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ABSTRACT

Epigenetic changes, such as aberrant DNA methy-
lation, contribute to cancer clonal expansion
and disease progression. However, identifying
subpopulation-level changes in a heterogeneous
sample remains challenging. Thus, we have devel-
oped a computational approach, DXM, to deconvolve
the methylation profiles of major allelic subpopula-
tions from the bisulfite sequencing data of a hetero-
geneous sample. DXM does not require prior knowl-
edge of the number of subpopulations or types of
cells to expect. We benchmark DXM’s performance
and demonstrate improvement over existing meth-
ods. We further experimentally validate DXM pre-
dicted allelic subpopulation-methylation profiles in
four Diffuse Large B-Cell Lymphomas (DLBCLs).
Lastly, as proof-of-concept, we apply DXM to a cohort
of 31 DLBCLs and relate allelic subpopulation methy-
lation profiles to relapse. We thus demonstrate that
DXM can robustly find allelic subpopulation methyla-
tion profiles that may contribute to disease progres-
sion using bisulfite sequencing data of any hetero-
geneous sample.

INTRODUCTION

DNA methylation changes have been implicated in a variety
of human diseases, including cancer (1). Methylation mea-
surements are typically made from heterogenous samples
consisting of multiple cell-types, which each have unique
methylation patterns. As such, it is frequently difficult to
interpret whether an observed change in methylation is due

to a shift in sample composition or due to a true change
in the methylation state of an underlying cell-type. For ex-
ample, tumors are comprised of both normal cell types
and cancer subclones. These subclones can acquire changes
that increase their fitness, leading to faster cancer progres-
sion, treatment resistance and worse patient prognosis (2,3).
Though cancer subclones have generally been described
with respect to genetic alterations, in principle epigenetic
alterations such as DNA methylation could alter the ex-
pression of key genes in a subclone and impact its fitness.
Moreover, in chronic lymphocytic leukemia (CLL), diffuse
large B-cell lymphoma (DLBCL), acute myeloid leukemia
(AML), Ewing Sarcoma, and glioblastoma, clonal hetero-
geneity in DNA methylation is associated with worse pa-
tient outcome (4–8). Unfortunately, even though subclonal
methylation changes may be expected to underlie this ob-
served heterogeneity, current methods do not effectively an-
alyze subclonal methylation patterns from the bisulfite se-
quencing data of heterogeneous samples. One approach to
address sample heterogeneity is fluorescence-activated cell-
sorting (FACS), but it is dependent on surface markers to
distinguish cell types, which may not be known a priori
or even exist for many cancer subclones. Hypothetically,
single-cell bisulfite sequencing can address sample hetero-
geneity (9), but it is technically challenging and expensive.
While this technology continues to develop, there remain
hundreds of bisulfite sequencing datasets that have already
been generated and are being generated that would remain
useful to study. To understand the impact of methylation
changes measured in these samples we thus need a compu-
tational approach to identify the number of underlying al-
lelic subpopulations and their respective methylation pro-
files from the methylation data of a heterogeneous input
sample.
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Though extensive methods have been developed to de-
scribe subclonal architecture with respect to mutations or
copy number variants (CNVs) (for a review see (10)), these
methods cannot be easily adapted to methylation analysis
since they typically assume subclonal events occur indepen-
dently and are relatively rare. Unlike mutations or CNVs,
methylation changes often occur in blocks of multiple CpGs
over a short range called differentially methylated regions
(DMRs) (11,12). Additionally, there are many more aber-
rant changes in methylation than mutations or CNVs, with
frequently >100 000 DMRs observed in solid tumors as
compared to at most ∼10 000 mutations or ∼100 CNVs
(13–15). Thus we need approaches that specifically model
subclonal DNA methylation data.

Several analysis methods to determine the cellular com-
position and methylation profiles of subpopulation level
events have been developed for epigenome-wide association
studies (EWAS) (16–20). However, EWAS uses array-based
technologies that probe the methylation state of 3% of the
CpGs in the human genome, and as such, these approaches
use assumptions and error-models that are not appropriate
for sequence data. For example, they do not consider the
strong local correlations of methylation changes, since adja-
cent probes are frequently >1 kb apart (21). Consequently,
there are not good options for those interested in decon-
volving sequencing-based DNA methylation data such as
obtained through WGBS, RRBS or capture methods.

Thus, we have developed DXM (Deconvolution of Sub-
populations Existing in Methylation Data), a novel decon-
volution strategy to identify the major allelic subpopula-
tions and their respective methylation profiles from a het-
erogeneous sample (Figure 1A and B). DXM does not re-
quire explicit prior knowledge of the number of subpopu-
lations or what types of cells to expect, and it provides a
framework for considering methylation differences across
multiple CpGs at the single-CpG resolution offered by
bisulfite sequencing data. We benchmarked DXM on a wide
set of simulated mixtures using bisulfite sequencing reads
from sorted hematopoietic cell types and found that DXM
outperformed methylPurify (22), another method devel-
oped for subclonal analysis of bisulfite sequencing data. We
demonstrate that DXM can be used to study allele-specific
methylation in the contexts of X-inactivation and imprint-
ing. We further conducted Agilent Methyl-Seq bisulfite se-
quencing analysis in four samples from patients with DL-
BCL, a B-cell lymphoma derived from germinal center B
cells. We validated that DXM predictions for subpopulation
methylation profiles were recapitulated in relevant sorted
CD4+ T and CD19+ B cells from these samples. As proof-
of-concept, we applied DXM to bisulfite sequencing data
from a cohort of 31 DLBCL samples (5) to highlight how
DXM can be used to analyze subpopulation methylation in
heterogeneous cancer samples and relate them to relapse.

MATERIALS AND METHODS

Public datasets

Bisulfite sequencing data was downloaded from the
Roadmap Epigenomics project (23) (REP), the Blueprint
Epigenome Project (24) (BEP), ENCODE (25) and GEO
(Accession: GSE29069 (26), GSE66329 (27), GSE75868

(for the WIBR3 cell-lines) (28). A full list is provided in Sup-
plementary File 1 (Supplementary File 1.xlsx).

DXM

Using sequencing-based DNA methylation data from het-
erogeneous samples as input, DXM deconvolves data
across a set of user-defined regions and outputs the number
of allelic subpopulations as well as the methylation profile
for each subpopulation across each region (Figure 1A and
B). We adopt an iterative scheme to solve for the number
of subpopulations, beginning with only 1 major subpopu-
lation, and adding additional subpopulations provided that
they do not cause an overfit. This approach does not assume
how many underlying subpopulations are present a priori,
but it takes an Occam’s Razor approach in determining the
minimal number of subpopulations that can reasonably ex-
plain the observed data.

DXM input. DXM uses processed data as input, consist-
ing of a BED-like format containing tab-delimited columns
of chromosome names, start position, end position, methy-
lation level (mCG/CG), sequencing coverage, and region id.
DXM performs deconvolution over user-specified intervals
(e.g. promoter regions, CGIs, or enhancers) and is compat-
ible with any reference genome. While input data does not
need to be filtered for a specific coverage cutoff, we recom-
mend a coverage of at least 4 reads per CpG for more reli-
able results. Typically, we recommend collapsing CpG data
across strands to increase reliability of the methylation es-
timates, but this is not required. Additional pre-processing
details for specific experiments are detailed in their respec-
tive sections below.

Minimization. We next estimate the best possible preva-
lence of subpopulations from the distribution of all
fractional methylation values detected. We minimize the
L1-difference between the expected underlying fractional
methylation values and the original methylation distribu-
tion. The expected underlying fractional methylation val-
ues represent a set of all possible combinations for detected
methylation given that each subpopulation will be methy-
lated or not. For example, if there are two subpopulations
with prevalence of 0.3 or 0.7 in the sample, then the expected
fractional methylation values detected are {0, 0.3, 0.7, 1}.
In the (unlikely) event of a tie, the solution with the small-
est possible subpopulation is selected. After minimization,
each region is solved independently for its methylation pro-
files.

