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Abstract

By means of biofeedback, neuromotor control can be modified. Recent biofeedback experi-

ments have used the power of the electromyogram of one muscle in different frequency

bands to control a two-dimensional cursor. However, the human body usually requires

coherent activation of multiple muscles to achieve daily life tasks. Additionally, electromyog-

raphy (EMG) instrumentation has remained the same for decades, and might not be the

most suitable to measure coherent activations from pennated muscles according to recent

experiments by von Tscharner and colleagues. In this study, we propose the development

of a multichannel current-based EMG amplifier to use intermuscular coherence as the con-

trol feature of a visual biofeedback system. The system was used in a leg extension protocol

to voluntarily increase intermuscular coherence between the vastii muscles. Results from

ten subjects show that it is possible to increase intermuscular coherence through visual bio-

feedback. Such a system can have applications in endurance training and rehabilitation.

Introduction

Biofeedback can be defined as a process whereby monitoring of a normally automatic bodily

function is used to train someone to improve the voluntary control of such function. It is a

valuable supplementary treatment and complements rehabilitation protocols to recover

healthy muscle function after trauma or musculoeskeletal disease [1]. Biofeedback is often

used to train neuromotor control during rehabilitation [2–9].

Neuromotor control is not limited to switching muscles on or off, it includes fine-tuned

control to select the right fiber types, and activate them with precise timing. Humans use dif-

ferent types of muscle fibers, and it has been shown that fast and slow conducting muscle fibers

contribute to low and high frequencies of the EMG spectrum [10]. Motor units (MUs) must

coordinate and synchronize in such a way that they activate the muscles at the right time, for

instance, while running [11]. If a pool of motor neurons within one muscle or across two mus-

cles receives a common input from the central nervous system, the corresponding motor unit
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action potentials (MUAPs) will occur almost simultaneously in different areas of the muscles

[12]. Synchronization of MUs generate spectral changes by grouping, and thus clustering the

MUAPs, a process that affects the low frequencies of the EMG spectrum. [13]. Muscles are also

controlled by varying the contributions from the motor cortex that can be seen in the coher-

ence between electroencephalography (EEG) and EMG signals at the frequencies of the beta

(12 − 30 Hz) to gamma bands (30 − 80 Hz) [14]. Thus, if there is a common input from the

motor cortex to the MUs, one expects to see coherence at the frequencies where they are con-

tributing to the EMG spectrum, in the 30 to 50 Hz frequency band. These oscillations are

known as the Piper rhythm.

Recent work has shown that humans can voluntarily control some of these physiological

processes, and their contributions to the EMG in such a way that the spectral properties can be

used to control a human-machine interface [15, 16]. The deeper implication of this finding, as

seen from a neuro-physiological point of view, is that humans can voluntarily change the inter-

play between physiological processes with the help of a biofeedback system. However, these

studies did not indicate which one of the physiological processes mentioned above was used to

change the EMG spectrum.

Synchronization of MUs seem to be important contributors to the stability of human move-

ments that can be altered after an injury. Injuries lower the mean frequency of the power spec-

tra of the EMG, and may cause afferent proprioceptive information to be missing. This may

alter, among others, the subsequent physiological processes that determine the spectral infor-

mation of the EMG spectrum [17]. Additionally, it has been shown that there are fatigue-

related changes in MU synchronization of quadriceps muscles within and across legs [18]. Fol-

lowing the findings of Phinyomark et al., where different bands in the EMG power spectrum

of a single muscle were used as a biofeedback signal [15] the question arises, can we voluntarily

control the synchronization of MUs across synergistically working muscles? If so, one could

monitor and train the degree of synchronization using a biofeedback process. To assess the

synchronization of the muscles, magnitude square coherence (MSC) can be used. MSC is an

estimate of the degree of relationship between two time-varying signals as a function of fre-

quency [19, 20]. MSC is dependent on auto and cross-correlation spectral densities, and thus

can indicate changes in the power spectrum.

There are many conceivable applications of being able to voluntarily control the synergistic

activation of MUs. In our laboratory, we study the effect of injuries on synergistic activation of

MUs. Our interest is understanding the physiological processes that contribute to the stability

of the knee joint, and we therefore studied the vastii muscles first and will later extend the

research to include the interaction of the quadriceps muscles and the hamstrings. However,

the technique is new and must first be developed. To do so, it is necessary to develop instru-

mentation that can measure coherence reliably, and to test whether intermuscular coherence

can be voluntarily modulated.

