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Abstract

Proteinases play critical roles in both intra and extracellular processes by binding and cleaving their protein substrates. The
cleavage can either be non-specific as part of degradation during protein catabolism or highly specific as part of proteolytic
cascades and signal transduction events. Identification of these targets is extremely challenging. Current computational
approaches for predicting cleavage sites are very limited since they mainly represent the amino acid sequences as patterns
or frequency matrices. In this work, we developed a novel predictor based on Random Forest algorithm (RF) using
maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). The features of
physicochemical/biochemical properties, sequence conservation, residual disorder, amino acid occurrence frequency,
secondary structure and solvent accessibility were utilized to represent the peptides concerned. Here, we compared existing
prediction tools which are available for predicting possible cleavage sites in candidate substrates with ours. It is shown that
our method makes much more reliable predictions in terms of the overall prediction accuracy. In addition, this predictor
allows the use of a wide range of proteinases.
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Introduction

Proteinases are enzymes that play important roles in both

cellular and extracellular processes by binding and cleaving their

protein substrates. They account for ,2% of all gene products and

are of great importance in medicine and biotechnology because

their functions can easily be modulated by small peptide inhibitors

or chemical compounds [1]. The cleavage often activates,

inactivates, or modifies the substrate, and thus controls a diverse

range of biological processes, including the removal of abnormal

proteins, stress response, cell cycle control, cell differentiation,

metabolic adaptation and immune response of host [2]. Inappro-

priate proteolytic activity can lead to destructive consequences and

results in numerous human diseases [1]. Therefore, a large

number of studies have focused on identifying the target substrates

and inhibitors of proteases in various disease states, with the

ultimate goal of designing appropriate therapy [3,4].

Conventional approaches of identifying proteinase specificity by

searching the enzyme against a library of peptides are time-

consuming and labor-intensive. Other techniques are based on

genetic or proteome analytical approaches [5]. Computational

methods can be used to predict the possible substrates of the

proteinases and the probable location of the cleavage sites based

on the existing data. Some tools have already been developed for

this purpose. At present three proteasome cleavage prediction

methods are publicly available on the Internet: PAProC (Predic-

tion Algorithm for Proteasomal Cleavages) (www.paproc.de) which

is a prediction tool for cleavages by human and yeast proteasomes,

based on experimental cleavage data [6], MAPPP (www.mpiib-

berlin.mpg.de/MAPPP/) developed at the Max-Planck Institute in

Berlin [7,8] and NetChop (www.cbs.dtu.dk/services/NetChop/)

developed at the Center for Biological Sequence analysis at the

Technical University of Denmark which applied artificial neural

network to the predictions of cleavage sites of the human

proteasome [2,9].

Besides the three methods mentioned above, most other tools

are proteinase specific, such as GPS-CCD for the prediction of

calpain cleavage sites [10], GraBCas for the prediction of sites

cleaved by granzyme B and caspases [11] and CaSPredictor for

caspase substrate prediction [12]. Therefore, these tools are

limited in applicability. In this work, we developed a novel

predictor based on Random Forest algorithm (RF) using

maximum relevance minimum redundancy (mRMR) method

followed by incremental feature selection (IFS). We incorporated

features of physicochemical/biochemical properties, sequence

conservation, residual disorder, amino acid occurrence frequency,

secondary structure and the solvent accessibility to code a residue.

Five-fold cross validation method was used to evaluate the

performance of the classifier. From a total of 704 features, 65

features, regarded as the optimal features, were selected by
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mRMR and incremental feature selection. The predictor achieved

an overall accuracy of 85.45% and MCC of 0.5908 on an

independent dataset. Feature analysis showed that all the features

contributed to the identification of protein cleavage sites, especially

the PSSM score, amino acid factors and amino acid frequency. It

was also shown via the site-specific feature analysis that the

features of cleavages sites themselves might contribute to the

cleavage site determination. It is anticipated that our prediction

method may become a useful tool in identifying the protein

cleavages sites and that the feature analysis described in this paper

may provide some useful insights for in-depth investigations into

the mechanism of protein cleavage.

Materials and Methods

Dataset
First, we downloaded the protein sequences containing cleavage

sites from the UniProt database (version 2011_12) [13]. After

removing those without experimentally verified protein cleavage

sites, 491 protein sequences were left, containing 846 protein

cleavage sites. Finally, we removed proteins whose disorder feature

could not be calculated, after which 459 proteins with 712

cleavage sites were left.