Modified hidden markov model. Given the number of un-
derlying subpopulations and their expected prevalence, we
solve for the most likely methylation profiles by applying
the Viterbi algorithm to a modified Hidden Markov Model
(HMM). An HMM is well-suited to model sequence data
with local correlations, as exhibited by DNA methylation
(Supplementary Figure S1a–d) (29). In brief, the HMM in
DXM first considers how likely a given methylation pro-
file would contribute to the observed bisulfite sequencing
data. It then extends this logic for how likely a mixture of
these methylation profiles would contribute to the observed
data. The underlying methylation sequence of the CpGs
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Figure 1. DXM scheme and design considerations. (A) DXM takes bisulfite sequencing data from a heterogeneous sample and identifies its underlying
allelic subpopulation methylation profiles and the number of subpopulations. (B) DXM consists of three modules: Module A estimates the prevalence,
Module B solves subpopulation methylation profiles, and Module C calls intrasample DMRs (i-DMRs). (C) Fractional methylation distribution for sorted
cell types. 12.4%, 15.5% and 22.7% of CpGs are partially methylated (i.e. the fraction of CpGs between 20–80% methylation) in CD4+ T-cells (green),
GCB cells (gold), and monocytes (purple), respectively. (D) Bisulfite sequencing reads across part of the imprinting control region for FAM50B in germinal
center B-cells (GCBs) from BEP. Open circles are unmethylated CpGs and closed circles are methylated. (E) The percentage of partially methylated reads
at 19 well-characterized imprinted loci in different sorted cell types from BEP. (F) methylFlow (MF) outputs for LARP4B from analysis of a 22× coverage
HMEC-HCC1954 mixture (35:65). For individual segments, MF outputs between 1 and 52 potential profiles. (G) The most profiles in any individual
segment by MF for all promoters in a 22× coverage HMEC-HCC1954 mixture (35:65). (H) Number of gene promoters with DMRs identified between
or among different sorted cell types from BEP (CD4T, CD8T, erythroblast, eosinophil, hematopoietic multiprogenitor, GCB, megakaryocyte, monocyte,
osteoclast). Promoters were considered to have distinct methylation patterns if there was a DMR identified between each pair of cells considered (e.g. for
cell types A, B and C, there are three distinct patterns if there is a DMR between A–B, B–C and A–C). 17 450 total genes were considered.
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of all profiles represents the state-sequence. The transition
probabilities are the likelihood that a cell type would have
a certain underlying methylation sequence for its CpGs,
given the probability that two nearby CpG sites have the
same methylation state as a function of the distance be-
tween them. The 1 are the likelihood of a CpG’s underly-
ing methylation state across all subpopulations contribut-
ing to the observed bisulfite sequencing data as modeled by
a beta-binomial distribution. This setup allows the HMM
to holistically consider methylation data from all CpGs in
the region and account for data quality of each CpG (cov-
erage). The HMM states, transitions, and emissions are de-
scribed in greater detail below.

HMM states. For our modified HMM, if there are d sub-
populations to consider, a state is a length-d vector of the bi-
nary methylation values of each underlying subpopulation
at a given CpG.

HMM transition probabilities. The transition probability
represents the change in methylation of each underlying
subpopulation from one CpG to an adjacent CpG. To cal-
culate the transition probability, we have defined a set of 2 ×
2 transition matrices that capture transitions of one subpop-
ulation’s methylation state from one CpG to the next. From
this set, the transition matrix is selected based on the dis-
tance between CpGs, which captures correlations in methy-
lation and distance seen in Supplementary Figure S1a–d.
We consider each subpopulation’s transition to be indepen-
dent and identically distributed, so the transition probabil-
ity is ultimately calculated from d identical transition ma-
trices.

To ensure robustness, transition probabilities were
trained on somatic tissue and cell-line datasets available via
REP, and all testing was conducted on datasets of differ-
ent cell types available for BEP (Supplementary File 1.xlsx)
or GSE29069. Briefly, for all CpGs in a dataset, the de-
tected fractional methylation was rounded to the closest bi-
nary methylation state (fully unmethylated or fully methy-
lated). Transitions between binary methylation states of ad-
jacent CpGs were then counted (empirical sampling). We
elected to group all transitions greater than 1000 bp in the
same category when selecting transition probabilities to use.
Notably, this training includes correlations across genomic
elements, including open-sea regions and CpG islands, as
we did not observe a large difference in correlations across
genic or intergenic regions (Supplementary Figure S1b–d).
We do not utilize any cell type-specific transition proba-
bilities for underlying subpopulations. Importantly, we ob-
served similar correlations across multiple datasets, includ-
ing different assays for methylation sequencing (WGBS,
RRBS, Agilent Methyl-Seq), suggesting DXM can be ap-
plied to any genome-wide or reduced representation methy-
lation sequencing dataset.

P (b, n) =
n∑

i=0

min(i,b)∑
j=0
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i

)
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b

) ∗ m(i, j ) ∗ u(n − i, b − j ) (1)

Emission probabilities. The emission probabilities, P(b,n),
at each CpG site were calculated from Equation (1), which
has terms to capture the prevalence of each subpopulation,
the binomial sampling error, and measurement errors. In
this equation, n is the total number of reads (coverage) at
that CpG site, b is the number of methylated reads, i is the
number of reads that came from the underlying methylated
state, m(i, j) is the probability that j of these i reads are cor-
rectly measured as methylated reads, u(n – i, b – j) is the
probability that b – j of the n – i unmethylated reads are
incorrectly measured from the unmethylated state (i.e. mea-
sured as methylated), and p is the prevalence of all subpopu-
lations with an underlying methylated state. Assuming reads
are independently and identically distributed among allelic
subpopulations as a function of prevalence, reads can be
grouped by whether they came from an allelic subpopula-
tion whose underlying state was methylated or not. Thus, if i
reads came from subpopulations with an underlying state of
methylated, n – i come from those with an underlying state
as unmethylated, and this case follows a binomial distribu-
tion, where p is the prevalence of all subpopulations with an
underlying methylated state. Of these i reads, j may be ob-
served as methylated, and assuming all reads are indepen-
dent, the probability of this event follows a hypergeomet-
ric distribution. Lastly, the probability that j of i reads are
observed as methylated, given that the expected underlying
state is fully methylated, is modeled with a beta-binomial
distribution m(i, j). A separate beta-binomial distribution,
u(n – i, b – j), models a similar probability that b – j of n –
i reads are observed as methylated given an expected un-
derlying state of fully unmethylated. Determination of the
beta-priors for these beta-binomial distributions is provided
below (see below in Beta-binomial fit). Summing across all
valid combinations of i, j gives the final emission probabil-
ities. We use log-probabilities in all calculations to ensure
precision.

Termination scheme. DXM determines the minimum
number of subpopulations that explain the data by ter-
minating when adding another allelic subpopulation no
longer improves the fit to the data. Let p(x) represent
the probability that the state-sequence x correctly ex-
plains the data and let xr represent the most likely state-
sequence for r subpopulations. DXM will consider an ad-
ditional subpopulation to be valid if there is an increase
in likelihood, that is if p(x = xr+1) > p(x = xr ). By Bayes’
rule, this can be written as p(x = xr+1 | r + 1) ∗ p(r + 1) >
p(x = xr | r ) ∗ p(r ), where p(r ) is the probability that r sub-
populations best explain the underlying data. In the unin-
formed case, we would have a uniform prior on the num-
ber of subpopulations to expect, e.g. p(r ) = p(r + 1), and
thus, the comparison is p(x = xr+1 | r + 1) > p(x = xr | r ).
The conditional probability of a state-sequence xr ex-
plaining the data given r subpopulations, p(x = xr | r ),
is solved by the Viterbi algorithm, so termination is
achieved when the relative probability of a solution is
worse. Though it is possible that our scheme does not yield
the global solution {e.g. p(x = xr+1 | r + 1) ≤ p(x = xr | r )
but p(x = xr+2 | r + 2) > p(x = xr | r )}, we have not ob-
served this in practice and believe the case to be highly un-
likely for reasonably well-behaved beta-binomial distribu-
tions. Additionally, this scheme is guaranteed to converge.
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Consider the case where an additional subpopulation has
the same methylation profile as an existing one. In this case,
the emission probability would remain unchanged, but the
transition probabilities would be less likely since there is
an additional subpopulation to consider. Since there are a
finite number of possible methylation profiles for g CpGs
(2g), this case is guaranteed, though in practice we need to
consider far fewer than 2g methylation profiles (e.g. four to-
tal profiles).

DXM output. The output of DXM includes an estimate
to the number of underlying subpopulations, their respec-
tive methylation profiles across each user-defined region in
BED-like format, and an estimate of their relative preva-
lence in the sample. Given the utility of identifying dif-
ferentially methylated regions (DMRs), we have also pro-
vided a post-hoc utility to identify intrasample DMRs be-
tween or among identified subpopulation methylation pro-
files (i-DMRs). Throughout this work we require i-DMRs
to be least 50bp in length, contain at least three CpGs,
and have at least 90% of the CpGs are differentially methy-
lated. These are similar to the filtering parameters used by
the DMR-caller DSS (30). DXM i-DMRs can be ranked
based on their improvement in relative probability when
modeled with two subpopulations as compared to 1, given
as p(x = x2 | 2 ) − p(x = x1 | 1), which provides compati-
bility with DXM results for analyses such as gene set en-
richment.

Beta-Binomial fit

An empirical beta-prior for use in DXM was drawn from
training data from REP. This reflects an expectation of how
fractional methylation of a given CpG is detected across
all reads. In a bisulfite sequencing experiment, we consider
that every read represents an independent sampling of the
methylation value of the given CpG. For an expected un-
methylated state, every CpG with percent methylation be-
tween 0% and 40% was considered; similarly, 60–100% were
the cutoffs for an expected methylated state. The methyla-
tion of each CpG was rounded to the nearest 0.5%, and
these discrete empirical distributions were then normalized.
To find a suitable beta prior for this distribution, the proba-
bility density function of a given beta distribution was eval-
uated at each domain value in the empirical distribution
(e.g. every 0.5% methylation). This new distribution was
then normalized, and the L1-difference between it and the
empirical distribution was minimized. All alpha/beta pa-
rameters for underlying beta distributions were fixed as in-
tegers, and a linear combination of beta distributions was
employed to better capture spiking behavior near the edges
of the distribution (e.g. 0% or 100% methylation) and a
small spike around 50% methylation (due to imprinting and
allele-specific methylation).