Methodology to measure EMG

Extraction of features requires the acquisition of a reliable signal that contains the desired

information. EMG signals have been acquired for decades in either a monopolar or bipolar

configuration with a high impedance differential amplifier [21]. The most popular surface

EMG amplifier consists of bipolar surface electrodes with an instrumentation amplifier (IA)

[21]. The method is usually described for fusiform muscles, and might not be the most appro-

priate to quantify coherent activation of agonist pennated muscles as the common mode rejec-

tion of an IA can attenuate synchronized signals [22]. It has also been suggested that an IA

allows inter-electrode currents to develop; such currents cause the signals from neighboring
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electrodes to show similar signals that are attenuated by the common mode rejection of the IA

[22]. Lastly, signal attenuation can occur if the electrodes are misaligned to the muscle fibers,

which is almost impossible to avoid when measuring from pennated muscles or during

movement.

To overcome these problems, the concept of a monopolar current EMG measurement sys-

tem has been previously proposed and validated [22–25]. This new method uses a transimpe-

dance amplifier (TIA) instead of an IA. The TIA keeps the active and reference electrodes at

the same potential level, eliminating inter-electrode currents, making the TIA more suitable to

quantify intermuscular coherence, especially in pennated muscles [22]. The drawback using a

TIA is that it is inherently single-ended, and lacks common mode rejection, which reduces

noise coupled in from the environment. The existing implementation of the current-based

EMG amplifier has a sub-optimal frequency response, and suffers from cross-talk when trying

to measure EMG signals from different muscles simultaneously [24]. As proposed by Nann in

2014, the cross-talk occurs because the impedance at the ground electrode is larger than the

impedance at the muscle electrode. To close the loop, the current returns to the body through

the muscle electrode of the second amplifier. This causes the second amplifier to measure the

inverted signal of the active muscle. To avoid the cross-talk, previous experiments relied on

having a separate acquisition system (i.e. amplifier, data acquisition card, and computer) for

each muscle [23, 24]. This setup might not be adequate for a real-time biofeedback system.

Therefore, the limitations of the EMG current-amplifier in its present form have to be over-

come before it can be used to quantify intermuscular coherence as an input to a biofeedback

system.

Purpose

The purpose of this study is to test whether one is able to voluntarily increase intermuscular

coherence by means of a biofeedback system. The specific objectives of this study are: 1) To

develop a multichannel, current-based EMG system by improving the design proposed by von

Tscharner et al. [22]. 2) To test if the intermuscular coherence between the vastii muscles can

be voluntarily increased using a visual biofeedback system based on the current-based EMG

system.

Methods

Hardware development

There is a need to technically improve the current-based EMG amplifier proposed by von

Tscharner et al [22]. The original current-based EMG amplifier required capacitive coupling

to avoid saturation of the TIA while recording from the vastii muscles [24], as well as an iso-

lated recording system for each muscle [23]. We chose the following specifications for the

development of the new current-based EMG amplifier. First, most of the EMG signal power

is contained between 10 to 500 Hz [21]. Thus, we needed a flat frequency response between

10 and 500 Hz. Second, previous experiments on the gastrocnemius medialis muscle with the

current-based amplifier used a gain of 2.2 MO for the TIA [22]. Our experiment differed in

the task performed; our task consisted of a leg extension movement with no additional load.

Due to this difference in experiments, we expected a stronger signal, and therefore needed a

smaller gain. We selected three gain values for the TIA. These values were chosen to change

the amplification required for each subject to use most of the dynamic range of the data

acquisition card (DAQ). Finally, to avoid cross-talk without using two independent record-

ing systems, we developed an opto-coupled isolator. The opto-coupled isolator works by
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allowing each amplifier to have its own power supply, thus, avoiding the cross-talk. The solu-

tion of having a separate power supply to measure from multiple muscles simultaneously was

recommended in previous work with the current-based amplifier [24]. However, its previous

implementation is not suited to our experimental setup. All circuits were designed using

Multisim 14 (National Instruments, Austin, USA). The opamp chosen was the OPA140

(Texas Instruments, Dallas, USA). This opamp was selected due to its low noise (151.9 nV

integrated noise from 10 to 500 Hz); low input bias current (10 pA) and low current con-

sumption (1.8 mA per amplifier).

Amplifier design. The new amplifier consisted of three stages: a TIA, a high-pass filter,

and a low-pass filter. The TIA stage was configured with a three-position switch to change the

gain of the amplifier, while also adjusting the feedback capacitance keeping the bandwidth

constant to provide a maximum non-flatness of 0.1 dB up to 500 Hz. The resistor and capaci-

tor values for the low, medium and high gain settings were 100 kO and 500 pF, 250 kO and

200 pF, and 500 kO and 100 pF, respectively.

The second and third stages are filtering stages. Both filters were designed with a Butter-

worth response implemented with a Sallen Key topology. This configuration was chosen to

obtain a maximally flat frequency response in the band-pass region. The first filter is a fourth

order high-pass filter with a cut-off of 10 Hz and a passband gain of 10; the second stage is a

second order unity gain low-pass filter with a cut-off of 1 kHz. The cut-off frequency for the

high-pass filter was selected from the original amplifier design [22]. The cut-off for the low-

pass filter was chosen to give a maximum non-flatness of 1 dB in the overall transfer function

in the 10 − 500 Hz region.

