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Abstract: Identifying emotions has become essential for comprehending varied human behavior
during our daily lives. The electroencephalogram (EEG) has been adopted for eliciting information in
terms of waveform distribution over the scalp. The rationale behind this work is twofold. First, it aims
to propose spectral, entropy and temporal biomarkers for emotion identification. Second, it aims to
integrate the spectral, entropy and temporal biomarkers as a means of developing spectro-spatial (SS),
entropy-spatial (ES) and temporo-spatial (TS) emotional profiles over the brain regions. The EEGs
of 40 healthy volunteer students from the University of Vienna were recorded while they viewed
seven brief emotional video clips. Features using spectral analysis, entropy method and temporal
feature were computed. Three stages of two-way analysis of variance (ANOVA) were undertaken so
as to identify the emotional biomarkers and Pearson’s correlations were employed to determine the
optimal explanatory profiles for emotional detection. The results evidence that the combination of
applied spectral, entropy and temporal sets of features may provide and convey reliable biomarkers
for identifying SS, ES and TS profiles relating to different emotional states over the brain areas.
EEG biomarkers and profiles enable more comprehensive insights into various human behavior
effects as an intervention on the brain.

Keywords: emotion; electroencephalography; spectral power; entropy; Hilbert transform; ANOVA;
Pearson’s correlation

1. Introduction

Within the brain, impetus inclinations, behavioral reactions, physiological stimulation, states of
mind and cognitive procedures are all directly conveyed through emotion. Brain activity and neural
pathways are interrelated in a manner that influences mathematical, verbal, perceptive and other
forms of intelligence, which further shape emotions [1,2]. From a particular response of the body to an
instinctive reaction, individual emotional reactions can vary [3]. Accordingly, the possible extent of
congruence between socio-affective circumstances and particular brain areas has been investigated
through applying an array of simulation methods in a substantial number of studies [4,5].
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The dimensional and discrete models are the two affective models that may be adopted to
determine and categorize affective states in accordance with a psychological perspective. Key emotions
are identified in the discrete model which specific, distinct affective states are connected to; fundamental
emotions such as happiness, sadness, surprise, disgust, fear and anger are individually or in some
mixture deemed to be responsible for any further emotions [6,7]. Adopting a circumplex emotion
model, the dimensional model has been pervasively adopted for affective identification application
mapping, as a two-dimensional (2D) cognitive-emotional state theory [8,9]. A two-scale valence-arousal
graph is used for conveying emotions, with emotional strength between calm to excited presented
on the vertical axis as ‘arousal’, while the unpleasant to pleasant degree of emotion is conveyed
on the horizontal axis as ‘valence’ [8–10]. Furthermore, quartiles Q1 to Q4 are the four principal
sites of emotional states, with low arousal–high valence (LAHV), low arousal–low valence (LALV),
high arousal–low valence (HALV) and high arousal–high valence (HAHV) presented in Q4, Q3, Q2 and
Q1 respectively [11]. Beyond the 2D model, focus-disinterest characteristics have been incorporated
into a three-dimensional (3D) cognitive-emotional state model in certain studies [12].

Various emotional states have been produced through the adoption of varied techniques in studies.
Consequently, audio-visual, auditory or visual stimuli have all been adopted in different instances.
As in brain-computer interfacing (BCI) research, diminishing or expanding the sensorimotor rhythm
amplitude is the process for auditory and visual stimuli [13]. Additionally, compared to music-based
audio stimuli, brain signals more straightforwardly convey picture-based visual stimuli [14]. So as
to provoke a particular affective state in the most effective manner, auditory and visual stimulus’
amalgamated impact has been acknowledged in studies, thus establishing the optimal context for
affective identification. Regarding automatic emotion identification, audio-visual stimuli have also been
applied [4]. In contrast with alternative stimuli methods, audio-visual production of emotional states
has been found to be superior and more pervasively adopted [13,15,16]. Therefore, brief audio-visual
film excerpts were adopted to elicit emotion in this research.

Emotional changes would be elicited using different physiological signals such as galvanic skin
response (GSR) [15], electrodermal activity (EDA) [17], blood volume pressure (BVP) [18], and skin
temperature (ST) [19], evoked potentials (EP) [20], electrocardiogram (ECG) [21], electromyogram
(EMG) [22], and electroencephalogram (EEG) [23–30]. Clinically, EEG signals have been widely used
as useful indicators of different mental states such as epilepsy, Alzheimer’s disease (AD) and vascular
dementia (VaD) [31–35].

As the brain is a complex structure that has a dynamic behavior, electrical activities including
emotional states, can be reflected by using EEG. EEG is a neurophysiological tool used to monitor and
identify brain changes [36]. EEG is a widely available, cost-effective, and non-invasive tool that tracks
information processing with milliseconds precision and high temporal resolution [36,37]. A typical
clinical EEG frequency ranges from 0.01 Hz to approximately 70 Hz [38]; the corresponding waveforms
have an amplitude of a few µVolt to approximately 100 µVolt [39]. EEG background waveforms also
convey valuable information. Thus, these waveforms can be classified into five specific frequency
power bands: the delta band (δ), the theta band (θ), the alpha band (α), the beta band (β), and the
gamma band (γ) [40,41]. Studies on EEG signal processing have been conducted to identify the brain
activity patterns involved in cognitive science, neuropsychological research, clinical assessments,
and consciousness research [42–47]. Recently, EEG has been widely used to assess and evaluate
the human emotional states with excellent time resolution [3,15,28–30,48]. EEG can provide useful
information of emotional states that have been described as a potential biomarker to evaluate different
emotional responses from multi-channel EEG datasets over the brain regions [38]. A key advantage of
the multi-channel EEG signal processing is to interpret EEG changes during different emotional states
over the brain regions. Thus, numerous studies have been performed including this study to deal with
issue [49–51]. For instance, Nattapong et al. have proposed a continuous music-emotion recognition
approach based on brain wave signals [52]. Olga et al. have applied a combined music therapy process
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with the real-time EEG-based human emotion recognition algorithm to identify the current emotional
state based on neurofeedback and adjust the music therapy based on the patient’s needs [53].