Region definitions

Gene promoter windows. Genes were defined using Ref-
Seq (31) annotations, where only genes (transcripts) with
‘cmpl’ annotations for both the coding start and end sites
were used. For genes with multiple transcription start sites

(TSS), only the first was considered. Only genes on autoso-
mal chromosomes were considered for analysis. Gene pro-
moter windows were then defined as the region ±5 kb from
the annotated TSS. While there is no agreed upon defini-
tion of a gene promoter, this region was chosen because
it is larger than available definitions and should therefore
include the entire promoter for analysis. Additionally, this
window has previously been shown to be useful for predict-
ing expression changes from DNA methylation (32).

Imprinted regions. Imprinted regions were taken from a
list of known imprinted regions (Table 1 in Court et al. 2014)
(33).

X-inactivated CpG islands. CpG islands on chromosome
X were defined by UCSC annotations. These were then fil-
tered for association with genes as done for gene promoter
windows (refGene.txt file from UCSC with a ‘cmpl’ anno-
tation for coding start and end sites.).

Enhancers. For each cell-type, we obtained H3K27Ac
and H3Kme1 ChIP-Seq data from BEP (GCB,
EGAD00001002442; Monocyte, EGAD00001002523).
Active enhancers were defined as regions with overlapping
H3K27Ac and H3Kme1 peaks (using bedtools intersect).
Enhancers were further annotated as cell-type specific or
common for pairs of cell-types based on whether they
overlapped (bedtools intersect, using an outer join to
consider as wide an overlap as possible). To remove any
regions that overlapped promoters, we used bedtools to
remove any enhancers that overlapped the region ±1 kb
around any TSS (refSeq, genes with a ‘cmpl’ CDS start and
end annotation). Finally, only autosomal enhancers with
methylation data at ≥4 CpGs with ≥20 reads were used for
analysis.

Methylation-level mixture simulations

First, reference cell-type profiles for HMEC (Human mam-
mary epithelial cells), CD4+ T and HCC1954 breast cancer
cells were generated by taking the average methylation level
(mCG/CG) for each CpG from published data (see Supple-
mentary File 1.xlsx for accession numbers) and rounding
to 0 or 1 to binarize the profile for each individual sample.
CpGs were only considered if there were at least 4 reads. For
each simulation at a fixed prevalence and a fixed coverage,
1000 gene promoter regions (±5 kb from the TSS) were ran-
domly selected. The mixed methylation level (mCG/CG) of
each CpG was then computed as the dot product of the
prevalences and methylation values. Binomial sampling was
then used to simulate the measured methylation value of the
mixed sample based on the chosen coverage. DXM was then
used to deconvolve the mixture.

Read-level mixture simulations

For simulated mixture generation, bisulfite sequencing
reads (from BEP or GSE29069 datasets) were mapped with
bsmap2.90 (34) against the hg19 genome using the -R flag.
Mapped bisulfite sequencing reads were coordinate-sorted
with tabix (35), after which all reads overlapping the TSS ±
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10 kb window of genes were taken for input (a larger win-
dow was used to ensure that all promoter overlapping reads
were included). Next, reads were subsampled with two pa-
rameters: the expected average coverage of the total mix-
ture, and the expected prevalence of each underlying cell
type. Given an expected average coverage, the expected total
number of reads was calculated as (coverage * domain size /
read length). Average read length was 100 bp, and domain
size was estimated as the number of genes × 10 kb (the size
of the TSS ± 5kb window). Next, the expected number of
reads from each cell type was calculated as prevalence × to-
tal reads. Given the number of reads from each cell type,
we calculated a sampling rate for each file, assuming single-
end reads are present. This setup allows us to sample dif-
ferences in coverage across each region and does not im-
pose that more reads must come from the more prevalent
cell type, which may not be true upon sequencing. Once
a simulated mixture was generated, its processed methyla-
tion was obtained using the methRatio.py script provided
with bsmap, and methylation data from both strands of
DNA were consolidated for analysis. CpGs with fewer than
4 reads or more than 1000 reads were excluded from analy-
sis. Similarly, read-level mixtures for enhancers were gener-
ated using the coordinates for the enhancer region instead
of the window around the TSS.

DMR calls

We utilized DSS (30) as an independent DMR-caller to help
evaluate DXM results. DSS uses a Bayesian hierarchical
model and was run using the following parameters: equal
dispersion = True (for comparing single samples against
each other), deltaVal = 0.3 (‘30% methylation difference’),
and a pval threshold of 0.05 (a CpG is considered differen-
tially methylated if this threshold is met).

Identifying regions with distinct methylation signatures in
mixtures of more than two cell types

Promoter regions (±5 kb around the TSS) were considered
to have distinct methylation patterns if there was a DMR
identified between each pair of cells considered. For exam-
ple, for cell types A, B and C, a region is considered to have
three distinct patterns if there is a DMR between A–B, B–C
and A–C in the region.

Region signatures for prevalence calling

Region signatures for prevalence calling were defined by
first running DSS to identify DMRs between germinal
center B cells (GCB, Blueprint: T14 11) and monocytes
(Blueprint: S000RD13). Next, this list was further filtered
for genes that showed differential expression (FPKM > 5
per sample, > two log-fold difference) between the two sam-
ples (Blueprint T14 11 and S000RD).

MethylPurify and methylflow

MethylPurify (22) and methylFlow (36) were run with de-
fault settings except as noted below. For methylPurify, the
most informative bins were identified from the ‘*.Informa-
tive bins.bed.OneForCGI’ file, and subpopulation profiles

were found in the MethylProfile.bed file. For the mixture of
HMEC and HCC1954 cells methylPurify was run with de-
fault parameters. For GCB and monocyte mixtures, both
CGI and ±5 kb around the TSS of all RefSeq genes were
used as windows for the analysis, and the methylPurify code
was altered to not filter reads ≥100 bp. For methylFlow, the
methylation profiles of individual segments were obtained
from the ‘patterns.tsv’ file, where pattern id (pid) refers to
the number of profiles solved for a segment.

Partial methylation in imprinted regions

All reads overlapping the region for at least 1bp were found
using tabix (part of samtools). For reads overlapping the
region boundary, only the part of the read that overlapped
with the imprinted region were considered to determine its
partial methylation status. If all CpGs covered by a read
in the imprinted region were fully methylated or fully un-
methylated, the read was considered to be non-partially
methylated; otherwise it was labelled as partially methy-
lated. Reads are equivalent to fragments since data are from
single-end reads.

Evaluation metrics

To evaluate whether DXM-solved methylation profiles re-
sembled those of reference cell-types, we first computed the
‘closest possible’ reference methylation profile by round-
ing all fractional methylation values of the reference cell
types to either 0 (fully unmethylated) or 1 (fully methy-
lated). DXM-solved methylation profiles were then com-
pared against each closest possible reference methylation
profile and assigned to the reference that differed at the
fewest number of CpGs (e.g. L1-norm difference). During
assignment, DXM-solved subpopulations were not forced
to be associated to different reference cell types, and assign-
ment was allowed even in cases where there was significant
discrepancy (e.g. >50% of CpGs).

Accuracy was reported as the percent of CpGs that were
incorrect out of all CpGs for that gene promoter. After each
profile was assigned to a reference cell type, to evaluate how
accurate DXM was in identifying cell types at the correct
relative prevalence, the major allelic subpopulation was de-
fined from the expected prevalence of the underlying sub-
populations in the mixture. The percent of major subpop-
ulation profiles DXM identified that corresponded to the
correct expected major cell type was then computed.

Ontology analysis

Ontology analysis was conducted using the DAVID func-
tional annotation tool with default parameters and back-
ground as H. sapiens.

Primary samples

Primary DLBCL samples from lymph node biopsies were
obtained from the WUSM Lymphoma Banking Program.
Written informed consent was obtained from all patients
as part of the WUSM Lymphoma Banking Program. This
study was approved by the Washington University in St.
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Louis Institutional Review Board (#201710120). A full ta-
ble of sample characteristics is provided in (Supplementary
Table S1). Clinical flow cytometry was performed by the
Barnes-Jewish Hospital clinical laboratory at the time of
biopsy using standard clinical protocols for CD3+ T and
CD19+ B cells. Sections of biopsy for tissue banking were
processed to single cell suspensions and cryopreserved at
>10 million cells/ml by the WUSM Tissue Procurement Fa-
cility. Samples were flash-thawed at 37◦C and pelleted at 200
rpm, 5 min, 4◦C. Samples were then resuspended in wash
buffer (4% Fetal Calf Serum in dPBS). Half of each sample
was isolated for Agilent-Methyl Seq, and the remaining half
of each sample was sent for cell sorting.

