string of a candidate polymer.
All the columns of a given row are populated with “0” except the
one where the library character and SMILES string character
coincide. Such points of coincidence are assigned a value of “1”.
Such a binary matrix is converted into a binary image where “0”
and “1” correspond to gray and black colors, respectively. This
way, all the candidate polymers in a data set can be transformed
into binary images, which can serve as input to a CNN model. I
note that the SMILES string representation is further extended
to bigSMILES representation that is more suitable for
nonperiodic and stochastic polymers.110 The bigSMILES
representation provides additional bonding descriptors that
define how different monomer units are connected to form a
long polymer. However, ML model developments based on
bigSMILES representation, and its efficacy are not explored
intensively.

2.5. Autoencoding

A discrete molecular representation such as SMILES strings can
be converted into continuous variables in a latent space using an
autoencoder.35,100,111 An autoencoder is a special class of neural
network that compresses high dimensional data to a lower
dimensional representation. As shown in Figure 1f, it consists of
an encoder and a decoder.While the encodermaps the input to a
lower dimensional representation, the decoder converts the
lower dimensional representation to its actual representation.
The methodological details of building an autoencoder can be
found in our recent work.99 The lower dimensional
representation is known as latent space, and it can be used as
an input to a predictive model. This continuous representation
of molecules provides an open-ended space and is very efficient
for gradient-based optimization and exploration of chemical
space.100

2.6. Motif-Based Fingerprinting

Ramprasad and co-workers have introduced a motif-based
hierarchical fingerprinting method to produce numerical
representation of small molecules.14 The motif-based finger-
printing is developed based on the quantity of a specific atom
present in a molecule, its principles of chemical bond formation
and coordination with other atoms in the molecule. These
chemical principles can be utilized to constitute all possible
motifs of a molecule. For example, an oxygen atom can form a
bond with either one or two other atoms, and a carbon can form
a bond with either two, three, or four other atoms. Therefore, the
possible oxygen type motifs are O2 and O1; and carbon type
motifs are C2, C3, and C4. Similarly, different chemically
possible bonds are considered as bond type motifs, and
chemically possible catenations of bonds are considered as
angle type motifs. A schematic representation of several motifs is
shown in Figure 1g. Now, the chemical compositions and all the
possible motifs of a molecule can be converted into fingerprints
of different orders. The zeroth order fingerprints of a molecule
are simply the fractions of different atomic species present in it.
Likewise, first, second, and third order fingerprints are the
number of specific atom type, bond type, and angle type motifs
in the molecule, respectively, normalized by total number of
atoms in the molecule. For obvious reasons, these fingerprints
should satisfy several constraints arising from their definition
and chemistry. Readers can find all the constrained relations and
more details of the motif-based fingerprinting elsewhere.14 This
motif-based fingerprinting concept is further extend for long
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polymeric systems wherein a building blocks like CH2 and
C6H4 can be considered as motifs instead of atoms.94 In this
case, zeroth order fingerprints are the number of different types
of building blocks, normalized by the total number of building
blocks in a polymer. Subsequently, higher order fingerprints can
be generated by counting the number of pairs, triplets,
quadruplets and longer segments of building blocks in a
polymer. This higher order fingerprints are essential to capture
the impact of sequences on polymer properties.112

The above featurization schemes are primarily adopted for
synthetic polymers. However, for biomolecules, BioVect is a
popular featurization scheme.113 Within the BioVec scheme,
gene sequences are represented by GeneVec and protein
sequences are represented by ProtVec. For biomolecule-specific
featurization, readers are directed to the work of Asgari and
Mofrad.113 Now, given this wide varieties of featurization, how
should one decide a featurization scheme for a given problem?
How does one select features when the structure−property
correlations are not known but the data are available? Howmany
features are sufficient to build an ML model? These are the
important considerations for data-driven structure−property
model development. Although there is no specific agreed-upon
strategy for polymer feature engineering, typically features are
decided based on their ability to capture hidden dependency
relationships in the data and, most importantly, improve the
prediction quality of an ML model. For example, for a polymer
compatibilizer, the sequence of monomer is more important
than the exact chemical details of a monomer and, therefore,
features that uniquely describe the sequence of a given polymer
might be sufficient to build a model for predicting interfacial
energy of a compatibilizer system. On the other hand, for
polymer dielectrics, the chemical composition of a monomer/
subunit determines the dielectric constant and band gap of the
materials. Therefore, the features should represent the chemical
constituents of a polymer segment. It is also important that
feature vectors should include the details of chain size along with
subunit level chemical composition of a homopolymer if its
properties are size dependent. More details of these two design
studies are discussed in section 5. Overall, the feature
engineering requires domain knowledge and some extent of
trial-and-error exercise to identify physically meaningful
variables or features that can be correlated to target properties
via machine learning.114−118