The new amplifier was implemented on a two-layer printed circuit board (PCB) measuring

20 × 30 mm2. The electrode, data, and power supply connectors were soldered to the PCB

using right angle headers to avoid cable strain on the connections. To minimize externally

induced noise (i.e. 60 Hz line frequency), we chose shielded electrode leads (AD Instruments,

Dunedin, New Zealand), as well as a shielded micro USB cable to interface with the opto-cou-

pled isolation module.

The frequency response of the amplifier was measured with a SR 760 FFT spectrum ana-

lyzer (Stanford Research Systems, Sunnyvale, USA). All the amplifier characterization mea-

surements were performed in a Faraday cage with the system operated with ±9 V batteries to

avoid power supply noise. To test the design, a transconductance amplifier (TCA) was used to

convert the voltage from a function generator into a current to input into the amplifier. The

integrated circuit (IC) used for the TCA is the LM13700 from Texas Instruments. Measure-

ments for the new amplifier were done using the highest gain setting (500 kO). Additionally,

to measure the noise of the amplifiers, input referred noise of the new and the original ampli-

fier was calculated for frequencies between 1 Hz to 10 kHz.

Isolation module design. To record from multiple muscles with a single data acquisition

system, an optocoupler-based isolation module was implemented. The selected optocoupler

was the HCNR 200 (Avago technologies, San Jose, USA). This optocoupler was chosen because

of its low non-linearity (0.01%) achieved by using two closely matched photodiodes in con-

junction with a light emitting diode (LED). Feedback from one of the photodiodes is used to

linearize the output light of the LED, reducing drift and non-linearities [26].

The isolation module was implemented as a bipolar input photovoltaic isolation amplifier

as described in [27]. The module consisted of two channels; each channel receives the output

signal from a current amplifier and shares its input-side power supply with the connected

amplifier. The output of each current-amplifier (cAmp1 and cAmp2 for channel one and

channel two respectively, Fig 1) is connected to a transconductance amplifier (TCA). The TCA

converts the output voltage of the amplifier into a current for the optocouplers’ LEDs. Each
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isolation channel consists of two optocouplers, one for the positive and one for the negative

side of the signal (blue and green boxes, Fig 1). When the signal is positive, current from the

TCA flows through the optocoupler connected to the LED anodes (O2 and O4 for channel one

and channel two respectively, Fig 1). When the signal is negative, current from the TCA flows

through the optocoupler connected to the LED cathodes (O1 and O3 for channel one and

channel two respectively, Fig 1). At the output of the optocouplers, there are two matched pho-

todiodes. One of the photodiodes is fed back to the TCA to linearize the output. The other

photodiode is connected to a TIA to convert the current into a voltage for digitization. The

output TIA of both channels share their the power supply, and thus we can record multiple

EMG signals with one data acquisition system.

The isolation module was designed with unity gain (ratio between DAQChx and cAmpx)
and an output range of ±1 V. The resistors were calculated with equations 1 and 2 found in

[27]. The values for K3 = 1 and K1 = 0.5 were taken from the HCNR200 datasheet. The feed-

back resistors (Rf1 and Rf2) were calculated to limit the resistor current (IRf) and protect the

opamps U1 and U2, which have a maximum output current of 36 mA. Additionally, the

Fig 1. Schematic of the isolation module. The blue, green, and orange outlines mark the sections for channel 1, channel 2, and the

common isolated output, respectively.

https://doi.org/10.1371/journal.pone.0206871.g001
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capacitors (COx) are used to band-limit the TIA at the outputs.

DAQChx

cAmpx
¼
ðK3ÞðROxÞ

Rinx
ð1Þ

Rfx ¼
cAmpx
ðK1ÞðIRfxÞ

ð2Þ

To test the isolation module, 12 EMG recordings of the left and right biceps muscle of one

subject were performed in two conditions; the original amplifier without isolation, and the

new amplifier with the isolation module (i.e. 6 recordings per condition). The ground elec-

trode for each amplifier was placed on the lateral epicondyle of the radius of the corresponding

arm. The subject preparation was performed following the recommendations of the Surface

ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SENIAM) guidelines [28].

Each recording consisted of a single left biceps isometric contraction for a duration of 2 sec-

onds with no added load. The intermuscular coherence (as described in the methods section)

between the left and right biceps was computed as a measurement of cross-talk across the

conditions.

Experimental protocol

A biofeedback study was designed to test if the intermuscular coherence could be voluntarily

increased with visual biofeedback. Ten healthy male subjects (26 ± 2.3 years) were recruited

for the study. All subjects reported to exercise on a regular basis (at least 3 hours per week)

and had no lower limb injuries in the preceding 12 months. All subjects gave their written

informed consent in accordance to the University of Calgary’s policy on research with human

subjects. The study protocol was approved by the Conjoint Health Research Ethics Board at

the University of Calgary (REB15-2570).