Cell sorting (FACS)

Each sample was first blocked with 100ul of 5% Human
TruStain FcX (Biolegend) in wash buffer (4% FCS in dPBS)
for 7min at room temperature. Samples were pelleted (200g,
5 min, 4◦C) and resuspended in 100ul of the following bind-
ing buffer: 20ul (1 test volume) mouse anti-human CD19-
PE (BD Biosciences), 20 ul (1 test volume) mouse anti-
human CD4-FITC (BD Biosciences), 5ul (1 test volume) 7-
AAD (BD Biosciences), and 45ul wash buffer. Samples were
incubated in the dark at 4◦C for 20 min. Following incu-
bation, samples were washed twice with wash buffer before
sorting with BD FACSAriaII at a standard flow rate for PE,
FITC, and PerCP-Cy5.5-A channels. Standard FSC and
SSC gates were used to identify lymphocytes. CD4+/CD19-
/7-AAD- cells and CD19+/CD4-/7-AAD- cells were col-
lected for subsequent analysis.

Agilent methyl-Seq analysis

Genomic DNA was isolated from each sample using
the Zymo Quick-DNA Miniprep kit. Agilent SureSelect
Methyl-Seq was then conducted for each sample following
manufacturer’s recommendations for 1ug of input gDNA.
Briefly, gDNA was sheared using a Covaris instrument at
the recommended settings to an expected fragment size
150–200 bp, as confirmed by 2% agarose gel. Samples un-
derwent end-repair, poly-A tailing, and ligation of methy-
lated adapters to facilitate capture enrichment. DNA was
resuspended in nuclease-free water as recommended and
underwent vacuum-concentration to a volume of <5 ul.
This methylated-adapter ligated DNA was then allowed to
hybridize to the capture regions as per manufacturer rec-
ommendations. Next, bisulfite conversion was conducted
on the input DNA at 64◦C for 2.5 h using the EZ DNA
Methylation-Gold kit (Zymo), After conversion, libraries
were PCR amplified and then indexed using provided in-
dices in the Agilent Methyl-Seq kit. Samples were se-
quenced with an Illumina Hi-Seq3000 (2 × 150 paired-
end reads). Sequencing specifications are found in a table.
On average, we obtained >50× coverage across ∼4.9 mil-
lion CpGs for each patient, and we observed a minimum
bisulfite conversion efficiency of >98.9% for all samples,
as estimated by nonCpG conversion rate. All data were
then aligned with biscuit v0.3.8 (https://huishenlab.github.
io/biscuit/) and processed methylation data were obtained
with the BISCUIT pipeline as recommended in the quick

start page (pileup and vcf2bed commands). Data was col-
lapsed per strand, and only CpG methylation data was con-
sidered.

Targeted bisulfite sequencing

A table of all bisulfite sequencing primers and locations
is provided in Supplementary Table S2. Bisulfite primers
for loci of interest were designed using methPrimer2.0 (37)
with default settings and BiSearch (38), requiring only
one major genomic location for expected amplification.
Primers were temperature-optimized for PCR amplification
(QIAGEN Pyromark PCR kit) using bisulfite converted
gDNA (as above) from GM12878 cells. gDNA was iso-
lated and bisulfite converted for each sample as above. PCR-
amplification was conducted for each region in each sam-
ple using 100pg of bisulfite-converted DNA as input. PCR
products were barcoded and made into Illumina sequenc-
ing libraries as in (39). Libraries were sequenced on an Illu-
mina Hiseq 4000. Sequences were trimmed for adaptors and
poor-quality sequence using TrimGalore (https://github.
com/FelixKrueger/TrimGalore) with default parameters.
Sequences were then mapped to their target regions using
Bismark (40) and default parameters and methylation levels
(mCG/CG) extracted with bismark methylation extractor
using the appropriate flag to collapse methylation across
strands and otherwise default parameters.

Enrichment analysis

To determine the enrichment of CpGs associated with i-
DMRs in genomic elements (CpG island, shore, other el-
ements), the observed distribution of CpGs in i-DMRs for
these elements was compared to the expected distribution
of CpGs in the TSS ±5 kb window that were detected by
Agilent Methyl-Seq for these genomic elements. To deter-
mine the enrichment of iDMRs in the region around the
TSS, we plot the log2-ratio of the observed normalized CpG
counts in i-DMRs to the expected normalized CpG counts
of CpGs for a given position relative to the TSS seen in ei-
ther Agilent Methyl-Seq or WGBS.

Statistics

Distributions were compared using Student’s t-test for two
groups or ANOVA with Tukey’s posthoc t-test for multi-
ple groups. Cohen’s d-test was used to estimate effect size.
Chi-square test for proportions was used to compare distri-
butions of CpGs for enrichment analysis.

RESULTS

Features of methylation distributions in sorted cells

Before developing a deconvolution strategy, we sought
to understand what constitutes distinct DNA methylation
profiles in bisulfite-sequencing data both globally and in
imprinted regions. We first examined the distribution of
methylation levels (mCG/CG) within individual sorted cell
types from the Blueprint Epigenome Project (BEP). One
would expect that within a sorted cell type there would be

https://huishenlab.github.io/biscuit/
https://github.com/FelixKrueger/TrimGalore
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relatively sharp peaks at 0%, 50% and 100% correspond-
ing to unmethylated, imprinted or allele-specifically methy-
lated, and methylated CpGs. However, from inspecting the
distribution of methylation values, there are a variety of
intermediate methylation values (i.e. not fully methylated
or unmethylated) as well as substantial shoulders to the
expected peaks around 0% and 100% methylation (Figure
1C). We next examined methylation in three types of blood
leukocytes at imprinted loci. Imprinted loci are character-
ized by a DMR that is fully methylated in one inherited
allele and fully unmethylated in the other (33,41). Despite
this, we observe a substantial number of partially methy-
lated reads as seen for the DMR near FAM50B in Figure
1D (other examples are in Supplementary Figure S2a). In
fact, we find that on average 26.6% of bisulfite sequencing
reads across DMRs in three hematological cells show par-
tial methylation, or evidence for methylated and unmethy-
lated CpGs on the same allele (Figure 1D, E, Supplemen-
tary Figure S2a). This results in a fractional methylation
distribution at imprinted DMRs that is wider than what
might be expected based on binomial sampling for a profile
with 50% methylation (one methylated and one unmethy-
lated allele, Supplementary Figure S2b).

These deviations from idealized distributions at im-
printed domains, and fully methylated and unmethylated
CpG sites likely do not arise from technical issues since
both sequencing read quality (Supplementary Figure S2c)
and bisulfite conversion efficiency are high (>99.7% over-
all reported for REP, (42), Supplementary Figure S2d).
Moreover, local variation in bisulfite conversion efficiency
in these regions does not drive the observed methylation
variability seen in partially methylated reads (Supplemen-
tary Figure S2d, e). As such, these observations likely repre-
sent noise due to further biological heterogeneity (e.g. more
than two underlying states) or biological noise such as age-
associated drift (43) that is frequently smoothed to facilitate
interpretation. In addition, the fractional methylation of a
CpG across all reads appears to be insufficiently modeled
by a binomial distribution defined by the number of reads
and expected average methylation to model the counting er-
rors due to sampling. Thus, as we developed our deconvo-
lution strategy, we incorporated a beta-binomial distribu-
tion to model additional observed errors in the fractional
methylation of each CpG across reads. The parameters of
the beta-binomial are learned from real-sequencing data.

Smoothing individual methylation profiles leads to a solution
that is easier to interpret

We next applied methylFlow (MF) (36) to a simulated mix-
ture of reads from whole-genome bisulfite sequencing of
HMEC (Human Mammary Epithelial Cells) and HCC1954
(breast tumor) cells to understand whether interpreting ev-
ery methylation change at each CpG as an individual pat-
tern could lead to a useful result. methylFlow uses a net-
work flow analysis to stitch together segments of methy-
lation patterns and then combine these segments to iden-
tify underlying methylation profiles supported by bisulfite
sequencing reads from an experiment. We focused on a
wide window around the gene’s transcription start site (TSS

± 5 kb) that is a conservative estimate for a region that likely
includes the gene promoter and where methylation differ-
ences are most predictive of gene expression (44). From
a 22× coverage simulated mixture of HMEC:HCC1954
(35:65) methylFlow identified 99.5% (17 367 of 17 450 )
gene promoters (TSS ± 5 kb) as having multiple methyla-
tion profiles (Figure 1F). For comparison, we only identi-
fied 6.9% promoters (1203 of 17 450) to have DMRs be-
tween the two cell-types. Within each promoter window,
methylFlow found on average ∼55.7 profiles in the segment
with the most potential profiles (Figure 1G). We also found
that the log of the segment coverage is highly correlated with
the log of the number of profiles in a segment (r = 0.75,
Pearson) and the log of the segment length (r = 0.89, Pear-
son) (Supplementary Figure S3a, b). It is highly likely that
this increase in patterns is driven by noise since the poten-
tial for individual read errors and biological noise increases
with coverage as well.

Given that methylation across these regions is associated
with expression (29) and that the functional significance of a
methylation change at a single CpG site is usually unclear, it
becomes difficult to interpret the number of potential pat-
terns in each segment. Further, since the methylFlow seg-
ments are relatively small with a median length of 200–750
bp (36), enumerating the potential combinations of these
profiles yields many more potential profiles at each pro-
moter. As an example, there are upwards of 1.7 × 109 pos-
sible promoter profiles from combining predicted segments
for LARP4B across the 10 kb region centered at the TSS
(Figure 1F). This corresponds to orders of magnitude more
profiles than the number of cells used for methylation analy-
sis. As such, though consideration of the spectrum of possi-
ble methylation profiles can be of interest, many researchers
may want to interpret their data as an average methylation
profile for a cell-type in a mixture. Based on the analysis
of imprinted regions and this analysis, we thus sought to
balance enumerating individual patterns with substantial
smoothing to facilitate biological interpretation in our de-
convolution strategy.