3. PREDICTIVE MACHINE LEARNING MODELS
Numerical features of a polymer can be used to build predictive
ML model. It requires leveling a set of features that define a
polymer structure by its properties, and a collection of feature-
property data is utilized to train and build anMLmodel. Such an
ML model serves as a cheaper, albeit low fidelity, surrogate for
the high-fidelity first-principle-based simulations and experi-
ments that are expensive.89,119−121 In ML-evaluated polymer
design, the properties of a large number of candidate polymers
are not directly measured using first-principle methods, thereby
reducing the cost of an exhaustive search of chemical and
sequence space of a polymer. Pre-existing data that are labeled
by their property values are used for the training and
development of these predictive models. These are called
supervised machine learning as the data are labeled by their
properties. There are several supervised machine learning
methods that can be deployed for building predictive models
for polymers. Kernel ridge regression (KRR), support vector
machine (SVM), Gaussian process regression (GPR), ANN,

and random forest regression are a few common methods that
have found application in materials data science.122−125 Within
the ANN framework, several types of surrogate models can be
developed for materials application such as CNN,97 RNN,39 and
generative adversarial network (GAN).126 These networks
typically consist of multiple layers of neurons, and they are
commonly known as deep learning (DL) models. The past few
years have witnessed the surge of generative neural network
models as an attractive strategy for molecular property
prediction.33,35,127−130 A generative model aims to capture the
distribution of data, both structures and properties of a material,
and relate them in a nonlinear way.35,126 The most interesting
aspect of a generative model is that it represents molecules in a
continuation latent space.
Here, some common principles of ML model development

are briefly discussed and references are provided for further
reading and implementation. The choice of regressionmodel for
a given problem is very important, and there are no well-
established guidelines available for this purpose. Normally, one
selects a method depending on the kind of available data and the
type of model that best fits the data. The accuracy,
interpretability, scalability, and complexity vary across these
methods and across systems. A common tendency is to try a few
of the numerous models and select the best one in terms of
accuracy and efficiency for a given problem. A standard practice
in ML model development includes dividing the structure−
property data into two sets: training set and test set. The training
set is used to build the model, and the test set is to examine the
performance of the model for unknown data. Appropriate care is
taken to avoid overfitting and underfitting during the model
development. Readers can refer the work of Wang et al., who
have recently discussed some of the best practices for MLmodel
developments.131 The mathematical foundation of these
regression methods can be found elsewhere.132,133 These
methods are implemented as library functions in application
programming interfaces (APIs) such as scikit-learn,134,135

Keras,136 and PyTorch,137 which can be easily used for
predictive model development. Moreover, two web sites,
https://machinelearningmastery.com/ and https://
towardsdatascience.com/, that host a large number of blogs
on various critical aspects of ML models selection and
development are available.

4. DESIGN WORKFLOWS
First-principle methods or predictive ML models or their
combination can be utilized for polymer design. Historically, all
the data-driven methods that are used for screening polymer
configurational space and polymer design can be categorized
into the following four classes.
(I) Edisonian Design. High throughput computations or

experiments are used to calculate the property of a large number
of candidate materials. The top few candidates based on the
databases are selected for further investigation and deployment
in a target application. This is a typical trial-and-error Edisonian
approach where candidate structures are selected either
randomly or based on an intuitive understanding of a polymer’s
configurational and chemical spaces.
(II) ML-Evaluated Design. A pre-existing structure−

property data set is used to build an ML model. The ML
model is then used to predict the property of a large number of
candidate materials. The top candidates identified based on the
ML prediction are selected for first-principle-based study and
further analysis. Contrary to the first method, this strategy
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screens a material’s search space based on the prediction of an
ML model. But the primary bottleneck of such ML-evaluated
screening is that the ML methods are better suited for
interpolation. Its accuracy tends to decline in search of extremal
properties that fall outside the known range of property.103

(III) First-Principle-Based Inverse Design. Inverse design is
a promising approach that identifies an optimal set of parameters
for a target property. This requires integrating an optimization
algorithm with a first-principle-based computational or exper-
imental measurement of the properties of candidate polymers.
The optimization algorithm iteratively produces new candidates
whose properties are measured/estimated based on computa-
tions/experiments. This process continues until predefined
stopping criteria are reached. This is perhaps the best and robust
strategy of polymer design. However, on-the-fly character-
ization/computation of properties for a large number of
candidates can be time-consuming.
(IV) ML-Evaluated Inverse Design. The most time-

consuming part of the first-principle-based inverse design is
the on-the-fly direct measurement of polymer properties within
a given design cycle. There have been many recent attempts to
address this issue where inverse designs are performed based on
the property prediction made by an MLmodel. An MLmodel is
built with pre-existing data, and then it is integrated with an
optimization algorithm forML-evaluated screening of the search
space. This is certainly a promising method to speed up the
design cycle with a caveat of training-target mismatch. As
mentioned earlier, the ML methods are interpolative in nature,
and, therefore, the success of ML-evaluated inverse design relies
on the ability ofMLmodels to predict properties that are outside
the range of their training data.
Categories I and II solve the forward problem of polymer

characterization. However, categories III and IV combine the
polymer characterization with a strategy for minimizing the
number of candidate polymers assessed en route to the ultimate
target polymer and direct the search toward target/optimal
values. This strategy is an “inverse” of the forward problem,
wherein property values of the evaluated candidates are analyzed
to decide and select the next set of candidate polymers to be
characterized. Thus, categories III and IV are commonly known
as inverse design methods. The core of these two inverse design
methods is an optimization algorithm. In the case of first-
principle-based inverse design, the objective function of the
optimization method is measured/calculated via experiment or
molecular simulation or any other physics-based method. On
the other hand, the ML-evaluated inverse design uses an ML
predictive model to estimate the objective function. The first-
principle-based inverse design method does not need a priori
data, and it generates structure−property data on the fly. On the
other hand, the ML-evaluated inverse design needs structure−
property data before running the design cycle to build the
predictive model. How one should generate/sample data for
building such an ML model, which will be utilized later for
predicting the objective function of an optimization algorithm, is
an interesting and open question.
General purpose “black-box” optimization algorithms are

always in demand for any design and optimization problem.
However, a number of “no free lunch” theorems suggest that any
superior performance of an optimization algorithm over one
class of problems is offset by its performance over another
class.138 A detailed discussion on the connection between
effective optimization algorithms and the problems they are
solving can be found in the work of Wolpert and Macready.138