EMG activity of the vastus lateralis (VL) and vastus medialis (VM) muscles of the right leg

was recorded with the new current-based EMG amplifier. The tendons of the two vastii mus-

cles transmit their force to the patella and therefore contribute to the stability of the knee joint.

The muscles’ medial and lateral locations create medial lateral forces in the knee joint. Thus,

asynchronous activation might cause detrimental shear forces. We selected these two muscles

because we think that after an injury or after a fatiguing exercise the body loses the ability to

optimally control the muscles in a way that is necessary for a stable and efficient movement.

The present study is part of a larger project that aims to understand the effect of altered shear

forces in the knee joint that may be caused by a lack of synchronization of the motor units.

Therefore, our team performed several studies that contribute to better understand the inter-

play between these two vastii muscles [11, 23, 24, 29].

The muscle fibers of the vastii muscles display a penniform structure. Therefore, it is diffi-

cult to 1) align bipolar electrodes with the direction of the muscle fibers on the skin above this

muscle which would be necessary to obtain an optimal measure of coherence [22], and 2) mea-

sure monopolar potentials because interspersed potentials cause excessive noise. Because the

question of knee stability is highly relevant to living a healthy life, we invested a lot of effort in

improving the recording system to the point where we could obtain reliable data that allow us

to monitor the effects of the neuromuscular control with enough sensitivity to detect differ-

ences that we can interpret.

The location for the Ag-AgCl sEMG electrodes (Norotrode dual electrodes, Myotronics-

Noromed Inc., USA) was determined by palpation of the muscles during a leg extension move-

ment. Skin preparation included shaving of the area of interest, light skin abrasion with an
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abrasive medical tape, and final cleaning with 70% isopropyl alcohol, as recommended by the

SENIAM [28]. Before the experiment, subjects were asked to perform several contractions of

the vastii muscles to visually ensure that a high quality EMG signal was recorded. Appropriate

gain to ensure an output of around ±1 V was set, and EMG recorded for each subject at 2.4

kHz with a 14-bit DAQ card (Biovision, Wehrheim, Germany).

Subjects attended one experimental session. During the session, the subjects sat on a table

that allowed their legs to hang free. They were instructed to perform leg extensions with their

right leg at the pace of a metronome. The metronome was programmed to provide two differ-

ent audio cues at a rate of 60 bpm; the first audio cue instructed the subject to position their

leg at a 90˚ knee angle (Fig 2A), the second cue instructed subjects to have their leg at a 0˚ knee

angle (Fig 2B). This pace leads to an extension-flexion-extension cycle at a 0.5 Hz rate, with

distinct phases for the activation of the muscles (Fig 2, bottom). The session consisted of six

trials, three control and three biofeedback in a randomized order, with a duration of three

minutes per trial. Both conditions were identical, with the exception that for the latter condi-

tion, the subjects were provided visual biofeedback about the intermuscular coherence.

The biofeedback consisted of a horizontal line representing the value for their coherence of

interest, calculated as described in the results section. For the biofeedback trials, subjects were

instructed to raise the line without altering the pace or direction of the leg extension move-

ment. The order of the conditions was randomized to avoid biasing effects due to practice or

fatigue. After each trial, the subjects were given a two-minute period to stand or walk as

desired to avoid potential numbness in their legs caused by the sitting position.

Intermuscular coherence

As mentioned before, coherence is a measure of the degree of relationship between two time-

varying signals as a function of frequency. It is usually presented as magnitude-squared coher-

ence (MSC), a real-valued function defined in Eq 3. To recall, our objective was to test if the

intermuscular coherence can be voluntarily increased though a visual biofeedback system. As

described in the experimental protocol (methods section), the time series we are interested in

Fig 2. Illustration of the experimental protocol; The blue line marks the metronome cues. (A) cue 1, starting

position, 90˚ knee angle. (B) cue 2, leg extension, 0˚ knee angle. (C) cue 1, return to starting position, 90˚ knee angle.

The two data traces shown at the bottom are sampled at 2.4 kHz from the VM and VL, respectively.

https://doi.org/10.1371/journal.pone.0206871.g002
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are the EMG of VL and VM. Because EMG activations only occur at certain times during the

leg extension/flexion protocol, we needed to isolate the periods of EMG activity (Fig 2, bottom)

to calculate the intermuscular coherence. We calculated the MSC as follows. Consider k N-

point EMG recordings of the activations of VL and VM, denoted by xi(n) and yi(n), respec-

tively with i = 1, 2, . . ., k and n = 1, 2, . . ., N. Over the k activations, the mean MSC Cxy(f)
between the EMG signals is given by:

Cxyðf Þ ¼
jSxyðf Þj

2

Sxxðf ÞSyyðf Þ
ð3Þ

Sxxðf Þ ¼
1

k

Xi¼k

i¼1

Xiðf ÞX
�

i ðf Þ ð4Þ

Syyðf Þ ¼
1

k

Xi¼k

i¼1

Yiðf ÞY
�

i ðf Þ ð5Þ

Sxyðf Þ ¼
1

k

Xi¼k

i¼1

Xiðf ÞY
�

i ðf Þ ð6Þ

Where Sxx and Syy are the mean auto-correlation spectra of the power spectral densities of the

EMG of k VL and VM activations, respectively. Sxy is the mean cross-correlation spectrum of

the EMG of k activations of VL and VM. Xi(f) and Yi(f) are the N-point discrete Fourier trans-

forms of xi(n) and yi(n), respectively. The asterisk symbol (�) denotes the complex conjugate.

The resulting MSC is a frequency dependent signal that varies between 0 (i.e. no correlation)

and 1 (i.e. perfect correlation) [19].

Data processing

Data were processed using Matlab 2016 (Mathworks Inc., Natick, MA); this included noise

removal, identification and selection of EMG activations, and coherence calculations. First,

each channel of the raw EMG signal was filtered for 60 Hz power line noise using a line-fre-

quency averaging method [25]. This method allows the removal of 60 Hz power line noise

without altering the phase or inducing a notch effect into the signal. For the selection of EMG

activations only the VL EMG activity was used; the VM activity occurs with a similar timing.

The filtered signal was passed through a wavelet filter to determine the peaks in the EMG

power (i.e. the time points when the muscle activity was strongest) [30]. The wavelet filter used

in this study consisted of 11 non-linear wavelets. The power between the 3rd and 11th wavelet,

with center frequencies of 37.7 and 395.4 Hz, respectively, was obtained. The sum of the pow-

ers across these frequency bands yields the total power, which represents an envelope of the

raw EMG that we believe is important for obtaining activation patterns of the muscle. The

local peak of the envelope was selected as the mid-point of the EMG activity windows, a bin of

2048 data points (i.e. 850 ms) was selected as the active EMG signal. We denote these data as a

single EMG activation. The size of the bin was chosen as it covered the majority of the EMG

activation bursts for one leg movement. Coherence between concurrent activations was calcu-

lated between the ith VL and VM activations. Coherence between subsequent activations was

calculated as the coherence between the ith VM activation and the (i+1)th VL activation. Lastly,

a coherence between randomly selected activations was calculated by randomizing the order

of the activations in VL.
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The statistical significance threshold for intermuscular coherence was calculated as 1 − (1 −
α)1(L−1) [19], where: α is the desired confidence level (i.e. 95%), and L is the number of disjoint

sections averaged for the coherence calculation (i.e. 90 activations per trial). This threshold

was used to identify a frequency range of interest, where the intermuscular coherence showed

significant values. A parameter, coherence of interest, was defined as the area under the Cxy(f)
curve within the frequencies of interest, normalized by the area under the perfect coherence

(i.e. Cxy(f) = 1), between the same frequency limits. This coherence of interest was used as the

indicator for the visual biofeedback, and displayed to the subject during biofeedback trials. For

the real-time display, a sliding window of 10 muscle activations (i.e. k = 10) was used to calcu-

late the coherence of interest. Ten activations were chosen as there is a trade-off between the

refresh rate of the biofeedback and the coherence estimate. The former needs as few activations

as possible, while the latter converges with the number of sequences averaged for the coher-

ence calculation. The number of activations was chosen by a process detailed in [31]. That

study looked at the cumulative coherence of the vastii muscles during a cycling protocol. Con-

sidering 20 activations at a time reduced the change in cumulative coherence to 10%, that is

the coherence changed by less than 10% when 21 or more activations were considered rather

than 20. For the present study, we decided to set the threshold to 5%, and assumed considering

10 contractions at a time would suffice. A post-hoc analysis of the cumulative coherence of the

control trials of all subjects was performed to test our assumption. To test the hypothesis that

the coherence of the vastii muscles can be increased by voluntary commands with a visual bio-

feedback, all the activations within a trial (i.e. k = 90) were used to calculate the coherence of

interest.

For each activation, the EMG power of both muscles, as well as the active time (defined as

the time that the EMG amplitude was above 30% of the maximum value) were calculated.

Additionally, the time between the peaks of EMG activation was calculated.

Statistical analysis was performed with IBM SPSS statistics 24 (SPSS Inc., Chicago, USA).

For both biofeedback and control conditions, the mean and standard error of the mean (SEM)

of the EMG power, active time, time between EMG activations, and average coherence of

interest for the concurrent, subsequent, and randomized activations was computed for each

subject. Each variable was evaluated regarding normality with a Shapiro-Wilk test. If the vari-

able was considered to have a normal distribution with the Shapiro-Wilk test, a paired sample

t-test or two-sample t-test was performed accordingly. If the variable did not have a normal

distribution, a Wilcoxon signed-rank or Wilcoxon rank sum test was done.