The protein cleavages sites annotated in Uniprot are two

consecutive amino acids. We selected four different window sizes

including 16, 18, 20 and 22 when extracting positive and negatives

samples. Then we extracted segments centered on the cleavage

sites, with 7, 8, 9 and 10 residues upstream and downstream of the

cleavage site, respectively. For a segment with length less than a

window size, we complement it with ‘‘X’’. We regarded a protein

segment centered on the cleavage sites as positive data. We also

extracted negative data centered on non-cleavage sites. We

randomly selected 371 proteins as training dataset and the rest

88 proteins as testing dataset. In the training dataset, there were a

total of 578 positive samples and 1734 negatives samples which

were randomly selected. In the testing dataset, there were a total of

134 positive samples and 402 randomly selected negative samples.

The positions of protein cleavage sites in the protein sequences

concerned and their accession numbers were provided in

Supporting Information S1.

Feature Construction
The features of PSSM conservation scores. Evolutionary

conservation plays important roles in biological analysis. A more

conserved residue within a protein sequence may indicate that it is

more important for the protein function and thus under stronger

selective pressure. We used Position Specific Scoring Matrix

(PSSM) generated by Position Specific Iterative BLAST (PSI

BLAST) [14] against UniRef100 database (Release: 15.10, 03-

Nov-2009) through 3 iterations with 0.0001 as the E-value cutoff

to measure the conservation status for a specific residue. A 20-

dimensional vector was used to denote the probabilities of

conservation against mutations to 20 different amino acids for a

specific residue. For a given sequence, all such 20-dimentional

vectors for all residues composed the position specific scoring

matrix (PSSM). In this study, we used PSSM conservation score to

quantify the conservation status of each amino acid in a protein

sequence.

The features of amino acid factors. Since each of the 20

amino acids has specific but different properties, the composition

of these properties of different residues within a protein can

influence the specificity and diversity of the protein structure and

function. AAIndex [15] is a database containing various physico-

chemical and biochemical properties of amino acids. Atchley et al.

[16] performed multivariate statistical analyses on AAIndex and

transformed AAIndex to five multidimensional and highly

interpretable numeric patterns of attribute covariation reflecting

polarity, secondary structure, molecular volume, codon diversity,

and electrostatic charge. We used these five numerical pattern

scores (denoted as ‘‘amino acid factors’’ (AAFactor)) to represent

the respective properties of each amino acid in a given protein.

The features of disorder score. Protein segments lacking

fixed three-dimensional structures under physiological conditions

play important roles in biological functions [17,18]. The

disordered regions of proteins allow for more modification sites

and interaction partners and always contain post translational

modification (PTM) sites, sorting signals, and protein ligands.

Therefore they are quite important for protein structure and

function [17,19,20]. In this study, VSL2 [21], which can

accurately predict both long and short disordered regions in

proteins, was used to calculate disorder score that denotes the

disorder status of each amino acid in a given protein sequence.

The features of secondary structure and solvent

accessibility. The structure of a protein plays an important

role for its function. Also, the post-translational modification of

specific residues may be affected by their solvent accessibility. In

view of this, here we also used the structure features including the

secondary structure and the solvent accessibility to encode the

peptides. These features were predicted by the solvent accessibility

and secondary structure predictors SSpro4 [22], which can be

used to predict the secondary structural property of each of the

constituent amino acids as ‘helix’, ‘strand’, or ‘other’, encoded

with ‘‘100’’, ‘‘010’’ and ‘‘001’’ respectively. It can also be used to

predict the solvent accessibility of each amino acid as ‘buried’ or

‘exposed’, encoded with ‘‘10’’ and ‘‘01’’ respectively.

The features of amino acid frequency around protein

cleavage sites. We calculated the occurrence frequency for

each of the 20 native amino acids as well as the complemented

element ‘‘X’’ for the 578 protein cleavage sites derived from the

371 proteins in the training dataset (see Supporting Informa-

tion S2) and represented it with WebLogo (http://weblogo.

berkeley.edu/) [23].

The feature space. For each residue of a protein segment,

we incorporated 32 features, including 20 features of PSSM

conservation score, 1 disorder feature, 5 features of AAFactor, 2

features of solvent accessibility, 3 features of secondary structure

and 1 feature of amino acid frequency. Thus, a segment with size-

16 sliding window would contain 32|16~512 features; with size-

18 sliding window, 32|18~576; with size-20 sliding window,

32|20~640and with size-22 sliding window, 32|22~704. For

segments complemented with ‘‘X’’ residues, all features of these

‘‘X’’ residues are denoted as 0.

mRMR method. We used Maximum Relevance Minimum

Redundancy (mRMR) method to rank the importance of the

features [24]. mRMR method could rank features based on both

their relevance to the target and the redundancy among the

features. A smaller index of a feature denotes that it has a better

trade-off between maximum relevance to target and minimum

redundancy.