Although there is no generic prescription on how to choose an
optimization algorithm for a specific problem, Bayesian
optimization (BO), genetic algorithm (GA), and Monte Carlo
tree search (MCTS) are most commonly used in materials
design problems. Their performance and efficiency vary
significantly in a given materials design problem.139−141 Here,
the underlying principles of these algorithms are discussed, and
their workflows in the context of polymer design are outlined.
4.1. Genetic Algorithm

AGA is a metaheuristic global optimization method that aims to
mimic the process of natural selection to optimize a system’s
properties. It is widely used as a versatile strategy for material
property optimization and design.142 It has been increasingly
adopted in the field of polymers143−147 and other materials
design problems148−151 as well. The algorithm begins with a set
of initial candidate polymers. The objective functions for all the
candidates are either quantified using a first-principle-based
method or predicted by an ML model. Afterward, the algorithm
iteratively selects new candidates based on genetic operators
such as elitism, selection, crossover, and mutation.152−154 The
evolutionary process usually continues until some criterion for
convergence is satisfied or it is terminated because of a maximal
time constraint. The workflow of a GA for a polymer design
problem is shown in Figure 2. There are open-sourced GA codes

that can be utilized for polymer design. For example, Henning et
al. has developed an open source code, viz., GASP that interfaces
genetic algorithms with molecular simulation packages such as
LAMMPS, VASP, and GULP.155,156 Although GASP is
primarily used for structure and phase diagram prediction of
inorganic materials, it can be easily extended for polymer design.
4.2. Monte Carlo Tree Search (MCTS)

MCTS is a powerful global optimization method and is very
popular in computer gaming algorithms such as Alpha Go,
Bridge, Poker, andmany other video games.157,158 It has recently
been adopted for materials design problems.141,159−161 It
integrates a tree search algorithm with reinforcement learn-
ing.162,163 The algorithm begins with building a shallow tree of
nodes, where each node represents a point in the search space. It

Figure 2. Schematic representation of a genetic algorithm. The
population consist of candidate polymers in its feature representation.
Adapted with permission from ref 103. Copyright 2017 American
Chemical Society.

ACS Polymers Au pubs.acs.org/polymerau Review

https://doi.org/10.1021/acspolymersau.1c00035
ACS Polym. Au 2022, 2, 8−26

13

https://pubs.acs.org/doi/10.1021/acspolymersau.1c00035?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00035?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00035?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00035?fig=fig2&ref=pdf
pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.1c00035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


subsequently generates downstream pathways by a rollout
procedure. The algorithm simultaneously explores many
different pathways to reach the optimal point and exploits a
single pathway that has the greatest estimated value of the search
function. This simultaneous exploration and exploitation and an
appropriate trade-off principle between them make the
algorithm very efficient in identifying the global optimal point
in a given function. It rapidly surmounts metastable and
suboptimal points in a search space by growing other branches
of the tree utilizing the trade-off mechanism between
exploration and exploitation. We have recently integrated
molecular dynamics simulation and Monte Carlo Tree Search
for copolymer design.164 A schematic representation of the
workflow is shown in Figure 3. The algorithm is implemented in
open-sourced codes such as MDTS,141 which can be utilized for
inverse design of polymers.

4.3. Bayesian Optimization and Active Learning

Bayesian optimization (BO) is a sequential design strategy that
promises greater automation and, thus, is gaining popularity for
autonomous designs.165 It has been successfully implemented
for many materials design problems.139,166−169 The two key
ingredients of a BO are a surrogate model and an acquisition
function. The surrogate model is anMLmodel that is built upon
past observations/data, and it predicts the properties for a given
new structure. On the other hand, the acquisition function
assigns scores to each new candidate structure according to the
utility of measuring their properties via a first-principle method.
The acquisition function uses the surrogate model to decide the
score of a candidate structure. Any of the above regression
algorithms, discussed in section 3, can be used as a surrogate
model within the framework of a BO. This strategy is also known
as active learning or adaptive learning, as it actively searches for
new candidates in the design space and progressively rebuilds
the surrogate model with increasing amounts of training data.
There are many active learning strategies used in materials

designs in recent times within the framework of BO. These
methods are primarily varied on their choices of regression
algorithms and strategies of selecting new candidates. The
combination of selector and regressor determines the efficiency
and performance of a BO run. As shown in Figure 4, a generic

design cycle within the BO framework consists of following
steps. (1) Select a prior for the design space based on the initial
database. (2) Estimate the posterior given the prior and current
data. (3) Deploy the posterior to determine the next candidates
to evaluate according to the acquisition function. (4) Conduct
first-principle calculations/measurements to obtain the new
data. Steps 2 to 4 are repeated iteratively to explore the design

Figure 3.MD-MCTS workflow for a polymer design. All the nodes of a tree are the points in the search space. In a polymer design problem, each node
represents a candidate polymer. Four stepsselection, expansion, simulation, and backpropagation are iteratively continued until a predefined
termination criterion is satisfied. In the simulation step, the objective functions of the candidate structures are determined via MD simulations.
Reproduced from ref 164 with permission from the Royal Society of Chemistry.