As the brain neurons are controlled by linear and non-linear phenomena, several linear techniques
including traditional spectral powers have been used to analyze the smoothness of the EEG as a
time series and to elicit the emotional information from the EEG signals. The higher order statistics
(HOS) features, namely skewness and kurtosis, have been applied as well to measure the presence of
transients in the signal [52,54–56]. Due to the capability of the brain to perform sophisticated emotional
tasks and to investigate the complex dynamic information that is reflected from the brain cortex, several
researchers have used non-linear methods for automatic detection of emotions through EEG signals [57].
Previous emotion studies have used a small number of features, mostly relative powers [3], Hurst [15],
Hjorth parameters [58], Fractal Dimension (FD) [59], and statistical features [60,61]. Moreover, entropy
has been considered as the most prevalent methods to evaluate the presence or absence of long-range
dependence on physiological signal analysis including approximate entropy (ApEn), sample entropy
(SampEn) and permutation entropy (PerEn) which are relatively robust to noise and powerful enough
to quantify the complexity of a time series [62]. Amplitude-aware permutation entropy (AAPE) has
demonstrated efficiency in discriminating between calmness and distress [63–65]. Fuzzy entropy
(FuzEn) was proposed for EEG analysis in [66,67]. SampEn is slightly faster than FuzEn, however the
latter is more consistent and less dependent on the data length [68]. Azami et al. has considered the
advantages of FuzEn over SampEn and recently has introduced refined composite multiscale FuzEn
(RCMFE) [68–70]. In RCMFE, the entropy stability is improved, the signals’ length sensitivity is
reduced and the coarse-grained process of RCMFE smoothens the signals. Hence, RCMFE has been
used in this study.

EEG signal contains useful information on physiological states of the brain and has proven
to be a potential biomarker to realize the linear and non-linear behavior of the brain [31,32,71–73].
Therefore, motivation of this work is twofold. First, in order to investigate alternate information
from multi-channel emotional EEG datasets, linear spectral conventional analysis, non-linear entropy
method and temporal feature were performed to obtain the potential EEG emotional biomarkers.
Second, the obtained biomarkers may be further considered to provide additional information to
illustrate the EEG spectro-spatial (SS), entropy-spatial (ES) and temporo-spatial (TS) profiles for the
seven emotional states over the brain regions.

The preprocessing stage has been used to limit the unwanted frequency from the EEG dataset.
Spectral biomarkers were computed by employing the absolute powers (AbsP) of δ, θ, α, β, and γ.
Moreover, to quantify the complexity of brain functions, entropy biomarkers across multi-channel EEG
signals have been measured using RCMFE. Furthermore, the temporal biomarker was reported by
amplitude envelope which was extracted using Hilbert transform, and the amplitude values were
investigated by skewness (Skw) to getHSkw. Three stages of two-way analysis of variance (ANOVA)
were conducted to obtain the spectral, entropy and temporal biomarkers followed by Pearson’s
correlations to get the spatial profiles that are related to anger, anxiety, disgust, happiness, sadness,
surprise and neutral emotional states over the brain regions. The valance-arousal circumplex model
was employed in this study to represent and recognize human emotions due to its effectiveness in
viewing the emotions while audio-visual video clips were used [74]. To the author’s best knowledge
this study has two contributions: firstly, it is the first use of a combination of certain features to develop
spectral, entropy and temporal biomarkers towards SS, ES and TS profile identification for the seven
emotional states over the brain regions; secondly, the EEG elicitation protocol and EEG measurement
procedure have never been used before for emotion data acquisition.

2. Materials and Methods

This study is intended to be focused on the potential EEG emotional biomarkers and profiles that
obtained from EEG datasets. Figure 1 illustrates the block diagram of the proposed study.
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A transportable Emotiv EPOC EEG 14-channel headset (Emotive Systems, Inc., San Francisco, CA) 
was adopted in order to evaluate 14 EEG electrodes (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 
F8, AF4) overall with 2 ground electrodes which were provided by the driven right leg (DRL) mastoid 
and common mode sense (CMS) left mastoid. The Emotiv EPOC EEG uses sponge-based electrodes 
which were located based on the 10–20 system. The electrode information was filtered through a 0.5–
70 Hz band-pass filter. A 128 Hz sampling frequency was used with a resolution of 0.51 mV.  

40 university students agreed to participate in this research (Table 1). A subject appraisal was 
carried out for each individual to guarantee that no previous psychiatric or neurological problems 
had been suffered, with the participant then providing their agreement to participation through 
signing an informed consent document, before the study proceeded. Subjects were presented with 
different brief film excerpts alongside audio that aimed to be emotionally engaging, after which a 
self-assessment questionnaire (SAQ) was filled in by the subjects to provide their assessment and 
scoring of emotional reactions to the excerpts. The subsequent video excerpt was presented after a 45 
second pause. This process is presented in Figure 2 [75]. 

Table 1. Sociodemographic data of the subjects with self-assessment questionnaire (SAQ) scores 
shown. (Age in years, SAQ mean ± standard deviation SD). 

Demographic and clinical features Subjects 
Number 40 

Age  22.475 ± 2.522 
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Anxiety 1.844 ± 2.591 
Disgust 3.859 ± 2.843 

Happiness 2.204 ± 2.947 
Sadness 1.804 ± 2.365 
surprise 2.093 ± 2.438 

Figure 1. The block diagram of the proposed study.