Results

Hardware characterization

The frequency response measurements show that the new amplifier without the isolation mod-

ule has a flat (±0.5 dB) magnitude response in the 13 to 500 Hz frequency range (Fig 3). For

comparison, the transfer function of the original amplifier is also shown. The input referred

noise of the amplifiers for the frequencies between 1 Hz and 10 kHz are 10.7 pARMS and 12.7

pARMS for the new and original amplifier, respectively.

Intermuscular coherence between the activated left, and relaxed right bicep, was calculated

using the original amplifier without the isolation module, and the new amplifier with the isola-

tion module are shown (Fig 4). The coherence using the original amplifier exceeds the signifi-

cance level across all frequencies whereas that using the new amplifier with the isolation

module remains below significance.
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Experimental data

Fig 5 shows the 60 Hz filtered EMG data obtained during a representative trial. Overlaid on

top is the envelop output from the wavelet filter and the detected midpoints. The black boxes

indicate EMG activations used for calculating the coherence (2048 data points).

Fig 6 shows two consecutive activations of VL and VM during a representative trial; activa-

tions A, C and B, D are concurrent; activations A, D and B, C are subsequent. The average

MSC calculated from 90 subsequent activations is referred to as the subsequent activations

coherence (Fig 6, right). The figure also shows the MSC calculated from 90 concurrent

Fig 3. Measured frequency response of the new and original amplifier.

https://doi.org/10.1371/journal.pone.0206871.g003

Fig 4. Mean ± SEM of the raw intermuscular coherence of the left and right biceps with left biceps activation only

(N = 6).

https://doi.org/10.1371/journal.pone.0206871.g004
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activations. The concurrent activations coherence is higher than the level of significance in the

10 − 200 Hz range; this range was used to calculate the coherence of interest. This is shown as

the shaded area normalized by the area of the box representing perfect coherence (i.e. Cxy = 1

from 10 to 200 Hz).

Fig 5. 60 Hz filtered VM EMG with wavelet filter envelope (top), and 60 Hz filtered VL EMG (bottom). Traces show EMG data

from one subject. Envelope output of the wavelet filter (black trace), midpoints (green dots), and windows (dashed boxes) used for

coherence calculation are also shown.

https://doi.org/10.1371/journal.pone.0206871.g005

Fig 6. EMG of concurrent activation pairs (A, C and B, D) and EMG of subsequent activations (A, D, and B, C) used to calculate intermuscular

coherence (left). Coherence of concurrent (blue), subsequent (green), and randomized (red) activations of one trial (N = 90 activations) (right).

https://doi.org/10.1371/journal.pone.0206871.g006
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According to the Shapiro-Wilk test, the EMG power, active time of EMG, and time between

contractions were not normally distributed (all, p< 0.01). Thus, statistical analysis was carried

with a Wilcoxon signed-rank test. Fig 7A shows the mean ± SEM of the EMG power, of VL

and VM. This variable showed a significant increase (p< 0.001) for both VM and VL in the

biofeedback condition. Fig 7B shows the mean ± SEM of the active time of the EMG. The

active time showed a significant decrease (p< 0.001) for both VM and VL. Lastly, Fig 7C

shows the time between EMG activations (mean ± SEM) which was not significantly different

between the conditions (p = 0.42).

Voluntary modulation of coherence with biofeedback

The cumulative coherence calculation showed that, for the leg extension movement, there

is< 1% change in the coherence when using 10 or more activations. The results of the coher-

ence of interest show that all subjects increased their coherence of interest in the biofeedback

trials compared to the control (Fig 8). The coherence of interest shows an increase of 25 ± 4.2%

(mean ± SEM). We failed to reject the null hypotheses for the Shapiro-Wilk test for normality

(p = 0.22), thus, the data is assumed to be normally distributed. A paired t-test across condi-

tions shows a significant increase in coherence when comparing the biofeedback to the control

condition (p< 0.001).

Discussion

The purpose of this study was to test whether intermuscular coherence of the vastii muscles

could be voluntarily increased through visual biofeedback. To achieve such purpose, we devel-

oped a visual biofeedback system consisting of an updated version of the current-based EMG

amplifier, and developed software for calculating and displaying intermuscular coherence.