Figure 4. Workflow of a BO-based adaptive design scheme. Here,
Measurement or Calculation indicates estimation of the material
property via first-principle methods. The combination of regressor and
selector is vital for the efficiency of the design scheme. Adapted with
permission from ref 124. CC BY 4.0.
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space of a material until convergence criteria are achieved.
COMBO170 and GPyOpt171 are two well-known open-sourced
codes that can be employed for materials design within the BO
framework.
There are several other optimization techniques that are

successfully used for polymer design problems. Notable
examples are Particle Swarm Optimization172,173 and tree-
structured Parzen estimator (TPE) algorithm.39

5. REPRESENTATIVE EXAMPLES OF DATA-DRIVEN
DESIGN

5.1. Targeted Polymer Sequence Design

Precise control of the sequence of monomers in a copolymer is
an attractive goal of polymer engineering with a wide range of
potential applications.174,175 The compactness, rigidity, and
stability of a single chain polymer nanoparticle are strongly
influenced by its sequence of monomers.176 CGMD simulation,
advanced optimization, and ML have been used to understand
sequence−structure relations of single molecule polymers and
design sequences for target structures.177−180 Here, I highlight
one case study wherein de Pablo and co-workers have combined
coarse-grained polymer genome, deep neural network model
and sequential model-based optimization technique
(SMBO)181 for predicting the sequence of a polymer that
produce a target structure.39 This particular study has focused
on designing very generic coarse-grained polymers with target
structures. The model polymer is made of four coarse-grained
beads named as α, β, γ, and δ, as shown in Figure 5a. These beads
are the representation of different chemical moieties with varied
solvophobicity. This is achieved by distinctly assigning

interaction parameters (ϵ) to different beads. A high value of ϵ
represents a stronger attractive force. The backbone of the
polymer is formed by the α and β type moieties, while γ and δ
constitute the side chains of the polymer. Within this chemical
space, one can build 10 possible unique constitutional units
(CUs) as shown in Figure 5a. The authors have studied three
classes of polymers that are formed by connecting these CUs
using two-, three-, and four-body intramolecular potentials.
These three classes of polymers are distinguished by the number
of CUs and their specific arrangement to build a polymer. As
shown in Figure 5a, class-I and class-II polymers aremade of four
CUs, while class-III may contain a maximum of eight CUs. The
class-I and class-III polymers have four and eight constitutional
repeat units (CRUs). However, class-II polymers are stochas-
tically generated sequences and cannot be defined by CRU.
There are 1540 unique polymers that are possible in the class-I
category. Number of unique polymers in class-II category is
astronomically large. Within this framework, the authors have
conducted implicit solvent CGMD simulations of large number
of single-chain polymers that are composed of 400 CUs with
varied sequences. The CGMD trajectories are utilized to
calculate the radius of gyration of all the polymer sequences.
The sequence-radius of gyration (Rg) data constitutes the
polymer genome that is used for ML model development. The
sequences are mapped to two different feature spaces by one-hot
encoding (OHE) and property coloring for ML purposes. Both
the features are shown to be efficient for modeling sequence-Rg
correlation. The ML model development workflow is schemati-
cally shown in Figure 5b. The model is built upon class-1
polymer data, and it has predicted the properties of both class-I
and class-II with high fidelity. However, the performance is

Figure 5. Single chain polymer design. The chemical moieties, constitutional units, and polymer topologies are schematically shown in (a). Polymer
sequences are converted into featured sequences that serve as the input to the neural networkmodel as shown in (b). The neural networkmodel is used
to screen the sequence space and identifies three target structures, globule, swollen, and rodlike aggregates, whose radius of gyration is shown in (c) for
several candidate polymers. The violin plot for each sequence implies the distribution of values underlying the mean, with a notch at the median value.
Here, the bar is extending from 25th to the 75th percentile values. The color of each violin is commensurate with the average composition of the
sequences. The three target values are indicated by three horizontal lines, and shaded regions across the lines indicate the average spread between the
25th and 75th percentiles for class-I polymers of similar size. The average color composition of the sequences for each target structure is shown in (d).
Here, BB, PG1, and PG2 denote backbone bead, first pendent group, and second pendent group, respectively. The color contributions for all the four
types of bead are shown in the right side boxed legend wherein ⌀ indicates the absence of a pendent bead. Adapted with permission from ref 39.
Copyright 2020 The Authors.
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slightly inferior for class-II polymers. Moreover, the authors
have used this ML model to design class-III polymers with three
target structures viz., globule, swollen and rod-like aggregate.
This is attained by setting a target value of the Rg during an
optimization run that corresponds to a target structure based on
a priori understanding of the structure-Rg correlation of the
model polymer. The target gyration for globule, swollen and
rod-like structures are ⟨Rg

2⟩σ−2 = 250, 2000 and 3800,
respectively. Here, σ is the unit of length. The authors have
employed a SMBO type of algorithm, viz., tree structure Parzen
estimator (TPE) that generates a candidate sequence, compares
its Rg value, as predicted by the MLmodel, with the target value,
and proposes a new candidate based on historical performance.
Although the exact Rg value is not achieved, the algorithm
identified multiple sequences that are within the range of target
Rg and structures. As shown in Figure 5c, the authors have
identified 20 candidate polymer sequences for each of the three
target structures using SMBO-TPE algorithm. The average
sequence composition of these target structures is analyzed, and
their characteristics are assessed by using a color scheme as
shown in Figure 5d. The most important aspect of this work is
that the ML model, which is built in one region of the sequence
space, is transferable to other regions. This is an example of the
ML-evaluated inverse design. The success of this approach is
perhaps because both the regions of the sequence space
training and testing are mapped to the same region of the
structure space. Nevertheless, the work points toward a new
paradigm of ML-based inverse design and exploration outside
the known range of properties.