Both relevance and redundancy were quantified by mutual

information (MI), which estimates how much one vector is related

to another. The MI equation was defined as below:

I(x,y)~
ÐÐ

p(x,y) log
p(x,y)

p(x)p(y)
dxdy ð1Þ

In equation (1), x, yare vectors, p(x,y)is their joint probabilistic

density, and p(x)and p(y)are the marginal probabilistic densities.

Prediction of Protein Cleavage Site
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Vwas used to denote the whole feature set. Vswas used to

denote the already-selected feature set containing m features and

Vtwas used to denote the to-be-selected feature set containing n

features. The relevance D between the feature f in Vt and the

target c can be calculated by:

D~I(f ,c) ð2Þ

The redundancyRbetween the feature f in Vt and all the

features in Vs can be calculated by:

R~
1

m

X
fi[Vs

I(f ,fi) ð3Þ

To get the feature fj in Vtwith maximum relevance and

minimum redundancy, the mRMR function combines equation

(2) and equation (3) and is defined as below:

max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj ,fi)

2
4

3
5(j~1,2,:::,n) ð4Þ

The mRMR feature evaluation would continue N rounds when

given a feature set with N (N = m+n) features. After the

calculation, we get a feature setS:

S~ f1

0
,f2

0
,:::,fh

0
,:::,fN

0n o
ð5Þ

In this feature set S, the index h of each feature indicates at

which round that the feature is selected. The smaller the index h is,

the earlier the feature satisfied equation (4) and the better the

feature is.

Random Forest. The Random forest (RF) approach is a

popular machine-learning algorithm that has been recently

successfully used in dealing with various biological prediction

problems [25,26]. Developed by Loe Breiman [27], RF is an

ensemble predictor that consists of multiple decision trees. To

classify a new queried sample with an input vector, the input

vector is predicted by each decision tree in the forest. Each tree

provides a predicted class. And the class with the most votes will be

output as the predicted class of the random forest. Each tree is

constructed using the following procedure:

(1) Suppose the number of training cases is N, take N samples at

random, but with replacement from the original data, which

will be the training set for growing the tree.

(2) If there are M input variables, choose a number m which

ought to be much less than M. At each node, m variables are

selected randomly out of the M variables and the most

optimized split on these m variables is employed to split the

node. The value of m does not change during the growth of

the forest.

(3) Each tree is fully grown and not pruned.

In this study, we employed Random Forest developed in Weka

3.6.4 [28], which implements the algorithm described above.

Notably, it was run with default parameters.

Five-fold Cross-Validation Method. Five-fold cross-valida-

tion was often used to evaluate the performance of a classifier [29].

In five-fold cross-validation the data are first divided equally into

five folds. Subsequently, each fold of data is in turn used as the test

data and the remaining 4-folds of data as the training data. Thus,

each data is tested exactly once. To evaluate the performance of

the predictor, the prediction accuracy, specificity, sensitivity and

MCC (Matthews’s correlation coefficient) were calculated below:

accuracy~
TPzTN

TPzTNzFPzFN

sensitivity~
TP

TPzFN

specificity~
TN

TNzFP

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

where TP denotes true positive. TN denotes true negative. FP

denotes false positive and FN denotes false negative.

Incremental Feature Selection (IFS). Based on the features

ranked by mRMR, we used Incremental Feature Selection (IFS)

[26,30] to determine the optimal number of features. During IFS

procedure, features in the ranked feature set are added one by one

from higher to lower rank. A new feature set is composed when

one feature is added. Thus N feature sets will be composed when

N ranked features are given. The i-th feature set is:

Si~ff1,f2,:::,fig(1ƒiƒN) ð7Þ

For each of the N feature sets, a random forest is constructed

and tested using five-fold cross-validation test. With N prediction

accuracies, sensitivities, specificities and MCCs calculated, an IFS

table is obtained with one column being the index i and the other

columns being the prediction accuracies, sensitivities, specificities

and MCCs. We then can get the optimal feature set (Soptimal),

using the predictor that achieves the best prediction performance.