Current-mode EMG acquisition

Our results show that the new amplifier has a flat frequency response in the 13 − 500 Hz region

(Fig 3); the difference in the magnitude of the frequency responses is due to the larger TIA

gain resistor of the original (2.2 MO) compared to the new amplifier (500 kO). The original

amplifier did not have a low-pass filter; thus, high frequency noise can corrupt the signal of

interest. The original amplifier did not have a high-pass filter, thus it needed capacitive cou-

pling with EMG electrodes to reduce low frequency noise. This approach is dependent on skin

preparation and the subject, and could be insufficient for a variety of experimental scenarios

[24]. The new amplifiers’ high-pass filter is less susceptible to low frequency noise caused by

Fig 7. Mean ± SEM of (10 subjects, 6 trials, 90 contractions per trial): (A) EMG power (B) active time, and (C) time between peaks of EMG activation. The asterisk

symbol (�) denotes statistical significance (p< 0.05).

https://doi.org/10.1371/journal.pone.0206871.g007
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motion artifacts or drift of the signal because of the electrode-skin interface. Regardless of

these technical improvements, both amplifiers have a monopolar configuration, thus, external

noise in the region of interest (e.g. line frequency noise at 60 Hz) is amplified and corrupts the

EMG. Therefore, this configuration still requires digital filters to eliminate any common-mode

noise. Future work should focus on developing a system that is more resistant to this noise

without losing the current-based methodology. A good approach for this could be a differential

current amplifier that benefits from the common mode rejection of an IA.

The results for the isolation module test show that the isolation module can isolate signals

from different muscles during simultaneous recordings (Fig 4). The test performed involved

the left and right biceps brachii muscles. We used these muscles because it is easy to contract

only one biceps muscle at a time. We expected non-significant coherence between indepen-

dent biceps activations. If the coherence increases over the significance threshold during inde-

pendent activations, we could interpret this as the presence of cross-talk between the signals.

Cross-talk would not allow us to perform any of the visual biofeedback experiments. This

cross-talk is thought to be caused by a difference in the impedance of the muscle and ground

electrodes and not the muscle in question [24]. Based on this, we believe that our results will

remain similar if other muscles were chosen. Using the isolation module, the intermuscular

coherence decreased to non-significant values. This can be interpreted as the signals not being

related to one another. In the other case, the original amplifier without the isolation module

clearly shows high intermuscular coherence, due to cross-talk. This is in accordance with

previous experiments with the current-based amplifier [24]. Future work should consider

other solutions to simplify the setup while maintaining the isolation. Digitization of the signal

within the EMG amplifier module itself should be implemented to improve upon the design

Fig 8. Mean ± SEM (3 trials per condition) coherence of interest.

https://doi.org/10.1371/journal.pone.0206871.g008
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presented here. This digitization method has been used in other EMG devices with satisfactory

results and increased resistance to external noise [32].

Voluntary control of coherence with biofeedback

Experimental data shows that for the biofeedback condition, subjects have significantly higher

EMG power and shorter activation times (Fig 7A and 7B, respectively). Despite this difference

in performance, the movement remained the same (i.e. the time between contractions

remained the same across conditions) (Fig 7C). The subsequent intermuscular coherence is

similar to the randomized intermuscular coherence across all frequencies, however, the con-

current intermuscular coherence has significantly higher values between the frequencies of

interest (i.e. 10—200 Hz) (Fig 6B). This suggests that the concurrent EMG activations share a

higher common input than the subsequent or randomized ones.

Additionally, there is a significant increase in the concurrent intermuscular coherence for

the biofeedback condition. One could argue that the increase in intermuscular coherence

could be because more MUs are being activated, based on the increase in power. However, if

the increase in concurrent intermuscular coherence was solely due to the random activation of

more MUs’ (which likely happened due to the increase seen in EMG power, Fig 7A), the inter-

muscular coherence for the subsequent activations would have also shown an increase, which

was not the case (Fig 6). Thus, it seems that for the biofeedback condition, the muscles have an

increased common input. This could be explained by the clustering effect shown in recent

work that suggests that with a shorter activation period during a dynamic contraction, MUs

activate in clusters that share a common input [13]. Our experiments show that, to increase

the intermuscular coherence during the biofeedback condition, subjects performed a shorter

contraction with higher EMG activity. Thus, by constraining the time during which the muscle

is active, MUs are required to cluster their activations increasing the intermuscular coherence.

Previous research speculated that intermuscular coherence is controlled by the central ner-

vous system, and it can be modulated by changing the common input of the motor units of the

individual muscles [33]. Our results support this speculation. With the appropriate feedback,

one is able to change the common input of the motor units [23]. The implications of voluntar-

ily increasing intermuscular coherence have not yet been tested. One study has looked at the

difference in intermuscular coherence of the hand muscles between skilled music players and

weightlifters [34]. It showed that weightlifters seem to have a higher intermuscular coherence

than skilled music players. This could be because musicians require a higher degree of inde-

pendence in the motor control of their finger whereas weight lifters usually require a higher

force generation, which can be obtained by coordinating and synchronizing the muscles.

Thus, synchronization of motor units of different muscles seems to be a basic feature of motor

control to generate force, especially during a dynamic motor task [21, 23, 24]. We speculate

that the biofeedback system presented here could be applied for rehabilitation purposes,

where, after a surgery or traumatic event, the body is not able to control the muscles in a coher-

ent manner anymore. One example of this is the rupture of the anterior cruciate ligament

(ACL) in the knee; we speculate that the lack of optimal synchronization could result in shear

forces and compensations that have negative effects on the cartilage of the knee joint. In fact, it

has been shown that such medial lateral shear forces could contribute in addition to the larger

co-contraction to the deterioration of the joint after an ACL reconstruction injury, which over

time, leads to osteoarthritis [35].