Number of cell type-specific methylation patterns

An important consideration in any deconvolution strategy
is how many different methylation patterns are expected in a
complex mixture. To understand how many different methy-
lation patterns between cell-types would be expected in mix-
tures of hematologic cell types, we identified all DMRs be-
tween nine different hematological cell types in large pro-
moter windows (TSS ± 5 kb). Next, for a group of cell-types
(e.g. GCB, CD4T, monocyte), we considered if the methy-
lation profiles in a given promoter window could reliably
distinguish among the cell types, defined as if there were at
least one DMR between each pair of cell-types (see exam-
ples in Supplementary Figure S4) in the promoter window.
To be as inclusive as possible, we did not merge any DMRs
that overlapped multiple cell-types. Even using this set of
criteria, which likely overestimates the number of genes with
distinct DMRs between cell types, we found that in a given
promoter window, there are rarely, if ever, four or more dis-
tinct DMRs between these cell types (Figure 1H).
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DXM design criteria

Based on these observations, we developed DXM to deter-
mine subpopulation methylation profiles spanning a user-
defined set of genomic regions (e.g. a ±5 kb promoter win-
dow for expressed genes, CGIs, imprinted DMRs, etc.) and
a list of intrasample differentially methylated regions (i-
DMRs), or regions where allelic subpopulations have dif-
ferential methylation. Each region is solved separately, re-
flecting how the number of distinct allelic subpopulation
methylation profiles will vary across different regions (e.g. in
a mixture of three cell-types, each promoter could have 1–3
different methylation profiles). DXM considers every CpG
in a region for calculation but offers an effective method
of smoothing out smaller individual changes without using
binning. The resulting methylation profiles solved by DXM
are binarized, reflecting how a given allele is either methy-
lated or unmethylated.

DXM performance on simulated idealized mixtures

We first demonstrated DXM performance in simulated
idealized cases of HMEC-CD4+T and HMEC-HCC1954
cell mixtures. To remove potential noise, methylation levels
(mCG/CG) were binarized to 0 and 1 for each cell type. For
a fixed coverage, unmethylated and methylated counts for
each CpG site were modeled using a binomial distribution.
This effectively assumes that errors from inadequate bisul-
fite conversion and sequencing are negligible relative to the
binomial sampling error (see methods for details). As seen
in these simulations, DXM performs very well. The num-
ber of genes detected to have multiple profiles (i.e. sensitiv-
ity) increases with coverage until ∼30–90× depending on
the prevalences of the underlying cell-types (Supplementary
Figures S5a and S6a). The accuracy of each profile is very
high across most coverages (see Evaluation Metrics in meth-
ods for details, Supplementary Figures S5b–c and S6b–c),
and on average 96.2% for HMEC-CD4+T cell mixtures and
95.1% for HMEC-HCC1954 cell mixtures when the cov-
erage is greater than 30×. Together this demonstrates that
DXM is generally optimized to only call profiles when it can
do so accurately, otherwise it refrains.

DXM identifies allele-specific methylation profiles in X-
linked CGIs and imprinted regions

To determine whether DXM could identify allele specific
methylation profiles in somatic cells, we next considered X-
linked CGIs and imprinted regions. We first applied DXM
to deconvolve methylation data from CGIs associated with
X-inactivated genes in 14 cell lines and 21 somatic tissues
(Figure 2A, B, Supplementary Table S3). On average, we
identified differential methylation patterns across ∼92% of
the CGIs in females but only ∼14% of the CGIs in males.
The variance from the hypothetical result of 0 and 100 is
within what is expected due to a normal variation (e.g.
age-associated drift) or sex-specific methylation patterns in
males (45). For imprinted regions, we first analyzed methy-
lation profiles of imprinted regions at various somatic tis-
sues and cell types (available at REP and BEP, Supple-
mentary Table S4). DXM accurately predicts 2 subpopu-
lations in imprinted regions for 99.0% (485 out of 490) of

imprinted DMRs with average coverage ≥10 in primary
cells and at 99.3% (751 out of 756) in primary tissues. We
then used DXM to analyze imprinted regions in the hu-
man embryonic stem (ES) cell line WIBR3 before and af-
ter converting it to a naı̈ve state using 4i/L/A media or
doxycycline (DOX)-inducible KLF2 and NANOG trans-
genes (28). DXM identified multiple methylation patterns
at 59% of imprinted loci for primed WIBR3 cells, and at less
than 10% of imprinted loci for naı̈ve WIBR3 cells (Figure
2C, Supplementary Table 4). This is in concordance with
the expectation that ES cells lose imprints when converted
from primed to naı̈ve states (28). Taken together, these re-
sults demonstrate the utility of DXM analysis to examine
allelic methylation patterns in the context of X-inactivation
and genomic imprinting.

DXM accurately solves subpopulation methylation profiles in
heterogeneous mixtures

To determine the effectiveness of DXM in solving decon-
volved methylation profiles in cellular mixtures, we gener-
ated a series of simulated mixtures by subsampling bisulfite
sequencing reads from sorted germinal center B-cells (GCB,
from tonsil (24)) and monocytes (from cord blood (24)) at a
fixed expected average coverage of 55×. Our simulations in-
cluded cases where there were more GCBs as well as more
monocytes. We initially considered methylation profiles in
a ±5 kb window around the TSS since this includes the
regions where differential methylation most likely impacts
gene expression (44). We then applied DXM to deconvolve
these mixtures (example output in Figure 3A, Supplemen-
tary Figure S7) to assess performance.

We first evaluated the accuracy of DXM-deconvolved
subprofiles. Methylation profiles output by DXM were
highly accurate for both major and minor subpopula-
tions. DXM correctly identified methylation across 98.5%
of CpGs for promoters with one methylation pattern, 96.2%
for major methylation profiles, and 87.1% for minor methy-
lation profiles (average performance across all prevalence
mixtures for GCB-monocytes, Figure 3B). Similar results
were obtained for mixtures generated from sorted CD4+T-
CD8+T cells from BEP (Supplementary Figure S8) as well
as from a mixture of HMEC and HCC1954 cells (Supple-
mentary Figure S9). Increasing sequencing coverage up to
88x did not substantially impact reconstruction accuracy
(Supplementary Figure S10a) or profile assignment (Sup-
plementary Figure S10b), consistent with earlier simula-
tions (Supplementary Figures S5 and S6).

We next examined whether DXM deconvolved profiles
could be assigned to the appropriate cell type at promoter
regions with distinct cell-type specific methylation profiles
(i.e. promoter regions that contain a DMR identified be-
tween the two cell types). For each promoter, DXM-solved
subpopulation methylation profiles were assigned to the
closest reference cell type. As expected, the percent of pro-
files assigned to the GCB cell type in the major subpopu-
lation increases as the ratio of GCB reads increases (Fig-
ure 3C). The inverse relationship can be seen for the mi-
nor subpopulation. DXM performs best when the minor
subpopulation comprises 20% or more of the mixture. This
might be expected for our simulations, since in a 55× cov-
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Figure 2. DXM accurately deconvolves methylation profiles at X-linked CGIs and imprinted regions. (A, B) DXM was used to deconvolve CGIs identified
on the X chromosome in (A) cell lines and (B) primary tissues. DXM finds multiple methylation patterns in a median of 91.4% of female cell lines and
92.6% of female primary tissues but only in 11.2% male cell lines and 9.6% in male primary tissues. (C) DXM accurately deconvolves methylation profiles in
imprinted regions. DXM was used to deconvolve CGIs identified on the X chromosome in cell lines and primary tissues from the Roadmap Epigenomics and
Blueprint projects. ES Cells* include ES cells, ES derived cells, and iPSCs, which are known to lose imprints. DXM accurately predicts two subpopulations
in imprinted regions for 99.0% (485 out of 490) of imprinted DMRs with average coverage ≥10 in primary cells and at 99.3% (751 out of 756) in primary
tissues. DXM finds fewer patterns of imprinting (∼76%) in ES cells as expected. Full lists of the samples used are in Supplementary Tables S3 and S4.
Data from primed WIBR3 ES cells as well as naı̈ve WIBR3 cells converted using 4i/L/A or DOX (doxycycline-inducible KLF2 and NANOG transgenes)
is from (28).

erage mixture, a 10% subpopulation corresponds on aver-
age to only 5.5 reads. For some promoters, especially when
the prevalence of the minor subpopulation is less than 20%,
the minor methylation profiles output by DXM are closer
to the true major subpopulation reference profile, rather
than the minor population reference (Supplementary Fig-
ure S11a, b). This observation likely reflects how intrinsic
variation in typical methylation data from single sorted cell
types at fully methylated and unmethylated CpG sites, the
purity of the sorted cell populations, and the number of
CpGs with differential methylation between cell subpop-
ulations masks the ability of deconvolution approaches to
detect low prevalence subpopulations (Figure 1C-E). Even
with the beta-binomial error models used by DXM, noise
in individual datasets can substantially affect the smallest
allele fraction that can be detected.