2.1. EEG Acquisition and Recording

A transportable Emotiv EPOC EEG 14-channel headset (Emotive Systems, Inc., San Francisco, CA,
USA) was adopted in order to evaluate 14 EEG electrodes (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,
FC6, F4, F8, AF4) overall with 2 ground electrodes which were provided by the driven right leg (DRL)
mastoid and common mode sense (CMS) left mastoid. The Emotiv EPOC EEG uses sponge-based
electrodes which were located based on the 10–20 system. The electrode information was filtered
through a 0.5–70 Hz band-pass filter. A 128 Hz sampling frequency was used with a resolution of
0.51 mV.

40 university students agreed to participate in this research (Table 1). A subject appraisal was
carried out for each individual to guarantee that no previous psychiatric or neurological problems had
been suffered, with the participant then providing their agreement to participation through signing an
informed consent document, before the study proceeded. Subjects were presented with different brief
film excerpts alongside audio that aimed to be emotionally engaging, after which a self-assessment
questionnaire (SAQ) was filled in by the subjects to provide their assessment and scoring of emotional
reactions to the excerpts. The subsequent video excerpt was presented after a 45 s pause. This process
is presented in Figure 2 [75].

Table 1. Sociodemographic data of the subjects with self-assessment questionnaire (SAQ) scores shown.
(Age in years, SAQ mean ± standard deviation SD).

Demographic and Clinical Features Subjects

Number 40
Age 22.475 ± 2.522

Female/Male 17F/23M

SAQ

Anger 4.052 ± 2.001
Anxiety 1.844 ± 2.591
Disgust 3.859 ± 2.843

Happiness 2.204 ± 2.947
Sadness 1.804 ± 2.365
surprise 2.093 ± 2.438
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In order to assist with the presentation of the affective video excerpts to the subjects, the University 
of Vienna’s virtual emotion presenter program was applied. Further information source documentation 
and arbitrary presentation is permitted through the program. The anthropology research laboratory 
was the location of the research; the sound for the film was played to the subjects at a consistent and 
reasonable volume through a stereo system; film excerpts were viewed on an LCD display; the 
laboratory had consistent natural light sources, with the VEP also adopted as explained above. As the 
40 subjects viewed the affective video excerpts, monitoring of the EEG electrode signals ensued.  

2.2. Preprocessing Stage 

Brain responses and artefacts may have intersected due to the latter residing within the 
frequency bands of the EEG waves. In terms of EEG signal preprocessing, a significant aspect is noise 
eradication. Standard filtering may be an aspect of the preprocessing phase, with EEG signals seeing 
the introduction of further software filters—band pass and notch filters for example—to carry out 
this process. As a means of restricting EEG signal frequencies in accordance with [76], a higher cutoff 
frequency around 64Hz and a low cutoff of 0.5Hz (3 dB) was adopted for the band pass filter. A 50Hz 
cutoff frequency was adopted for the notch filter; eliminating A/C electricity line interference is the 
typical reason for doing so [38]. Three 10 second trials per video excerpt comprised the overall video, 
with every 10 second trial comprising of 1280 information points, in order to carry out additional 
filtered EEG data processing. 

2.3. Features Extraction 

Comprehending various affective states’ associations is assisted by EEG signals as a significant 
source of brain function data. In terms of identifying particular emotional actions, the EEG signal 
offers various quantifiable measures. Accordingly, affective EEG biomarkers were derived from a 
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Figure 2. The experimental protocol of emotion.

Respondents rated their responses in the SAQ according to the level of emotion felt, from 5 = very
high; 4 = high; 3 = medium; 2 = low, to 1 = very low, thus providing a five-point scale [48]. This enabled
the neutral circumstances and six affective states—anger, anxiety, sadness, disgust, surprise and
happiness. Rottenberg’s suggestions were followed in order to identify appropriate affective film
excerpts [75]; one film excerpt had a duration of four minutes, which was the longest, with the others
differing in length.

In order to assist with the presentation of the affective video excerpts to the subjects, the University
of Vienna’s virtual emotion presenter program was applied. Further information source documentation
and arbitrary presentation is permitted through the program. The anthropology research laboratory
was the location of the research; the sound for the film was played to the subjects at a consistent
and reasonable volume through a stereo system; film excerpts were viewed on an LCD display;
the laboratory had consistent natural light sources, with the VEP also adopted as explained above.
As the 40 subjects viewed the affective video excerpts, monitoring of the EEG electrode signals ensued.

2.2. Preprocessing Stage

Brain responses and artefacts may have intersected due to the latter residing within the frequency
bands of the EEG waves. In terms of EEG signal preprocessing, a significant aspect is noise eradication.
Standard filtering may be an aspect of the preprocessing phase, with EEG signals seeing the introduction
of further software filters—band pass and notch filters for example—to carry out this process. As a
means of restricting EEG signal frequencies in accordance with [76], a higher cutoff frequency around
64 Hz and a low cutoff of 0.5 Hz (3 dB) was adopted for the band pass filter. A 50 Hz cutoff frequency
was adopted for the notch filter; eliminating A/C electricity line interference is the typical reason for
doing so [38]. Three 10 s trials per video excerpt comprised the overall video, with every 10 s trial
comprising of 1280 information points, in order to carry out additional filtered EEG data processing.

2.3. Features Extraction

Comprehending various affective states’ associations is assisted by EEG signals as a significant
source of brain function data. In terms of identifying particular emotional actions, the EEG signal offers
various quantifiable measures. Accordingly, affective EEG biomarkers were derived from a number
of characteristics, primarily distinguished into temporal, entropy and spectral power characteristics,
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as a means of determining the principal characteristics that enable the EEG data to be matched with
affective states, while also allowing improved explication of the brain areas’ altering affective states.
Additionally, the brain areas’ and seven affective states’ spectro-spatial (SS), entropy-spatial (ES)
and temporo-spatial (TS) profiles were determined through combining the quantified biomarkers via
Pearson’s correlations.