Results and Discussion

The mRMR result
After running the mRMR software, we obtained two tables

(Supporting Information S3): one is called MaxRel feature table

that ranks the features according to their relevance to the class of

samples; and the other is called mRMR feature table that lists the

ranked features by the maximum relevance and minimum

redundancy to the class of samples. In the mRMR feature table,

a feature with a smaller index implies that it is more important for

protein cleavage site prediction. Such list of ranked feature was to

be used in the following IFS procedure for the optimal feature set

selection.

IFS result
For window size 22, by adding the ranked features one by one,

we built 704 individual predictors for the 704 sub-feature sets to

predict the protein cleavage sites. We then tested the prediction

performance for each of the 704 predictors and obtained the IFS

results (Supporting Information S4). Shown in Fig. 1 is the IFS

curve plotted based on the data of Supporting Information S4.

The same calculations were also carried out for the size-16, size-18

and size-20 windows, and the corresponding results were also

plotted in Fig. 1, from which we can see that the predictor based

Prediction of Protein Cleavage Site
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on the size-22 window outperformed the other three, and that the

maximal MCC was 0.5922 when 65 features as given in

Supporting Information S5 were used. Such 65 features were

regarded as the optimal feature set for our classifier. Based on

these 65 features, the prediction sensitivity, specificity and

accuracy were 61.07%, 93.66%, and 85.51%, respectively

(Table 1). From Table 1, we can see that for the same training

data set, the performance of window size 22 is better than the

other three. For the testing data set, the performance of window

size 22 is better than that of window size 16, and comparable with

those of window size 18 and 20, though a bit worse. Normally an

optimal model is chosen based on the results of cross validation of

training set. Therefore, size 22 is chosen as the optimal window

size and all the further analyses will be based on the 65 optimal

features obtained from window size-22.

Analysis of the optimal feature set
The distribution of the number of each type of features in the

final optimal feature set was investigated and shown in Fig. 2A.

As we can see from the figure, of the 65 optimal features, 38

belong to the PSSM conservation score, 9 to the amino acid

factor, 6 to the secondary structure, 3 to the solvent accessibility,

8 to the amino acid occurrence frequency, and 1 to the disorder,

suggesting that all the six types of features contributed to the

prediction of protein cleavage sites. The site-specific distribution

of the optimal feature set (Fig. 2B) revealed that site 11 and site

12 played the most important role in the determination of

cleavage sites.

PSSM conservation score feature analysis
As mentioned above, there were 38 PSSM conservation

features, which account for the greatest proportion of the optimal

65 features. We investigated the number of each kind of amino

acids for the PSSM features (Fig. 3A) and found that the

conservation against mutations to the 20 amino acids contribute

differently to the protein cleavage site prediction. Mutations to

amino acid Arginine (R), Threonine (T) and Histidine (H)

contribute most to the protein cleavage site determination. It has

been reported that all 130 furin cleavage sites collected from the

published literatures have a positively charged R residue.

Furthermore, a mutation of this R diminished the detectable

furin cleavage indicating that R is required at furin cleavage site

[31,32,33,34]. We also investigated the number of PSSM features

at each site (Fig. 3B). The conservation status of site 11 contributed

most to protein cleavage site prediction, successively followed by

site 2,7, 13 and so forth, as shown in Fig. 3B. In addition, the

features within the top 10 features in the final optimal feature list

contain four PSSM conservation features: the conservation status

against residue Valine (V) at site 11 (index 5, ‘‘AA11_pssm_20’’),

Figure 1. Plot to show the values of MCC against different number of features used based on the data in Supporting Information
S4. When the 65 features were used, a peak of MCC was obtained. These 65 features were considered as the optimal feature set for our classifier.
doi:10.1371/journal.pone.0045854.g001

Table 1. The predicted results obtained with different
window size.

Window size Dataset Sn Sp Ac MCC

16 train 61.42% 93.37% 85.38% 0.5895

test 61.19% 92.79% 84.89% 0.5768

18 train 57.96% 94.41% 85.29% 0.5817

test 61.19% 95.27% 86.75% 0.6253

20 train 59.34% 93.89% 85.25% 0.5827

test 59.70% 95.77% 86.75% 0.6239

22 train 61.07% 93.66% 85.51% 0.5922

test 61.19% 93.53% 85.45% 0.5908

Sn: sensitivity.
Sp: specificity.
Ac: accuracy.
MCC: Matthews’s correlation coefficient.
doi:10.1371/journal.pone.0045854.t001

Prediction of Protein Cleavage Site
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the conservation status against residue Aspartic acid (D) at site 10

(index 6, ‘‘AA10_pssm_4’’), the conservation status against residue

Alanine (A) at site 15 (index 7, ‘‘AA15_pssm_1’’) and the

conservation status against residue Arginine (R) at site 7 (index

8, ‘‘AA7_pssm_2’’).