5.2. Inverse Design of Polymer Compatibilizer

A compatibilizer is an additive that reduces the interfacial energy
between two immiscible polymers and provides mechanical and
thermal stability of their blends. It has widespread applications

in emulsification,182 coalescence and stabilization of polymer
blends,183,184 and barrier materials.185 These compatibilizer
polymers are made by covalently connecting repeat units that
have different preferences for the two phases; and this particular
architecture helps them to work like a bridge between the two
phases. Diblock copolymers, where two polymer chains of
different chemical affinities are linked by a covalent bond, have
long been perceived as an effective compatibilizer.186−188

However, many subsequent works indicate a finer level of
architectural control of a copolymer, such as a random
copolymer where two types of moieties are distributed randomly
in the polymer architecture,189−191 can provide improved
compatibility. This opens up new possibilities for monomer
level sequence control of a compatibilizer and provides a large
design space of a copolymer compatibilizer. In a recent work,
Simmons and co-workers have used a molecular simulation-
based genetic algorithm for rational design of a AB type
compatibilizer104 by employing a generic bead−spring polymer
of Kremer−Grest type tomodel the system, and reported several
sequence defined polymers that outperform many periodic
copolymers and random copolymers. This is an example of first-
principle-based inverse design. The workflow of the MD-based
genetic algorithm and key findings of their study104 are
summarized in Figure 6. The design workflow combines generic
operations and MD simulations as shown in Figure 6a. The
Figure 6b schematically shows optimal sequences identified by
the MD-GA design scheme along with intuitive periodic
copolymers that are commonly used for compatibilization
applications. It clearly indicates that the optimized sequences are
nonintuitive, nonperiodic, and highly irregular. A comparison of
the interfacial tensions of the MD-GA identified sequence and
periodic sequences are shown in Figure 6c for a specific
compatibilizer concentration. The interfacial tension of all the

Figure 6. Inverse design of compatibilizer polymer. (a) Workflow of the molecular dynamics simulation-based genetic algorithms. Human design and
GA identified compatibilizer polymers sequences are schematically shown in (b). The gray and blue beads represent two chemical moieties of different
chemical affinity. The open symbol and filled symbols correspond to human design and GA identified sequences, respectively. The surface tension of
the system for a compatibilizer concentration of 0.159 per unit interfacial area is plotted as a function of mean block length of a sequence for regular
compatibilizer polymers along with GA optimized sequence in (c). The surface tensions of all the candidate sequences screened during a GA run for a
compatibilizer concentration of 0.159 are plotted in (d) as a function of mean block length. The optimized candidate is shown as a red diamond. The
surface tension of systems sharing the samemean block length as the optimized compatibilizer at each concentration studied is shown in (e). Similarly,
the surface tension of systems sharing the same block length distribution as the optimized compatibilizer at each concentration studied are shown in
(f). The surface tension value for compatibilizer systems γ12 in (c)−(f) are normalized by that of a polymer blend without compatibilizer polymers in
the interface (γ12

0 ). Reproduced from ref 104. Copyright 2017 American Chemical Society.
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sequences that are screened during a MD-GA run are plotted as
a function of their mean block lengths in Figure 6d. The data
suggest that there is no generic correlation between surface
tension and mean block length of a compatibilizer polymer.
Interestingly, systems with same mean block lengths and/or
same block length distributions exhibit a wide range of surface
tension, as indicated in Figure 6e and f. The authors have also
developed an analytical model for the optimal conformation of a
compatibilizer polymer at the interface that suggests sequences
that combine long and short blocks provide higher stability over
periodic compatibilizer with a monodisperse block length
distribution.

5.3. Rational Design of Polymer Dielectrics

The dielectric constant of a polymer determines its ability to
polarize in the presence of an electric field. Polymers with very
high and low dielectric constants are essential for electronic
applications. Low dielectric polymers are used for insulations
such as isolating signal carrying conductors and suppressing
coupling between closely packed metal lines in an integrated
circuit (IC). On the other hand, high dielectric polymers are
demanding for semiconductor and high-density energy storage
devices. Many of the well-known polymers have low dielectric
constant and they are commonly used for insulating purposes.
However, achieving high dielectric constant in polymeric
materials is challenging.192 There have been many recent efforts
to design high dielectric polymer via data-driven strat-
egies.38,112,193−197 Ramprasad and co-workers have reported a
rational design strategy wherein they have conducted density
functional theory (DFT) and density functional perturbation
theory (DFPT) calculations to estimate one-dimensional
optimal structure, band gap and dielectric constant of 267
polymers.193−195 These polymers’ repeat unit has four chemical
moieties chosen from seven building blocks as shown in Figure
7a. Based on chemical intuition, amenability of synthesis and
obvious unstable combinations, the authors have excluded