DXM predictions for more than two subpopulations

We further sought to evaluate DXM performance for mix-
tures with more than two subpopulations. We applied DXM
to a 55× simulated mixture of CD4+T:GCB:monocytes
(10:25:65). We focused on only 3 subpopulations since we
found very few gene promoters with more than that many

distinct profiles (Figure 1H, Supplementary Figure S12a).
The 496 genes that have a DMR between each pair of cell
types in this mixture showed enrichment in several immune
pathways, which is expected from ontology analysis. DXM
identified multiple methylation profiles at 434 of the 490
(88.5%) promoters expected to have three methylation pro-
files, but 342 (79%) of these promoters were solved with
only two profiles instead of three (Supplementary Figure
S12b). This suggests that in those 342 promoters, DXM
identified subpopulation methylation differences but could
not resolve them into three distinct profiles. For the decon-
volved promoters, DXM had high accuracy for both the
major (95.9%) and minor (87.4%) profiles (Supplementary
Figure S12c). This accuracy resembles what was seen for
k = 2 simulations (Figure 3B). For the 57 promoters solved
with three methylation profiles, DXM had high accuracy
for the first (96.0%), second (87.0%) and third (77.6%) pro-
file (Supplementary Figure S12d). Given that on average
only 5.5 reads are supporting the lowest subpopulation, it
is thus not surprising that DXM frequently does not de-
tect this subpopulation, and when it does it has lower ac-
curacy. Taken together, DXM can accurately deconvolves
subpopulation methylation profiles in mixtures with three
subpopulations.
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Figure 3. DXM accurately solves for subpopulation methylation profiles in heterogeneous mixtures. (A) DXM solution for CD22 for a 55× coverage
simulated mixture of monocytes and GCB (35:65). (B) Accuracy of DXM methylation profiles with respect to reference GCB or monocyte profiles for
promoters where DXM identified the same number of methylation profiles as expected by DSS. (C) Number of gene promoter profiles assigned to GCB cells
(blue) across 55x coverage mixture simulations with different GCB prevalences. The dotted red line indicates the number of CpGs with more subsampled
reads from GCB cells than monocytes.

DXM accurately deconvolves subpopulation methylation pro-
files at enhancers

We applied DXM to a list of enhancer regions defined based
on H3K27Ac and H3K4me1 ChIP-Seq data that are ex-
pected to be active in either GCB cells or monocytes (46,47).
We performed similar read-level simulation mixtures to
those above and found that DXM performed well with
median reconstruction accuracies across all prevalences of
>99% if the same methylation pattern is present, 96.1% for
the major subpopulation, and 80.0% for the minor sub-
population (Supplementary Figure S13). This performance
is maintained across all mixture conditions. This suggests
that the mathematical framework of DXM is sound, and
that it can be applied to other genomic regions such as
enhancers.

DXM outperforms existing bisulfite sequencing deconvolu-
tion algorithms

We compared DXM with methylPurify (22), an expecta-
tion maximization-based approach developed to separate
normal and tumor cell profiles from a heterogenous mix-
ture. MethylPurify first identifies a series of most informa-
tive 300 bp bins that show intermediate methylation. Using
those bins, it then predicts the prevalence of the two un-
derlying cell types and then estimates the average methy-
lation in each cell type across that bin. Data from adja-
cent bins can then be stitched together to make a profile.
MethylPurify has several limitations relative to DXM: it
is only compatible with human genome versions hg18 and
hg19, it appears to have been only benchmarked at CGIs,
it assumes there are only two underlying cell types, and
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does not natively work with reads that are 100 bp or longer.
MethylPurify also cannot distinguish methylation changes
at individual CpG sites since it uses a binning scheme (de-
fault of 300 bp) to average all methylation changes within a
bin (example in Figure 4A). We first generated a 20× cov-
erage simulated mixture of HMEC:HCC1954 cells (35:65)
and applied DXM and methylPurify to deconvolve the
sample. We chose this data since it was used to originally
benchmark methylPurify, and because the GCB:monocyte
mixtures used above had longer read lengths and would
not natively run with methylPurify. For this mixture, both
methylPurify and DXM accurately solved methylation pro-
files of the underlying cell types (methylPurify 98.9%, DXM
97.8%). DXM identified i-DMRs at 58% (15 009/26 078) of
the most informative bins (mib) predicted by methylPurify,
while regions specific to either method tended to cover fewer
CpGs (P < 0.001, Cohen’s d > 0.8, Supplementary Figure
S14a, b).

Next, we edited methylPurify’s code to allow reads longer
than 100 bp and compared DXM with methylPurify across
mixtures of GCBs and monocytes where coverage was
fixed at 40x (Figure 4B, C). While the accuracy of DXM
and methylPurify is similar for the major subpopulation,
DXM’s accuracy for the minor subpopulation is much
higher. We found that DXM performs well across CGI
and promoter windows, with average accuracy of ∼98%
in major subpopulations and ∼84% across minor subpop-
ulations. methylPurify does well with major subpopula-
tions (average of 99% accuracy), but performance across
minor subpopulations falls below 50% in most mixtures.
MethylPurify had very low accuracy in regions identified
by both it and DXM, suggesting the difference is not strictly
due to methylPurify trying to deconvolve a more difficult set
of regions. We suspect methylPurify may underperform be-
cause it misestimates the fractions of the cell populations for
these mixtures; it estimated that the prevalence was 0.055
for the minor cell type for most mixtures (Supplementary
Figure S14c). Taken together, we conclude that while DXM
performs similarly to methylPurify at accurately deconvolv-
ing DNA methylation profiles for major subpopulations,
DXM is more robust at accurately deconvolving the minor
profile across a variety of types of cell mixtures and regions.

Given an appropriate region signature, DXM accurately
solves prevalence of underlying cell-types in heterogeneous
mixtures

While the primary goal of DXM was to deconvolve sub-
population level methylation changes, we next sought to de-
termine whether DXM could also accurately estimate the
prevalence of allelic subpopulations. The analogous prob-
lem for calling genetic subclones is based on the general
assumption that genomic sequencing analysis of a sample
containing a subpopulation with 20% prevalence should
yield a peak in the distribution of variant allele frequen-
cies (VAFs) around 20%, which reflects the mutations asso-
ciated with the subclone. Similarly, if there are CpGs that
only are methylated in a certain subclone that comprises
20% of the sample, the expected fractional methylation of
these CpGs in the sample would be 20%. However, in a
20:80 mixture of GCBs and monocytes, we found that the

methylation distribution of all CpGs does not even have a
minor peak near 20% (Supplementary Figure S15a). Thus
it would be difficult in practice to consider all CpGs to de-
termine absolute prevalence. Instead the better approach is
to select a subset of CpGs that differ between the clones
and choose those. We first considered only CpGs that were
found in i-DMRs (Supplementary Figure S15b), and found
that the distributions still did not show clearly defined peaks
around 20% and 80%, and in practice prevalence estimates
were poor (data not shown). We next defined a signature
based on gene promoters containing DMRs that are differ-
entially expressed between GCB cells and monocytes in a
different set of samples (see methods). Using this region sig-
nature, DXM predictions have very high agreement with ex-
pected prevalence when the expected prevalence of the mi-
nor subpopulation is between 15–40% (Supplementary Fig-
ure S15c, d). This suggests that given an outside signature of
regions that show differential methylation between samples,
DXM can accurately identify subpopulation prevalences.

Comparison of i-DMRs from simulated mixtures and DMRs
between cell types

We next examined the degree of concordance between
DXM i-DMRs predicted from simulated cell mixtures and
DMRs identified from the underlying cell types using the
same GCB-monocyte mixtures as above. Our goal was to
determine if DXM was reasonably calling i-DMRs. DXM
on average found an i-DMR between underlying subpopu-
lations in about 64% of all DMRs (Supplementary Figure
S16). This is consistent with what would be expected given
the wide-variability seen in different DMR callers (48–50).
Across all simulated mixture ratios, we found that DXM
predicted a much larger number of i-DMRs for GCB-
monocyte mixtures relative to the number of DMRs DSS
identified between each underlying cell type (e.g. for a 30:70
mixture, 19 755 i-DMRs and 3012 DMRs, or 5722 versus
2187 gene promoters).

The DMRs that were not identified by DXM tended to
be shorter and have fewer CpGs (Supplementary Figure
S17). Shorter DMRs with fewer CpGs have less empirical
support and whether they are called DMRs tends to be
more variable across DMR callers. Additionally, we found
that increasing sequencing coverage did not improve this
overlap, though it increased the total number of i-DMRs
and DMRs found (Supplementary Figure S18a). However,
given the coordinates of where to expect these DMRs, we
next isolated each ‘missed’ DMR and reran DXM for just
the DMR instead of across the full ±5 kb promoter win-
dow. With this updated region definition, we found that on
average, DXM identified as i-DMRs ∼86% of these previ-
ously ‘missed DMRs’ (Supplementary Figure S18b). Taken
together, this highlights how DXM and DSS use different
approaches to smoothing the data and locating DMRs but
can recapitulate similar results.