2.3.1. Spectral Biomarker

Through investigating the impact on different brain areas of various multi-channel EEG signals’
frequency bands, such spectral assessments as a linear characteristic for appraising affective alterations
have been pervasively adopted. Multi-channel EEG alterations have been quantified via the AbsP
characteristic as aspects of brain rhythms. Meanwhile, Welch’s technique was applied to calculate
the EEG information’s power spectral density (PSD), with the specific frequency bands of gamma
(γ: 32 ≤ f ≤ 60) Hz, beta (β: 16 ≤ f ≤ 32) Hz, alpha (α: 8 ≤ f ≤ 16) Hz, theta (θ: 4 ≤ f ≤ 8) Hz, and delta
(δ: 0 ≤ f ≤ 4) Hz being distinguished as particular frequency bands for the EEG signals’ PSD [77].
A single band’s level of EEG activity autonomous of different bands’ activity is indicated by the AbsP,
with Equation (1) adopted to determine it [78].

AbsP(%) =
10× log10

∑
Selected frequency band∑

Total range (0.5− 64 Hz)
(1)

Every film excerpt’s last 30 s were divided into three 10 s parts comprising of 1280 information
points per part, providing 3840 information points overall from which the EEG signal information’s
AbsP features were ascertained.

2.3.2. Entropy Biomarker

The obtained EEG signals, inclusive of the RCMFE, have been assessed by applying the non-linear
entropy method, given that complex mental procedures may be undertaken by the brain.

In order to calculate the RCMFE based on mean
(
RCMFEµ

)
for 1 ≤ u ≤ τ, zτu =

{yu,1(τ), yu,2(τ), . . .}, where

µyu, j(τ) =

∑u+τ j−1
b=u+τ( j+1)

xb

τ

For a defined scale factor τ and embedding dimension, m, ∅τ,km |(k = 1, . . . , τ) and
∅τ,km+1 |(k = 1, . . . , τ) for each of zτk |(k = 1, . . . , τ) are separately calculated. Next, the average of
values of ∅τ,km and ∅τ,km+1 on 1 ≤ k ≤ τ are computed, respectively. Finally, the RCMFE is computed
as in Equation (2):

RCMFE(X, τ, m, n, r) = − ln
(
∅m+1
τ /∅m

τ

)
(2)

The embedding dimension m, RCMFE power n, and tolerance r for all of the approaches were
respectively chosen as τ = 1, m = 3, n = 2, r = 0.1 ∼ 0.2SD, and SD is the standard deviation of the
original time series [68].

2.3.3. Temporal Biomarker

In contrast with alternative brain imaging approaches, greater temporal resolution and altered
temporal changeability over a particular time period are provided by EEG signals, which provide its
clinical advantage. Accordingly, precise millisecond readings of electro-physiological alterations may
be derived from EEG. Consequently, temporal data analysis enables the formulation of EEG biomarkers.

The Hilbert transformation’s adoption enables the application of the amplitude envelope to define
the temporal biomarkers. Skewness (Skw) was calculated to getHSkw in relation to the distribution for
every EEG channel, once the amplitude envelope had been established.
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Therefore, to compute the temporal biomarkers set, first the EEG signal Xk(n), for channel k and n
is the time-domain index, the temporal envelope is then extracted using the Hilbert transformH{.} as
in Equation (3) [79].

ei(n) =
√

Xk(n)
2 +H

{
Xk(n)

}2 (3)

Let mn = E
{
(x− E{x})n

}
be the nth central moment of theHSkw distributions. The Skw is defined

as in Equation (4).

Skw =
m3

(m2)
3/2

(4)

Skw is the normalized 3rd order moment of amplitude distribution. If the distribution is
symmetrical, then Skw is zero. By contrast, large Skw values are associated with the asymmetry degree
of amplitude distribution [80–82].

2.4. Statistical Analysis

Enhanced comprehension of brain states is a requisite outcome of the approach taken to the
EEG dataset’s mapping. IBM USA’s SPSS program version 25 was adopted to undertake statistical
analysis. Resultantly, four recording areas relating to the cerebral cortex’s scalp region formed the
basis of the initial categorization of the 40 fit participants’ EEG dataset. The dimension of the feature
matrix was (40 subjects × 14 EEG Channels × 7 emotional states) = 3920 attributes for each of spectral,
entropy and temporal biomarkers. The different brain regions’ alternative affective states’ profiles and
affective biomarkers could be directly conveyed by the divergences in brain areas, facilitated by the
mean characteristics of the area. The area mean’s derived characteristics were used to categorize the
various brain regions’ differences, for example occipital (O1 and O2 channels), parietal (P7 and P8
channels), temporal (T7 and T8 channels) and frontal (AF3, F7, F3, FC5, F4, FC6, F8, and AF4 channels).
Subsequently, Levene’s test for homoscedasticity was applied, and the Kolmogorov–Smirnov test was
performed to test the normality assumption required by the ANOVA statistical test. Two methods
of statistical analysis were applied. One established the extent to which brain areas had varying
affective states in relation to temporal, entropy and spectral characteristics, namely the analysis of
variance (ANOVA) test. The brain areas’ various connectivity characteristics were established through
Pearson’s correlation.

2.4.1. ANOVA

There were three aspects to the ANOVA test. Firstly, the distinctive characteristics were subject to
a two-way ANOVA test; the dependent variable related to the spectral biomarker and was the AbsP
characteristic, while the independent variables were the four brain areas (occipital, parietal, temporal
and frontal) as well as the seven emotional states (anger, anxiety, disgust, happiness, sadness, surprise
and neutral).

Secondly, the RCMFE characteristic was subjected to the two-way ANOVA test, with the
independent variables being the brain areas and seven affective states, while the entropy biomarker
was the dependent variable.

Thirdly, the dependent variable of the seven affective states’ amplitude envelope distributions’
HSkw was subject to the two-way ANOVA test, with the temporal biomarker’s independent variable
being the seven affective states and four brain areas.