several sequences and selected 267 candidates that are
experimentally realizable. The dielectric constant and bandgap
of these polymers exhibit an inverse correlation as shown in
Figure 7b. This inherent correlation is the primary bottleneck to
develop polymer dielectrics for energy device applications that
require high band gap as well as high dielectric constant. The
authors have suggested materials that pose high dielectric
constant and moderately high band gap for capacitive energy
storage application, which can be drawn from this data set. With
these applications in mind, the authors have selected top
candidates from this pool of 267 candidates that have dielectric
constant greater than 4 eV and band gap greater than 3 eV.
These top candidates are tabulated in Figure 7c. The top three
from this table were further studied and then successfully
synthesized. This is a typical Edisonian design, and the research
group subsequently proposed an ML-evaluated inverse design.
For this purpose, DFT calculations are conducted for three-
dimensional (3D) system of all the candidates.112 Machine
learning predictive models are developed based on the 3D
structure data set. The performance of the ML model in
predicting the electronic dielectric constant, ionic dielectric
constant, and band gap are shown in Figure 7d−f. Although the
ML model is based on four block polymer data, it has been
shown to predict properties for polymers of other block sizes
with high accuracy. This ML model is then used for inverse
design of polymer dielectric via an evolutionary search with a
target dielectric constant of 5 and band gap of 5 eV. The top
candidates that are identified using the surrogate-model-based
evolutionary search are tabulated in Figure 7g for five different
sizes of the repeat unit. The dielectric constant and band gap of
the EA identified candidates are very close to their target values.

5.4. Inverse Design of Thermally Conductive Polymers

Polymers have emerged as promising materials for energy
storage devices, semiconductors and many micro/nanofluidics
devices due to their tunable properties and easy process-

Figure 7.Rational design of polymer dielectrics. (a) Chemical and sequence space is schematically shown. (b) Total dielectric constant of polymers are
plotted as a function of their band gap. The candidates with dielectric constant greater than 4 eV and band gap greater than 3 eV are highlighted by the
red arrow lines. Adapted with permission from 194. Copyright 2013 Elsevier. (c) Some of the 4-block polymers that have high dielectric constant and
high band gap are tabulated. The performance of the ML model in predicting electronic dielectric constant, ionic dielectric constant, and band gap is
shown in (d)−(f), respectively, for training and test sets. Insets of (d)−(f) report the percentage of relative error in MLmodel prediction with respect
to their actual DFT calculated values. Panels (d)−(f) are adapted with permission from ref 112. CCBY 4.0. (g) The optimal sequences of moieties that
are identified by an evolutionary search are listed along with their dielectric constant and band gap, as reported in ref 112.
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ability.198−204 These devices produce a substantial amount of
heat during their operation, and therefore, efficient heat
dissipation is vital for their stability, durability, and sustainability.
Polymers inherently show poor thermal conductivity and
improving their thermal conductivity is essential for their
successful deployment in above-mentioned applications. Hence,
much effort has been directed toward understanding and
tailoring the thermal conductivity of polymeric materials.205−209

These studies have indicated that the conductivity of polymers
intricately correlates to their alignment, chemical composition,
blending with other compounds, andmany other processing and
environmental conditions. These complex correlations offer a
large design space for thermally conducting polymers. Recently,
Müller-Plathe and co-workers have combined nonequilibrium
molecular dynamics (NEMD) and genetic algorithm for first-
principle-based inverse design of a binary copolymer for optimal
thermal conductivity.105 As shown in Figure 8a, the authors
linkedNEMD and a genetic algorithm and evaluated the thermal
conductivity of polyethylene-polypropylene (PE-PP) copoly-
mers for∼600 candidate sequences. A binary mapping is used to
build the feature space of the PE-PP copolymer. The thermal
conductivities of all the copolymer sequences that are screened
during the design cycle are shown in Figure 8b along with regular
block copolymers and two homopolymers. The data suggest that
there is more than 70% variation in the thermal conductivity
among all the candidate polymers. The optimal sequence for the
highest thermal conductivity is evidentially nonperiodic and
nonintuitive. The block distribution of this MD-GA identified
sequence is very different from the intuitive human design
polymers. A visual inspection indicates that the GA-optimized
sequence contains a long block of PE in the middle region of the
chain, and a small fraction of PP monomer near the two ends of

the chain. The authors argue that this specific arrangement of
blocks in the polymer topology balances the thermal energy
transfer via bonded and nonbonded interactions and assists the
candidate polymer to achieve maximum thermal efficiency.
Moreover, as shown in Figure 8b, there is no generic correlation
between thermal conductivity and mean block length of the
copolymer. Interestingly, the thermal conductivity strongly
correlates with the coordination number of many copolymer
sequences as can be seen in Figure 8c. The polymer with the
highest thermal conductivity has the highest coordination
number. This coordination number, cinter, is a measure of the
number of molecular contacts in the system and usually is
commensurate with strong nonbonded attractive forces. It
suggests a very compact molecular packing in the GA-identified
highest conductivity polymers in comparison to regular block
copolymers.
5.5. Rational Design of Gas-Separation Polymer Membrane