DXM identifies substantial subpopulation methylation pro-
files in sorted cell types

We next sought to understand why DXM predicted many
i-DMRs in regions that did not have a DMR between the
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Figure 4. DXM outperforms existing methods. (A) methylPurify (MP) and DXM outputs for SETD1A in a 20× coverage HMEC-HCC1954 mixture
(35:65). Both all (sky blue) and most informative (crimson) bins as determined by MP are depicted. Despite agreement between HMEC and HCC1954
profiles, MP separates this region into two profiles (likely due to the fixed bin size). DXM, however, predicts only one profile. (B, C) Reconstruction
accuracy is plotted for (B) CGIs and (C) promoter windows (TSS ± 5 kb). Regions where both methods identified multiple methylation profiles are labeled
‘both,’ and regions where only one method identified multiple methylation patterns (DXM i-DMR, methylPurify informative bin) are plotted as ‘unique.’
Whether or not a region was identified by ‘both’ methods or by one method alone (‘unique’) did not affect accuracy. While DXM accurately deconvolves
methylation profiles across CGI and promoter windows for both major and minor subpopulations, methylPurify only accurately deconvolves profiles for
the major profile.

cell-types. Plotting the distribution of methylation levels
(mCG/CG) for the reference GCB and monocytes shows
that these levels are often similar between cell-types but
in an intermediate methylation state (e.g. 30% methyla-
tion in GCB and 30% in monocytes) (Figure 5A). One in-
terpretation is that for these loci, there are distinct DNA
methylation patterns in subpopulations, but these subpop-
ulations differ from the expected reference cell types as
might be defined from sorting. Supporting this is the ob-
servation that when we applied DXM to only GCB cells
or only monocytes alone, we found that 70% of the DXM-
specific i-DMRs predicted in the GCB:monocyte mixture
were also detected as i-DMRs within only GCB cells or only
monocytes. However, it is unlikely that the multiple patterns
found within these cell types represent what is tradition-
ally referred to as biological heterogeneity (e.g. multiple cell
subtypes within a sorted cell type such as light and dark
zone GCBs or classical/non-classical monocytes), since the
sub-profiles are mostly shared by two distinct sorted cell
types: GCBs and monocytes. For instance, when we look at
i-DMRs that lie within nine total sorted cell types (CD4+
T, CD8+ T, eosinophil, erythroblast, GCB, hematopoi-
etic multipotent multiprogenitor, megakaryocyte, mono-
cyte, osteoclasts), we detected 840 promoters with an i-
DMR within each of the nine cell-types and ∼500 genes
where five cell-types exhibited the i-DMR (Figure 5B). The
distribution of methylation levels of CpGs in these common

i-DMRs is not centered around 50%, suggesting that they
are likely not due to imprinting or allele specific methylation
(Figure 5C).

We next sought to verify that the extensive heterogene-
ity we observed was likely due to multiple cells in these
sorted populations with distinct biological states. We thus
ran DXM on individual sorted cell types amongst nine
hematologic cell-types (CD4T, CD8T, eosinophil, erythrob-
last, GCB, hematopoietic multiprogenitor cells, megakary-
ocytes, monocytes, osteoclasts). Ontology analysis indicates
that i-DMRs that are shared across all nine cell-types are en-
riched for genes associated with cadherin-domain proteins
(Supplementary Table S5). Cadherins are critical to cell-
adhesion (51), which regulates many aspects of leukocyte
function, including extravasation and vascular permeabil-
ity for circulating leukocytes (52). This suggests there is a
methylation signature across these genes that could be asso-
ciated with reduced cadherin expression, which could reflect
decreased tendency of a particular cell to adhere or a change
in active state for the cell (e.g. circulating vs extravasating).
Further, because cell-adhesion is a pathway common to all
cells, this is consistent with the finding that there are multi-
ple methylation profiles within sorted cell types that may not
correspond to traditional cell subtypes but certainly could
represent distinct biological states. Thus, DXM-specific i-
DMRs likely represent a separate class of relevant subpop-
ulation methylation events.
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Figure 5. DXM identifies many i-DMRs within sorted cell types. (A) i-DMRs and DMRs identified in a 55× mixture of GCB:monocytes (30:70) have
different methylation profiles of the underlying reference GCB cells and monocytes. For instance, many i-DMRs are found with 30–40% methylation in
both GCB and monocytes. (B) The number of gene promoters with i-DMRs that are shared between different numbers of sorted cell types is shown. There
are substantial numbers of i-DMRs that are both unique to individual cell-types, as well as shared across many cell types. The cell types used are listed in
(C). (C) Fractional methylation distribution of CpGs in i-DMRs for sorted cell types.

DXM predicts subpopulation differences in methylation in
primary DLBCL samples

We next experimentally validated DXM predictions from
Agilent Methyl-Seq analysis of lymph node biopsies from
four DLBCL patients (sample characteristics are in Sup-
plementary Table S1). Single cell suspensions from biop-
sies were split in half. Half of the cells were sorted by flu-
orescence activated cell sorting (FACS) into CD4+ T and
CD19+ B cell populations, the expected major cell types
present in DLBCL lymph node biopsies. The other half
was subjected to Agilent Methyl-Seq, which is a bisulfite se-
quencing approach that enriches for gene promoter regions
using capture probes similar to exome capture techniques
(53). We obtained an average of >54x coverage across ∼4.8
million CpGs for all samples, including >58× coverage for
>2 million out of ∼3.5 million CpGs in the 10kb region
around the TSS (Supplementary Table S6). CGIs and the
±5 kb region at the TSS were hypermethylated in DLBCLs
relative to normal cell types, while proximal regions were hy-
pomethylated as has been observed in prior DLBCL studies
(5) and are typical in most cancers (54) (Figure 6A, B).

After running DXM on each DLBCL sample, we first
compared DXM-solved estimates (using a gene signature
from normal CD4+T and GCB cells as above) of the relative
proportion of T and B cells, to T and B cell proportions de-
termined by FACS and to clinical flow cytometry. Of note,
clinical flow cytometry for T and B cells was performed on
an adjacent section of the same lymph node at the time
of biopsy, while FACS was performed from the same sin-
gle cell suspension used for Agilent Methyl-Seq. We found
good agreement between DXM-estimated prevalence and
FACS results (on average, fractional prevalence estimates
were within 0.0875 of each other, B-cells shown in Figure
6C). Clinical flow data was consistent with FACS and DXM
for all but one DLBCL sample (DLBCL 2). DXM results
likely are more consistent with FACS sorting because clini-
cal was obtained from a different section of the biopsy, and
DLBCL lymph nodes are known to be heterogeneous.

Next, we estimated the accuracy of DXM subpopulation
methylation profiles for the gene signature between normal
CD4+ T-cells and normal GCB-cells. For these 2,454 genes,
DXM identified differential methylation in 901–1141 pro-
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Figure 6. Experimental validation of DXM predictions in DLBCLs. (A) Distribution of methylation for CpGs in CGIs, CGI shores or other regions for
four DLBCL lymph node biopsies profiled by Agilent Methyl-Seq. (B) Meta-gene analysis (with respect to the TSS) of the four DLBCL samples and
reference cell types show hypermethylation at and hypomethylation up- and down-stream of the TSS. Dark blue denotes the average sample profile, with
light blue indicating the maximum and minimum range. (C) Percentage of B cells as measured by clinical flow (orange), FACS (light blue), and DXM
(purple). (D) Accuracy of DXM predictions for each sample at 2454 gene promoters with DMRs identified between normal CD4+ T-cells and GCB cells.
(E) i-DMRs are enriched 500 bp–3 kb downstream of the TSS. Shading as in B. (F) Targeted bisulfite sequencing results for NOL9 and SPIB for two
DLBCL samples. Results for additional genes and samples are in Supplementary Figure S19. Methyl-Seq input data (red), DXM predictions (monoclonal
blue, major profile gold, minor profile black dash), sorted CD4+ T-cells (purple), sorted CD19+ B-cells (green). (G) Accuracy of DXM predicted profiles in
a targeted bisulfite sequencing experiment for four DLBCL samples across four loci (NOL9, SPIB, CD22, BCL2L1) for sorted CD19+ B-cells and CD4+
T-cells. Blue = major subpopulation, Red = minor subpopulation, triangle = B-cell, circle = T-cell. (H) Meta-gene analysis (with respect to the TSS) of the
31 DLBCLs from Pan et al. (5) and reference cell types show hypermethylation at and hypomethylation away from the TSS. Shading as in B. (I) i-DMRs
are enriched 500 bp–3 kb downstream of the TSS in 31 samples from Pan et al. Shading as in B. (J) Number of i-DMR detected in the 31 DLBCL samples
with respect to patient age (r2 = 0.19). (K) Fraction of gene promoters with an i-DMR for DLBCL samples at diagnosis (blue-green, n = 11), at diagnosis
that did not have future relapse (pink, n = 7), and at relapse (orange, n = 13).
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moters with an average accuracy of 91% for major sub-
populations and 86% for minor subpopulations, which ap-
proaches the levels observed during benchmarking (Figures
3B and 6D). The clear outlier is DLBCL 4, which has sub-
stantially more B cells than T cells (Figure 6C) and shows
greater CGI hypermethylation. Thus, the major population
of DLBCL 4 is likely comprised of malignant B-cells, whose
methylation profiles differ substantially from the normal
GCBs used as a reference to estimate the accuracy, caus-
ing an artificially low estimated accuracy. For each sample,
DXM found 3785–6790 gene promoters with at least one i-
DMR (Supplementary Table S6). While i-DMRs were not
enriched in CGIs or CGI shores (mean O/E = 1.01 for CGIs
and 0.94 for CGI shores, P = 0.976), we did observe more
i-DMRs in the region located 500–3000 bp downstream of
the TSS (Figure 6E), which has been found to strongly as-
sociate with expression changes (29).