Amino acid factor analysis
The number of each type of amino acid factor features

(Fig. 4A) and the number of amino acid factor features at each

site (Fig. 4B) were analyzed. It was found that the molecular

volume and electrostatic charge was the most important feature,

and polarity was the second most important feature to the

protein cleavage site prediction. We have mentioned above that

all 130 furin cleavage sites compiled from published papers have

a positively charged R residue [31,32,33,34], which suggested

that electrostatic charge was important for protein cleavage. In

Fig. 4B, residue at site 11 had the most effect on the protein

cleavage site prediction. The polarity feature of site 22 has an

index of 9 in our optimal feature set, indicating that it is one of

the most important features for the cleavage site prediction. The

molecular volume of site 11 has an index of 10 in our optimal

feature set, implying that it also had a crucial role for the

cleavage site prediction.

Disorder analysis
Within the final optimal feature set, only one disorder feature

was selected, which suggested that the disorder status may not be

important for the prediction of protein cleavage site. This finding

was consistent with that proteases universally recognize beta

strands in their active sites [35,36] and strands are more likely to

be observed in the vicinity of the cleaved site [37].

Solvent accessibility features analysis
We investigated the 3 solvent accessibility features in the

optimal feature set. All the 3 solvent accessibility features were

buried, indicating that the protein cleavage site was skewed toward

inaccessible areas. The crystal structures solved showed that the

angiotensin cleavage site is inaccessibly buried in its amino-

terminal tail [38]. Besides, the Tyr-Met cleavage site of von

Willebrand factor (VWF) is buried in a hydrophobic pocket [39].

In addition, it has been shown that the initial and major protease

cleavage sites are buried deep within the capsid of human

rhinovirus [40]. Furthermore, it was reported that transmembrane

domain of the substrate protein must be at least partially unwound

and exposed to the aqueous environment before or during the

cleavage to allow water access to the cleavage site buried in the

membrane [41]. Analysis on site-specific distribution of solvent

accessibility features showed that features at site 3, 5, and 19

contribute more to the protein cleavage site determination.

Secondary structure features analysis
Analysis on the feature and site-specific distribution of the

secondary structure in the optimal feature set revealed that

secondary structure features of strand and other can affect the

Figure 2. Bar plots to show the feature distribution for the 65 optimal features and the corresponding site distribution. See the
section of ‘‘Analysis of the optimal feature set’’ for further explanation.
doi:10.1371/journal.pone.0045854.g002

Prediction of Protein Cleavage Site
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protein cleavage site determination and secondary structure

features of strand have more impact. The secondary structure

features at site 1, 5, 10, 12, 20 and 22 contribute more to the

protein cleavage site determination. It has been shown that

proteases universally recognize beta strands in their active sites

[35,36]. Liwen You had found that strands are more likely to be

observed in the vicinity of the cleaved site [37].

Amino acid frequency features analysis
The amino acid occurrence frequencies surrounding the protein

cleavage sites were represented with WebLogo (http://weblogo.

berkeley.edu/) as shown in Fig. 5, from which we can see that

there was a high tendency to be Arginine (R) and Aspartic acid (D)

at site 11 and Serine (S), Alanine (A) and Glycine (G) at site 12. It

has been shown that there is a R at site 11 in all the 130 furin

cleavage sites compiled from published papers [31,32,33,34].

Besides, there is a D at site 11 in all the human caspase-3 cleavage

sites and a high tendency to be G and S at site 12 [3]. For human

calpain-2, it is more likely to be S at site 12 of their cleavage sites

[3]. In addition, analysis of 234 general proprotein convertase

cleavage site showed that it preferred to be R at site 11 and S at

site 12 [42]. Furthermore, it has been reported that there is a high

tendency to be R at site 11 and A at site 12 of chloroplast transit

peptides cleavage sites [43]. There were a total of 8 amino acid

frequency features from site 3, 8, 9, 11–14 and 16 in the optimal

feature set. The AA frequency at site 1 had the index of 1 in the

optimal feature set, and the AA frequency at site 12 and site 13

had the index of 3 and 4, respectively (see Supporting

Information S5). Furthermore, these eight AA frequency features

were ranked ahead of the other counterparts in the MaxRel

feature table (Supporting Information S3), suggesting that such

eight features are more relevant to protein cleavage site prediction.