Polymer membranes have long been used for separating gas
mixtures such as the removal of CO2 from natural gas, hydrogen
recovery, and carbon capture from points of sources before it
enters the atmosphere. The design of such polymer membranes
for gas separation is based on empirical observation and not
based on an exhaustive search of the chemical and conforma-
tional space of polymers. The target properties of gas separation
membranes are the selectivity and permeability of a gas that are
inversely correlated, and therefore, the development of polymers
that offer high selectivity and permeability of a gas is
challenging.210−216 In a recent study, Kumar and co-workers
have addressed this problem using a machine learning model for
predicting the selectivity and permeability of several combina-
tions of gases of a large number of polymer membranes.84 The
computational workflow of this ML-evaluated design study is

Figure 8. Evolutionary design of polymer thermal conductivity. (a) Polyethylene-polypropylene (PE-PP) copolymer genomemapping and the cycle of
NEMD simulation-based genetic algorithm. (b) Thermal conductivity of all the candidate polymers that have appeared in the GA search are shown as a
function of their mean block length (lb) along with hexablock, decablock, and alternating block copolymers. The conductivities of two homopolymers,
polyethylene (KPE) and polypropylene (KPP), are shown by the dashed lines. (c) The intermolecular coordination number and conductivity of the best
and worst candidates along with decablock, hexablock, and alternating block copolymers are shown in a bar plot. Reproduced with permission from ref
105. Copyright 2021 American Chemical Society.
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shown in Figure 9a. AnMLmodel, viz., GPR, is built using∼250
data points. It shows a R2 (coefficient of determination) score of
0.8 for the test set of ∼85 data points. The ML model is used to
predict the gas separation behavior of 11 000 unknown polymer
systems. The two topmost performing polymers based on the
ML prediction are experimentally tested, and it appears that
their actual selectivity and permeability are in close agreement
with the ML prediction. The permeability and selectivity of the
top two candidates along with others are shown in Figure 9b.
The chemical units of the top two polymers are shown in Figure
9c. These candidate polymers are exceptional as they fall outside
the known limit of the selectivity−permeability range as shown
in the “Robeson plot”. Further study is required to understand
the gas separation mechanism and the structure of these two
polymers and why they exhibit superior properties than others.
The above examples span a diverse range of data sources from

phenomenological CG simulations to classical atomistic
simulations to quantum simulations and experiments. Applica-
tion, featurization, and ML architectures are selected according
to the data and specific design goals. Table 1 summarizes
different levels of development and applicability. Single chain

polymer design utilizes implicit MD simulations within the
Brownian dynamics framework. This is computationally faster
than explicit MD simulations that include both the polymer and
solvent particles. On the other hand, the compatibilizer design
study conducts phenomenological CGMD simulations of
polymers in a bulk melt-state. The nature of this problem
requires simulation of a large number of particles, and therefore,
data generation is computationally more expensive than that for
the single molecular design study. But, the repeat unit of both of
these polymeric systems is a Kuhn segment of a polymer.217 On
the other hand, a thermally conducting polymer design study is
carried out for shorter length scales, for example, a united atom
(UA) level feature of a polymer where each bead is represented
by a small group of atoms; in this case study, they are either CH,
CH2, or CH3. These UA level CG simulations are even
computationally more expensive than the phenomenological
CGMD simulations. Finally, the DFT simulations, where all
atoms are explicitly considered, is computationally the most
expensive and, therefore, the polymer dielectric design is
restricted to shorter periodic polymers. These case studies
indicate that the design space is decided based on the

Figure 9.Data-driven design of a gas-separation polymer. The design workflow is shown schematically in (a). Here, the linear combination of chemical
moieties are fingerprinted as a binary string that serves as an input to a machine learning model. The training data is randomly selected from literature
database. The model is used to predict the permeability and selectivity of a large set of literature data. (b) ML-based Robeson plot for CO2/CH4. The
red and blue colored cross legends represent the two top performing candidates predicted by the MLmodel. Their actual values are marked as red and
blue colored circle legends. The repeat units of the two top performing candidate polymers are shown in (c). Adapted with permission from ref 84.
Copyright 2020 The Authors.

Table 1. Summary of Five Case Studiesa

applications (domain of
interest) type of model/featurization origin of data

ML/
optimization

approximate
data size design category

single chain polymer
structure39

coarse grained/property
coloring

phenomenological
CGMD

DNN/
SMBO

1540 ML-evaluated inverse design

polymer compatibilizer188 coarse-grain/binary
mapping

phenomenological
CGMD

GA 960 first-principle-based inverse design

thermally conducting
polymer207

united atom/binary
mapping

chemically Informed
CGMD

GA 600 first-principle-based inverse design

polymer dielectric108,192 atomistic/motif-based
fingerprints

DFT KRR/GA 284 Edisonian design and ML-evaluated
inverse design

polymer membrane84 binary mapping experiments GPR 500 ML-evaluated design
aSince polymer membrane design is based on the experimental data, it has no entry for “type of model” in column 2. Phenomenological CGMD
simulation uses a bead−spring Kremer−Grest polymer model, while the chemically informed CGMD simulation uses united atom model within
the framework of OPLS force field. Here, the data in column 4 are actual structure−property data calculated/measured using physics-based
methods collected either during the optimization run or before the optimization run for the case of ML-based design. For the polymer dielectric
study, KRR/GA is used for ML-evaluated inverse design.
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computational cost. Therefore, targeting a larger design space
while the property measurements are time and/or resource
intensive is still a substantial challenge. The current trend in data
sharing and online data repositories can potentially mitigate
these challenges and help in expanding the design space.