Duncan’s test was applied in order to provide the post hoc contrast, with p < 0.05 established as
each statistical assessments’ level of significance. Resultantly, the seven affective states and the brain
areas’ possible temporal, entropy and spectral biomarkers are conveyed in this part. The Bonferroni
post hoc test has been conducted to examine multiple comparisons for each group of tests, including
the seven emotional states and the four brain regions.
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2.4.2. Pearson’s Correlations

As a means of analyzing and revealing the spatial variability and distribution changes in three
different ways along the EEG signals’ length, the spectral, entropy and temporal biomarkers obtained
during the previous section will be integrated into the brain spatial information, thus enabling
an appropriate understanding of emotional significance. Consequently, three stages of Pearson’s
correlation were implemented for developing spectro-spatial (SS), entropy-spatial (ES) and
temporo-spatial (TS) profiles. These patterns offered a concise, consolidated method of EEG profile
representation over the brain regions relating to anger, anxiety, disgust, happiness, sadness, surprise
and neutral emotions.

During each of the three sessions, Pearson’s correlation coefficient (r) was calculated so as to
establish the biomarkers’ correlations, including for the neutral emotional state and six emotion states.
Each correlation analysis under the Pearson’s correlation method was calculated at p < 0.05, reflecting
statistical significance. All correlation sessions were implemented for every participant.

Determination of every specific affective state’s SS profile—
(
SSanger

)
for anger,

(
SSanxiety

)
for anxiety,(

SSdisgust
)

for disgust,
(
SShappiness

)
for happiness, (SSsadness) for sadness,

(
SSsurprise

)
for surprise)—as

well as SSneutral for the neutral affective state, was undertaken during Pearson’s correlation’s
initial application.

A 2nd session of Pearson’s correlation, the ES profile—
(
ESanger

)
for anger,

(
ESanxiety

)
for anxiety,(

ESdisgust
)

for disgust,
(
EShappiness

)
for happiness, (ESsadness) for sadness,

(
ESsurprise

)
for surprise—as

well as ESneutral for the neutral affective state, were computed.
A 3rd session of Pearson’s correlation, the TS profile—

(
TSanger

)
for anger,

(
TSanxiety

)
for anxiety,(

TSdisgust
)

for disgust,
(
TShappiness

)
for happiness, (TSsadness) for sadness,

(
TSsurprise

)
for surprise)—as

well as TSneutral for the neutral affective state, were obtained.

3. Results

An overall duration of 3840 information points over 30 s intervals for the 14 EEG channels
was subject to characterization. For the seven specific affective activities, the EEG recordings were
distinguished into 10 s parts with 1280 information points being the duration per section. The statistical
analysis methods of ANOVA and Pearson’s correlation were applied to determine the character
extraction findings.

3.1. ANOVA Results

The subsequent parts explore the four brain areas (occipital, parietal, temporal and frontal) in
relation to the seven affective states (anger, anxiety, disgust, sadness, surprise, happiness and neutral)
in relation to the spectral, entropy and temporal biomarker statistical features.

Figure 3 presents the spectral biomarker performance corresponding to each individual emotional
state across the brain regions. It is apparent that the frontal lobes presented the most significant activity
compared with other brain lobes

(
SpectralFrontal > SpectralTemporal > SpectralOccipital > SpectralParietal

)
.

The highest means were attained for Spectralneutral, which varied significantly from all other emotional
states across each brain region apart from Spectralsurprise. Moreover, the Spectralanger response was
significantly different from Spectralsurprise and Spectralneutral, given that both anger and surprise emotions
were situated in the upper-right quadrant and upper-left quadrant of the valance-arousal circumplex
model respectively. Spectralanxiety was significantly different from Spectralsadness, Spectralsurprise and
Spectralneutral, with anxiety and sadness located in the upper- and lower-right quadrants of the
valance-arousal circumplex model respectively. Meanwhile, surprise was located in the upper-left
quadrant of the valance-arousal circumplex model. The significant differences were established at
p < 0.05 level of significance.
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The Bonferroni post hoc test has been conducted to examine multiple comparisons. Table 2 shows
the post-hoc emotion multiple comparisons using Bonferroni adjustments for Spectral Biomarker.
The post hoc tests using the Bonferroni correction revealed that neutral was statistically significant from
sadness and happiness respectively (p = 0.004, 0.05), anger was statistically significant from sadness
and happiness (p = 0.05, 0.05), anxiety was statistically significant from sadness and happiness
respectively (p = 0.019, 0.002), sadness was statistically significant from surprise (p = 0.001) and
surprise was statistically significant from happiness (p = 0.05). Moreover, from Table 3, the brain
region multiple comparisons using Bonferroni adjustments for Spectral Biomarker have been illustrated.
The frontal region was statistically significant from temporal, parietal and occipital brain regions
(p = 0.05).

Secondly, ANOVA was conducted as a comparative study to check the performance of RCMFE
entropy biomarkers. The significant differences among the entropy biomarker were evaluated over the
four brain regions. The significances were set at p < 0.05. The temporal lobes have the highest mean
and they were significantly different from other brain lobes for all emotional states. From the visual
inspection of Figure 4, it can be observed that the highest entropy values were noted for the all emotional
states

(
EntropyTemporal > EntropyParietal > EntropyOccipital > EntropyFrontal

)
. From the visual inspection

of Figure 4, it can be observed that the highest entropy values were noted for the Entropyanxiety has
highest mean which was significantly differenced from all emotional states except for Entropysurprise.
The response of Entropyneutral was significantly different from Entropyanxiety and Entropysurprise as both
anxiety and surprise were located at the upper right and upper left quadrant of the valance-arousal
circumplex model, respectively. The significant differences were set at ( p < 0.05).
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Table 2. Emotions multiple comparison test using Bonferroni for the spectral biomarker.