Overall speaking, the AA frequency is a special feature that would

play a pivotal role for protein cleavage site prediction.

Comparisons with other methods
We compared the prediction performance of our method with

the three proteasome cleavage prediction methods PAProC [6],

MAPPP [7,8] and NetChop [2,9] on the same independent testing

dataset. For PAProC, there were three different types of human

proteasome, type I, type II and type III. Thus, this tool was

implemented for three times with different settings corresponding

to each human proteasome. We set different threshold for each

run and the prediction result with the maximum MCC was

regarded as the optimal prediction. As shown in Table 2, overall,

the PAProC obtained rather high specificity that is near to 1

(type I) or even 1 (type II and type III), but the sensitivity was

extremely low, and the final MCC was poor. In contrast to

PAProC, MAPPP had high sensitivity but quite low specificity and

MCC was poor (Table 2). For Netchop, there were two different

prediction methods, C term 3.0 and 20S 3.0. The best prediction

result for each method were listed in Table 2. We can see that like

MAPPP, the C term 3.0 method had a high sensitivity, low

specificity and poor MCC. While the 20S method achieved a

Figure 3. Bar plots to show the distribution in the optimal feature set for the PSSM score and the corresponding specific site score.
See the section of ‘‘PSSM conservation score feature analysis’’ for further explanation.
doi:10.1371/journal.pone.0045854.g003

Prediction of Protein Cleavage Site
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relatively balanced sensitivity and specificity, but the overall MCC

was still poor. In summary, our method achieved the highest MCC

and outperformed these three online methods on an independent

testing dataset.

Directions for experimental validation
It is worthwhile to point out that the selected features at

different sites may provide useful clues for experimental scientists

to find or validate new determinants for protein cleavage. For

example, it was found in this study that mutations to amino acid

Arginine (R) and electrostatic charge contribute most to the

protein cleavage site determination, which has been explicitly

validated by previous studies [31,32,33,34]. In addition, it was

found through our study that protein cleavage site was skewed

toward inaccessible areas, which was consistent with the observa-

tions reported in [38,39,40,41]. It was revealed in our studies that

the secondary structure of strand played an crucial role in the

prediction of protein cleavage site, which was supported by the

founding that proteases universally recognize beta strands in their

active sites [35,36,37]. Moreover, we found there was a high

tendency to be Arginine (R) and Aspartic acid (D) at site 11 and

Serine (S), Alanine (A) and Glycine (G) at site 12 of protein

Figure 4. Bar plots to show the distribution in the optimal feature set for the amino acid factor features and the corresponding
specific site score. See the section of ‘‘Amino acid factor analysis’’ for further explanation.
doi:10.1371/journal.pone.0045854.g004

Figure 5. A sequence logo illustration generated by WebLog to show the occurrence frequency of amino acid surrounding the
protein cleavage sites. where N and C represent the N- and C-terminus of the 22-residue peptide, respectively, with the cleavage sites occurring at
the site 11 and site 12.
doi:10.1371/journal.pone.0045854.g005

Prediction of Protein Cleavage Site
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cleavage sites, which were consistent with numerous previous

studies [3,31,32,33,34,42,43]. Accordingly, the remaining features

in the optimal feature set are worthy of validation by experiments

and further investigations.

Conclusion

In this study, we developed a new method for predicting and

analyzing protein cleavage sites. Our method considered not only

the sequence conservation information but also the physicochem-

ical features, solvent accessibility, secondary structure and residue

disorder status of protein cleavage sites. Besides, we also took the

amino acid occurrence frequency around the protein cleavage sites

into consideration. By means of the feature selection algorithm, an

optimal set of 65 features were selected; these features were

regarded as the ones that contributed significantly to the

prediction of protein cleavage. With the 65 optimal features thus

selected, our approach achieved an overall accuracy of 85.51%

and MCC of 0.5922, and outperformed the existing three web

tools when tested by an independent dataset. These selected

features may shed some light into in-depth understanding of the

mechanism of protein cleavage, providing guidelines for experi-

mental validation.

Supporting Information

Supporting Information S1 Positions of the protein
cleavage sites in the protein sequences and the accession
numbers of the corresponding proteins. This file contains
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The first one shows the MaxRel feature table ranked according to
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