6. CONCLUSIONS AND OUTLOOK

Big data, distributed computing and machine learning are now
playing a crucial role in materials research, and complementing
the traditional theoretical and experimental meth-
ods.22,26,218−220 World-wide efforts such as Materials Genome
Initiatives221−223 and FAIR Data224−226 aim to integrate these
paradigms to shorten the time scale of materials development.
Here, the underlying principles of data-driven methods, their
limitations and applications in polymer research are reviewed. I
specifically focus on how data-driven methods can accelerate
polymer design and aid in establishing new structure−property
correlations. It has been found that a large body of reported
works screens the polymer search space using ML models that
are built upon preexisting experimental or simulation data.
These MLmodels are subsequently used to predict the property
of many unknown polymers. Although ML-models are of lower
fidelity in comparison to first-principle methods, they can give a
good estimation of materials properties when the test data are
within the range or nearby region of their training data. They are,
therefore, very suitable and successful for interpolation tasks. In
recent times, there have been many attempts to integrate first-
principle methods and advanced optimization methods for the
inverse design of polymers. Such first-principle-based inverse
design studies have identified new polymers as well as generated
large amounts of data that are utilized to establish new
correlations. Advancements in computing architecture and
software and rapid progress in multiscale polymer simulations
are enabling such a large-scale exploration of the chemical and
sequence space of polymers. There have been cases where such
computationally designed polymers are synthesized and
characterized experimentally. Although high throughput parallel
characterization and inverse design of polymers via computation
are now being done routinely, such parallel synthesis and
characterization of a large number of candidate polymers via
experiment are rare. This requires overcoming challenges
associated with the development of high throughput instru-
ments and integrating them with optimization and ML
algorithms. Nevertheless, high-throughput experimental set-
ups227 and robot-assisted synthesis and design approaches228,229

are showing early success and will be very important for future
data-driven polymer research.
In terms of algorithms and workflow developments, there are

many challenges that need to be addressed. Some of the current
challenges and future research directions are outlined below.

6.1. Polymer Feature Engineering

Efficient and unique descriptors of polymers for machine
representation and mathematical operation is central to the
success of ML assisted polymer design. One-hot vector and
property coloring are shown to be effective for CG level polymer
representation. Similarly, autoencoders have been used for small
organic molecules. More work is required for testing and
validating these fingerprinting schemes for long chain polymers
and atomic level model systems. Unique and efficient
descriptors are always on-demand for easily identifying target
polymers. It can also help build new correlations and advance
the current understanding of structure−property correlations of

polymers. Graph and other hierarchical representations of
polymers, especially stochastic sequences, are an area that
requires further study.
6.2. Experimentally Realizable Polymer Design

One of the major issues in the computational design of polymers
is to direct the search toward experimentally realizable candidate
materials. Most of the reported works do not account for
synthetic limitations. This requires a deeper understanding of
the polymer chemistry and synthesis to develop appropriate
constrained parameters in setting up the optimization problem.
6.3. Multiobjective Design

The majority of the previous attempts were focused on the
optimization of one single property. However, successful
utilization of designed polymers in industries requires a
combination of properties that are often antithetical. For
example, ion conductivity and mechanical properties of ion
containing polymers are inversely correlated. Similarly, dielec-
tric constant/band gap and gas permeability/selectivity are
commonly known inverse correlations in polymeric materials.
Future design efforts should be directed in the search of
materials that can potentially expand the boundary formed by
these inverse correlations. In multiobjective optimizations, a set
of solutions is targeted that are commonly known as Pareto
optimal frontier, instead of finding global optimal points of
individual parameters.230−232 In this direction, Yoo et al. have
recently proposed a Pareto active learning procedure for
multiobjective design of polymer.233

6.4. Simultaneous Exploration of Sequence and Chemical
Space

Large scale exploration of chemical space and sequence space
within a single design study is still a substantial challenge even
using all the modern computational tools. Most of the published
works have attempted to explore one of these two spaces to a
great extent while limiting the other in a narrow range. It is
anticipated that the increasing trends in computational speed,
open-sourced codes and data, advancement in polymer feature
engineering, and efficient computation workflows will enable
large-scale exploration of the chemical space and sequence space
simultaneously.
6.5. Training Target Mismatch

Many critical design problems target properties of materials that
are outside the known range of their values. Machine learning
models are inherently interpolative and tend to be less reliable in
the search of extremal candidates. Often, design algorithms
produce new molecules that lie in the “dead region” of the
configuration space that is far away from data that are used to
build an ML model.100 Within the framework of GA-based
materials design, we have proposed the NBGA (neural network
biased genetic algorithm) to mitigate these challenges.103

Griffiths and Hernańdez-Lobato have proposed a constrained
Bayesian optimization approach to tackle the training-target
mismatch within the framework of generative model develop-
ment.166 More research is essential for a holistic understanding
of this training-target mismatch and developing more efficient
strategies to tackle this problem.
Overall, with the gradual increment in the volume of open-

sourced structure−property data and software, continuous
improvement in ML algorithms, and their efficient integration
with first-principle-based methods, data-driven methods are
expected to become more reliable and easily accessible tools for
polymer research.
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