(I) Emotion_Class (J) Emotion_Class Mean Difference (I-J) p-Value a

Neutral

Anger 0.659 0.123
Anxiety −0.096 1
Disgust −0.349 1
Sadness −0.891 0.004 *
Surprise 0.114 1

Happiness −1.032 0.05 *

Anger

Anxiety −0.755 0.033
Disgust −1.008 0.001
Sadness −1.55 0.05 *
Surprise −0.545 0.477

Happiness −1.691 0.05 *

Anxiety

Disgust −0.253 1
Sadness −0.795 0.019 *
Surprise 0.21 1

Happiness −0.936 0.002 *

Disgust
Sadness −0.542 0.492
Surprise 0.463 1

Happiness −0.683 0.09

Sadness
Surprise 1.005 0.001 *

Happiness −0.141 1
Surprise Happiness −1.146 0.05 *

* The mean difference is significant at the 0.05 level. a Adjustment for multiple comparisons: Bonferroni.

Table 3. Brain regions multiple comparison test using Bonferroni for the spectral biomarker.

(I) Brain Region (J) Brain Region Mean Difference (I-J) p-Value a

Frontal
Temporal 1.657 0.05 *
Parietal 2.812 0.05 *

Occipital 2.31 0.05 *

Temporal Parietal 1.155 0.05 *
Occipital 0.653 0.038

Parietal Occipital −0.502 0.215

* The mean difference is significant at the 0.05 level. a Adjustment for multiple comparisons: Bonferroni.

For the entropy biomarkers, Table 4 shows the post hoc emotion multiple comparisons using
Bonferroni adjustments for the entropy biomarker. The post hoc tests using the Bonferroni
correction revealed that anger was statistically significant from disgust and happiness respectively
(p = 0.001, 0.05) and sadness was statistically significant from happiness (p = 0.0035). Moreover,
from Table 5, the brain region multiple comparisons using Bonferroni adjustments for the entropy
biomarker have been illustrated. The frontal region was statistically significant from temporal, parietal
and occipital brain regions (p = 0.05).
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Figure 4. The comparative plot of the entropy biomarker for anger, anxiety, disgust, happiness, sadness,
surprise and neutral emotional states over the brain regions.

Table 4. Emotions multiple comparison test using Bonferroni for entropy biomarker.

Emotion (J) Class_Emotion Mean Difference (I-J) p-Value a

Neutral

Anger −0.03 0.095
Anxiety −0.004 1
Disgust 0.014 1
Sadness −0.016 1
Surprise −0.004 1

Happiness 0.025 0.435

Anger

Anxiety 0.026 0.323
Disgust 0.044 0.001 *
Sadness 0.014 1
Surprise 0.027 0.26

happiness 0.055 0.05 *

Anxiety

Disgust 0.018 1
Sadness −0.012 1
Surprise 0.001 1

Happiness 0.029 0.134

Disgust
Sadness −0.03 0.109
Surprise −0.017 1

Happiness 0.011 1

Sadness
Surprise 0.012 1

Happiness 0.041 0.003 *
Surprise Happiness 0.028 0.169

* The mean difference is significant at the 0.05 level. a Adjustment for multiple comparisons: Bonferroni.



Sensors 2020, 20, 59 12 of 21

Table 5. Brain regions multiple comparison test using Bonferroni for entropy biomarker.

(I) Brain Region (J) Brain Region Mean Difference (I-J) p-Value a

Frontal
Temporal −0.072 0.05 *
Parietal −0.062 0.05 *

Occipital −0.058 0.05 *

Temporal Parietal 0.01 1
Occipital 0.014 1

Parietal Occipital 0.004 1

* The mean difference is significant at the 0.05 level. a Adjustment for multiple comparisons: Bonferroni.

Thirdly, ANOVA was conducted as a comparative study to check the performance of
temporal biomarkers which have been characterized by the amplitude envelope parameters
using HSkw as temporal biomarkers. The significant differences among the temporal
biomarkers were evaluated over the 4 brain regions. The significances were set at p < 0.05.
Figure 5 shows the temporal biomarkers of the emotional responses among the brain
regions. The frontal lobes have the most significant activity in comparison to other brain
lobes:

(
TemporalFrontal > TemporalOccipital > TemporalParietal > TemporalTemporal

)
. The response to the

Temporalsadness has the highest mean. Temporalanger and Temporalsurprise almost have the same mean,
Temporalneutral and Temporalanxiety almost have the same performance and finally Temporaldisgust and
Temporalhappiness have the same effect and that related to their distribution within the valance-arousal
circumplex model. The significant differences were set at p < 0.05.
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Figure 5. The comparative plot of the temporal biomarkers for anger, anxiety, disgust, happiness,
sadness, surprise and neutral emotional states over the brain regions.

For the temporal biomarkers, Table 6 shows the post hoc emotion multiple comparisons using
Bonferroni adjustments for the temporal biomarker. The post hoc tests using the Bonferroni correction
revealed that it were not statistically different (p > 0.05) for the seven emotional states.. Moreover,
from Table 7, the brain region multiple comparisons using Bonferroni adjustments for the spectral
biomarker have been illustrated. The frontal region was statistically significant from temporal, parietal
and occipital brain regions respectively (p = 0.05, 0.05, 0.001).
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Table 6. Emotions multiple comparison test using Bonferroni for the temporal biomarker.

(I) Class_Emotion (J) Class_Emotion Mean Difference (I-J) p-Value a

Neutral

Anger 0.031 1
Anxiety 0.051 1
Disgust −0.034 1
Sadness 0.009 1
Surprise 0.062 1

Happiness 0.024 1

Anger

Anxiety 0.02 1
Disgust −0.065 1
Sadness −0.022 1
Surprise 0.031 1

Happiness −0.007 1

Anxiety

Disgust −0.085 1
Sadness −0.042 1
Surprise 0.011 1

Happiness −0.027 1

Disgust
Sadness 0.043 1
Surprise 0.096 0.837

Happiness 0.058 1

Sadness
Surprise 0.053 1

Happiness 0.015 1
Surprise happiness −0.038 1

a Adjustment for multiple comparisons: Bonferroni.