The experiment presented here focused on the intermuscular coherence between the vastii

muscles. Studies have looked at the intermuscular coherence of other muscle groups, for exam-

ple, hand muscles [34], and gastrocnemius [22]. However, the experiment presented here is, to
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the best of our knowledge, the first attempt to use the intermuscular coherence as a biofeed-

back signal. It would be of great interest to further research if the results presented here can be

replicated in other muscle groups and movements. We speculate that with an appropriate

training paradigm, most skeletal muscle groups that are voluntarily activated could be trained

to increase their coherence.

Since our experiment is the first experiment of its kind to look at whether one can voluntar-

ily modulate coherence, we decided to use a wide frequency band rather than multiple narrow

bands. However, based on [16], we believe that a future experiment could be designed to inves-

tigate voluntary intermuscular coherence changes in multiple narrow frequency bands. One

could speculate that narrow bands, for instance 10 to 30 Hz, 30 to 50 Hz (Piper frequency) 50

to 100 Hz (majority of muscle fibers) and one around 175 Hz (fast conducting muscle fibers).

There is a hint towards these bands in Fig 6, however not sufficiently clear to point to these

bands in this manuscript. We resolved them more distinctively in another study [11].

To date, central fatigue of muscle activity refers predominantly to the inability to keep up

with exercise performance, and cannot be explained by peripheral factors that affect muscle

function [24]. An alternative sign of fatigue could be a decline in the ability of the central

nervous system to further support optimal coherent activation of the vastii muscles. As men-

tioned before, preliminary results in our laboratory have shown that intermuscular coherence

decreases to the progression of muscle fatigue during squatting movements [24]. As fatigue

increases, intermuscular coherence tends to decrease. It has recently been shown that during

cycling, intermuscular coherence increases with power output [36]. Alterations in the neuro-

muscular strategy (i.e. muscle activation pattern and power contribution of individual mus-

cles) were evident as the power output increased [36]. However, the relation between

intermuscular coherence and fatigue during cycling or other sports activities has not been

tested. If decreasing intermuscular coherence is a causative factor of fatigue, we believe our

biofeedback system could be used to train subjects to increase endurance during fatiguing

exercises. This possibility warrants studies that may show a significant impact in sports activi-

ties where endurance plays a key role in the performance of athletes. Additionally, our experi-

ment tested only the instantaneous effects in the intermuscular coherence caused by the visual

biofeedback. Further research should be done to investigate any long-term effects (e.g. neuro-

plasticity) of such methodology. Neuroplasticity effects are an important factor of long-term

rehabilitation, for example after a stroke [37]. If the methodology induces long-lasting recov-

ery of the neurological control of muscles, it could be used for rehabilitation purposes.

The main limitation of our experimental protocol was the limited measurement of the

movement. The subjects were asked to perform the same movement based on the metronome

sound. Although the movement was visually inspected to remain consistent, the instantaneous

velocity or extension/flexion angles of the leg movement were not measured. Our results could

have benefited from such measurements to determine the movement strategies that the sub-

jects used to increase the intermuscular coherence. However, neither the subjects nor the

researchers were aware of any obvious change of the movement; this is also supported by the

time between contractions remaining the same across conditions (Fig 7C). Additionally, a win-

dow of 10 muscle activations was chosen to calculate the coherence of interest during the bio-

feedback experiment. As mentioned before, there is a trade-off between the refresh rate of the

biofeedback signal and the coherence estimate. We arbitrarily chose a 5% threshold for the

change in cumulative coherence, and used 10 activations to achieve the threshold. While this

was not tested during the study, post-hoc analysis showed considering 10 activations reduced

the change in cumulative coherence to< 1%. Further study is required to inform the change

threshold, and the number of activations needed to achieve it, that would optimize the trade-
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off between coherence estimate and biofeedback refresh rate. This can make the biofeedback

process much more intuitive for the user, and thus, yield better results.

Conclusions

We presented a biofeedback system that uses intermuscular coherence of the vastii muscles as

the main feature. To optimally monitor such change in coherence, a multichannel current-

based EMG system with an isolation module was developed. A software to monitor the instan-

taneous intermuscular coherence was developed; the coherence was shown as a visual biofeed-

back to the subjects. The results showed that the 10 recruited subjects could voluntarily

increase their level of coherence with the use of the visual biofeedback. To the best of our

knowledge, this is the first study to indicate that one can voluntarily increase intermuscular

coherence, and thus synchronization of the vastii muscles. We are confident that biofeedback

systems based on intermuscular coherence can have applications in rehabilitation and

training.
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