Table 7. Brain regions multiple comparison test using Bonferroni for the temporal biomarker.

(I) Brain Region (J) Brain Region Mean Difference (I-J) p-Value a

Frontal
Temporal 0.183 0.05 *
Parietal 0.169 0.05 *

Occipital 0.136 0.001 *

Temporal Parietal −0.014 1
Occipital −0.047 1

Parietal Occipital −0.034 1

* The mean difference is significant at the 0.05 level. a Adjustment for multiple comparisons: Bonferroni.

3.2. Results of Pearson’s Correlations

During the second statistical analysis stage, Pearson’s correlation coefficients were calculated
relating to the spectral, entropy and temporal biomarkers for the neutral state as well as six emotional
states (anger, anxiety, disgust, happiness, sadness and surprise) per each EEG channel for the frontal,
temporal, parietal and occipital brain regions. Significant differences were calculated as existing
between the various emotions with regard to EEG-based correlation alterations.

The correlations of SSneutral − SSanger, anxiety, disgust,hapiness,sad,surprise were significantly positive in all
cases, as Figure 6 presents. For example, the frontal region SSneutral showed a very strong positive
correlation especially with SSanxiety (r = 0.880, p < 0.01), SSsadness (r = 0.866, p < 0.01) and SSanger (r = 0.857,
p < 0.01). Furthermore, temporal area SSneutral had a very strong positive correlation particularly with
SSanxiety (r = 0.894, p < 0.01), SSanger (r = 0.866, p < 0.01) and SShappiness (r = 0.805, p < 0.01). SSneutral
expressed a very strong positive correlation with SSsadness, SSsurprise and SSanger (r = 0.881, r = 0.861,
r = 0.842, p < 0.01), respectively, in the parietal region. Moreover, SSneutral had a very strong positive
correlation with SSanxiety, SSsadness and SSanger (r = 0.861, r = 0.827, r = 0.861, p < 0.01) in the occipital
region. Overall, SSneutral and SSanger had the highest correlation in the temporal region (r = 0.866,
p < 0.01). SSneutral and SSanxiety had the highest correlation in the temporal region and frontal regions
(r = 0.894, r = 0.880, p < 0.01). SSneutral and SShappiness had the highest correlation in the temporal region
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(r = 0.805, p < 0.01). SSneutral and SSdisgust had the highest correlation in the temporal region (r = 0.616,
p < 0.01). SSneutral and SSsadness had the highest correlation in the parietal region (r = 0.881, p < 0.01).
SSneutral and SSsurprise had the highest correlation in the parietal region (r = 0.861, r = 0.970, p < 0.01).
Regarding the SS profile, the lowest positive correlation was observed between SSneutral and SSdisgust
in the occipital and parietal regions (r = 0.461, r = 0.489, p < 0.01) respectively. Accordingly, regarding
the SS emotional profile, the frontal, temporal and parietal lobes participated to the greatest extent in
emotional elicitation.
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Figure 6. SSneutral − SSanger, anxiety, disgust,hapiness,sad,surprise correlations occurring in the frontal, temporal,
parietal and occipital brain regions. Correlations of significance at 0.05 level (2-tailed).

The correlation of ESneutral − ESanger, anxiety, disgust,hapiness,sad,surprise had significant positive
correlations in all cases, as shown in Figure 7. For instance, in the frontal region, ESneutral had a
very strong positive correlation particularly with ESanxiety (r = 0.684, p < 0.01) and ESsadness (r = 0.683,
p < 0.01). It can be observed that for the temporal region that the ESneutral had very strong positive
correlation particularly with ESanxiety (r = 0.707, p < 0.01) and ESsadness (r = 0.633, p < 0.01). For the
parietal region, ESneutral had a strong positive correlation particularly with ESanxiety (r = 0.608, p < 0.01).
Moreover, ESneutral had a very strong positive correlation with ESanxiety (r = 0.693, p < 0.01) at the
occipital region. In other words ESneutral and ESanger had the highest correlation at the frontal region
(r = 0.621, p < 0.01). ESneutral and ESanxiety had the highest correlation at the temporal region (r = 0.707,
p < 0.01). ESneutral and ESdisgust had the highest correlation at temporal region (r = 0.606, p < 0.01).
ESneutral and EShappiness had the highest correlation at frontal region (r = 0.533, p < 0.01). ESneutral and
ESsadness had the highest correlation at the frontal region (r = 0.688, p < 0.01). ESneutral and ESsurprise had
the highest correlation at the parietal region (r = 0.592, p < 0.01). For the ES profile the lowest positive
correlation can be seen between ESneutral and EShappiness at the temporal region (r = 0.456, p < 0.01).
Therefore, for the ES emotional profile the frontal lobes were mostly participating in anger, happiness
and sadness emotional states, whereas the temporal lobes were responsible for anxiety and disgust
emotional elicitation.
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Figure 7. ESneutral − ESanger, anxiety, disgust,hapiness,sad,surprise correlations occurring in the frontal, temporal,
parietal and occipital brain regions. Correlations of significance at 0.05 level (2-tailed).

The correlation of TSneutral −TSanger, anxiety, disgust,hapiness,sad,surprise is shown in Figure 8. For instance,
in the frontal region, TSneutral had a moderate positive correlation particularly with TSsadness (r = 0.509,
p < 0.01). It can be observed that for the temporal area the TSneutral had a moderate correlation
particularly with TSsadness (r = 0.506, p < 0.01). TSneutral had a moderate positive correlation with TSanger

(r = 0.402, p < 0.01) at the parietal region, respectively. Moreover, TSneutral had a moderate positive
correlation with TSdisgust (r = 0.598, p < 0.01) at the occipital region. In other words TSneutral and TSanger

had the highest correlation at the parietal region (r = 0.402, p < 0.01). TSneutral and TSanxiety had the
highest correlation at the frontal region (r = 0.300, p < 0.01). TSneutral and TSdisgust had the highest
correlation at the occipital region (r = 0.598, p < 0.01). TSneutral and TShappiness had the highest correlation
at the occipital region (r = 0.377, p < 0.01). TSneutral and TSsadness had the highest correlation at the
temporal region (r = 0.560, p < 0.01). TSneutral and TSsurprise had the highest correlation at the occipital
region (r = 0.417, p < 0.01). For the TS profile the lowest positive correlation was observed between
TSneutral and TShappiness at the temporal region (r = 0.03, p < 0.01). Therefore, for the TS emotional
profile, the frontal, temporal and occipital lobes were mostly participating in emotional elicitation.
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Figure 8. TSneutral − TSanger, anxiety, disgust,hapiness,sad,surprise correlations occurring in the frontal, temporal,
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4. Discussion

EEG’s utility as a clinical tool for analyzing functional changes associated with different emotional
states (anger, anxiety, disgust, happiness, sadness, surprise and neutral) across different brain areas
(frontal, temporal, parietal and occipital scalp) is of considerable interest. In this regard, the research has
established a novel conceptual connection between the SS, ES and TS profiles and the aforementioned
emotional states across the brain regions. Conventional filters were employed to provide a preprocessing
stage. A total of 14 channels across the various scalp regions were recorded while participants viewed
seven brief emotional audio-visual video clips. The various domain features during this research,
including spectral, entropy and temporal features, were computed so as to illustrate key EEG biomarkers
relating to several emotional states. To provide more in-depth investigation, SS, ES and TS EEG
emotional profiles were developed through the multivariate addition of spectral, entropy and temporal
characteristics to spatial information. Overall, from the visual inspection of the spectral and temporal
biomarkers, it was found that the frontal regions are particularly responsible for emotion detection while
experiencing anger and anxiety in the upper-right quadrant of the valence-arousal circumplex model,
whereas sadness and disgust appear in the lower-right left quadrant of the valence-arousal circumplex
model. Surprise and happiness were situated in the upper-left quadrant of the valence-arousal
circumplex model. The entropy biomarkers evidenced that the temporal regions were especially
activated in the detection of emotion while experiencing anxiety and surprise, in the valence-arousal
circumplex model’s upper-right and upper-left quadrants respectively. Table 8 presents the most highly
correlated emotions with neutral for the SS, ES and TS profiles across the four brain regions. It was
evidenced that the frontal, temporal, parietal and occipital lobes are primarily responsible for anger,
anxiety and sadness elicitations. Emotions such as surprise are detectable in the frontal and parietal
lobes whereas happiness and disgust may be elicited from the temporal and occipital lobes respectively.
Accordingly, such findings imply that the combination of spectral, entropy and temporal feature sets
could provide and convey more reliable biomarkers as a means of identifying SS, ES and TS profiles
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for anger, anxiety, disgust, happiness, sadness, surprise and neutral emotional states across the frontal,
temporal, parietal and occipital scalp brain areas. The SS profile is significant in representing how
anger emotions correspond to all brain lobes, while the ES profile is significant for representing anxiety
emotions. Additionally, the TS profile is important for representing the sadness emotions.

Regarding the neuro-scientific perspective, all of the obtained results are consistent with the
frontal, temporal, parietal and occipital brain lobes’ principal functions. The frontal lobe is deemed to
be the emotional control center [83,84], while temporal lobes are linked to emotional perception [85].
Resultantly, to obtain greater insight into EEG emotional states, we incorporated several features
from spectral, entropy and temporal aspects, enabling the identification of the most reliable EEG
emotional biomarkers, as well as the development of the SS, ES and TS profiles as benchmarks for
deeper inspection.

To sum up, emotions play a critical role in our day-to-day lives. Emotion investigation can gain a
deeper understanding of human complex behavior. Emotions like happiness are considered as positive
emotions that have been linked to a variety of outcomes including increased longevity and increased
marital satisfaction [82]. Conversely, anger, anxiety and sadness are often thought of as negative
emotions that have been linked to decreased life expectancy and may even have an impact on physical
health [83,84]. Therefore, to capture and characterize people’s everyday emotional experiences, many
recent scientific works validate the use of EEG as a diagnostic tool that is widely used in everyday life.
So far, spectral, entropy and temporal biomarkers and SS, ES and TS EEG emotional profiles might be
valuable physiological information that help in improving emotional investigation procedure.

Table 8. The most correlated emotions with neutral for spectro − spatial (SS), entropy −
spatial (ES) and temporo − spatial (TS) profiles over the frontal, temporal, parietal and occipital
brain regions.

Profiles Frontal Temporal Parietal Occipital

SS anger, anxiety,
sadness, surprise

anger, anxiety,
happiness anger, sadness, surprise anger, sadness,

surprise
ES anxiety, sadness anxiety, sadness anxiety anxiety
TS sadness sadness anger, sadness, surprise disgust

5. Conclusions

In this study, EEG has been adopted for eliciting information in terms of waveform distribution
over the scalp. The spectral, entropy and temporal biomarkers for emotion identification have been
performed. These biomarkers were integrated to develop SS, ES and TS emotional profiles over
the brain regions. The EEGs of 40 healthy volunteer students from the University of Vienna were
recorded while they viewed seven brief emotional video clips. ANOVA has been conducted to identify
the emotional biomarkers and Pearson’s correlations have been employed to determine the EEG
emotion profiles. The results evidence that the combination of applied spectral, entropy and temporal
sets of features may provide and convey reliable biomarkers for identifying SS, ES and TS profiles
relating to different emotional states over the brain areas. EEG biomarkers and profiles enable more
comprehensive insights into various human behavior effects as an intervention on the brain.
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