To experimentally validate DXM profile predictions, we
conducted targeted bisulfite sequencing in sorted CD4+ T-
cells and CD19+ B-cells from each sample. We selected four
loci that regulate B-cell specific function (SPIB (55), CD22
(56)) or are commonly mutated in DLBCL (BCL2L1 (57),
NOL9 (58)) and for which DXM predicted an i-DMR in
at least one but not all samples. DXM predicted the cor-
rect number of underlying methylation profiles (one or two)
across each locus and each patient (example in Figure 6F,
data for all 16 cases found in Supplementary Figure S19).
Additionally, DXM predictions for subpopulation methy-
lation profiles are recapitulated in sorted cell types with an
average accuracy of 84.7% (Figure 6G).

As proof-of-concept, we applied DXM to a publicly
available cohort (Cohort 1 in (5)) of 31 DLBCLs (11 paired
diagnosis-relapse, 1 of which had 3 relapses, 7 with no re-
lapse) profiled by enhanced reduced representation bisulfite
sequencing (eRRBS). These samples exhibit a similar gain
of methylation at the TSS and loss of methylation outside
the 2 kb surrounding the TSS (Figure 6H). DXM identified
3708–18 200 i-DMRs (average of 10 826) for these samples
(Supplementary Table S7). i-DMRs were frequently found
500–3000 bp downstream of the TSS (Figure 6I) as seen
with our DLBCLs (Figure 6E). We observed a weak cor-
relation between age and the number of i-DMRs detected
for each sample (Figure 6J, r2 = 0.19). This is suggestive
that some i-DMRs may be caused by age-associated drift
in DNA methylation patterns (43). Additionally, we found
that patients presenting with fewer gene promoters with i-
DMRs at diagnosis had higher rates of relapse (Figure 6K).

DISCUSSION

We present DXM, a computational method to deconvolve
methylation sequencing data from a heterogeneous sample
into its major allelic subpopulations and their associated
methylation profiles. Importantly, DXM does not require
explicit prior knowledge of the expected cell types or num-
ber of subpopulations to consider. When using DXM, one
consideration is that DXM solves for allelic profiles, which
we then interpret as corresponding to unique subpopula-
tions. As such, care must be taken in interpreting DXM
results in regions with allele-specific methylation or copy
number variants. The same is true for any deconvolution

strategy. An additional consideration is that DXM does not
consider 5-hydroxymethylation (5hmC), which may impact
interpreting results in samples with high levels of 5hmC,
such as neuronal cell types (59).

If given an appropriate set of regions that are known
to show variation in the cell types, DXM can accurately
measure the allelic fraction of each cell-type. One poten-
tial advantage of using DXM to detect cell prevalences
is that DNA methylation is highly stable even in cryopre-
served samples, especially relative to RNA and protein. Fur-
ther, malignant cells are often more susceptible to cell death
caused by delays related to specimen transport and cry-
opreservation (Payton, unpublished observations), which
could potentially affect clinical flow and FACS. However,
additional future testing is required to determine whether a
methylation-based strategy using DXM detects cell preva-
lences more accurately than these standard approaches. As
a pseudo-reference-free method, DXM does not require ref-
erence profiles for each cell-type. Instead, DXM uses gen-
eralized model parameters to identify subpopulation level
methylation profiles. However, if reference profiles are avail-
able, they can still be useful to interpret DXM results.

To ensure we did not overfit DXM model parameters, we
used independent datasets for all training and evaluation
steps. While we have demonstrated that DXM can accu-
rately deconvolve DNA methylation profiles for a variety of
genomic features in the case studies above, it is possible that
retuning DXM parameters (e.g. transition probabilities) for
genomic compartments or for individual datasets could im-
prove accuracy. This is likely true for samples with extreme
methylation changes such as caused by mutation in a DNA
methyltransferase (e.g. DNMT3A in an AML patient (60)
or treatment with demethylating agents (61)).

A major challenge of genomic methylation data analy-
sis is determining what constitutes a biologically meaning-
ful methylation change, or a distinct methylation profile.
DXM takes an approach to regularize small differences in
methylation between two profiles to report a small number
of smoothed profiles. This interpretation is used frequently
for imprinting control regions, where partially methylated
alleles are considered as biological noise, or drift from a
true pattern rather than a functionally different state. A
similar assumption underlies DMR-callers. The differences
between DSS-called DMRs and i-DMRs in artificial mix-
tures are similar to those observed between different DMR-
callers (62). DMR-callers rely on several important user-
defined parameters such as the minimum length, minimum
number of CpGs, or minimum difference in methylation be-
tween samples, that can severely affect the number and type
of DMRs in an analysis (30). Despite this, DMR callers are
incredibly useful and are part of every common workflow
for DNA methylation analysis. The same should be true for
DXM i-DMRs.

DXM deconvolves methylation profiles over user-defined
regions. Here we have demonstrated how these regions
could be CGIs, promoters, enhancers, or imprinted DMRs,
but in theory DXM could be applied to any set of genomic
regions. When defining regions however it is important to
consider how region size will affect the results. As regions
get larger and include more CpGs, the number of CpGs that
must have a change in methylation in order to be solved as
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a distinct methylation profile by DXM will also increase.
This can be seen by comparisons between DXM and DSS,
where many of the DMRs identified by DSS were reca-
pitulated by DXM when given a more specific domain to
consider. This can be offset by increased sequencing depth,
as the ‘resolution’ (number of methylation profiles solvable
by DXM) of that region increases with increased coverage.
While it is possible that with sufficient depth one could try
to solve a global methylation profile across an entire chro-
mosome, this would be difficult in practice given gaps in
most genome assemblies and frequent large repetitive DNA
sequences (e.g. simple repeats or transposons) that compli-
cate obtaining high quality methylation data.

One surprising result from this analysis is that even sorted
cell types have a substantial number of intrinsically interme-
diate methylated regions, or genomic intervals that are not
fully methylated, unmethylated or imprinted. Intermediate
methylation states can be both cell-type specific and con-
served (63). Our results show that even in sorted cell types
there is extensive intermediate methylation. One contribut-
ing factor is that cells are sorted on a small number of mark-
ers and likely contain multiple subsets within them. How-
ever, the substantial number of partially methylated reads in
imprinted DMRs suggest that this is not the only contribut-
ing factor. This extensive intermediate methylation compli-
cates deconvolution efforts, particularly reference-free cell
prevalence determination. This suggests that there are fewer
CpGs whose methylation is ‘cell-type specific’ as compared
to CpGs with intermediate methylation levels in an individ-
ual cell type.

The origin of this intermediate methylation is not com-
pletely understood but likely includes several previously
described phenomena including lowly methylated regions
(LMRs) and partially methylated domains (PMDs). Ini-
tial reports have demonstrated that LMRs, relatively short
non-CpG island DNA segments with low levels of methyla-
tion, frequently arise from the binding of transcription fac-
tors (64,65). However, we find near equal levels of highly
and lowly methylated DNA methylation in i-DMRs indi-
cating that while LMRs could contribute to the i-DMRS
we observe in individual cell types, they cannot fully ex-
plain them. PMDs are broad regions of lower methylation,
are commonly found in cancers and to a limited degree in
somatic cell types, and are associated with hypervariability
(66). Cell-type specific PMDs are predicted by CpG density
in addition to late replicating/lamina associated domains
(67). Given the lack of association of i-DMRs with CpG-
density, PMDs could contribute to the i-DMRs but are also
unlikely to explain them all.

Lastly, we have validated that subpopulation methyla-
tion profiles predicted by DXM are recapitulated in relevant
sorted cell subpopulations in DLBCL samples. As proof-
of-concept, we have used DXM to identify subpopulation
methylation profiles in DLBCL that may correlate with pa-
tient prognosis. Since gene promoters with i-DMRs rep-
resent multiple methylation profiles in a sample, it is pos-
sible that the number of gene promoters with i-DMRs in
a sample serves as a proxy of the subclonal heterogeneity.
Based on our reasoning, samples at diagnosis with fewer i-
DMRs might represent a more clonal disease, which could
be more aggressive and more likely to relapse. Since relapse

samples go through many changes, including a bottleneck
where many of the subclones in the diagnosis sample are
lost due to treatment and subsequent expansion of new sub-
clones, as expected there was no clear relationship between
the number of i-DMRs at diagnosis and at relapse. Inter-
estingly, a previous analysis of methylation heterogeneity
in this cohort found that samples at diagnosis with more
epipolymorphisms, regions where epialleles of four or more
adjacent CpG sites exhibit high entropy, are more likely to
relapse (5). However, since epialleles describe a different in-
trasample methylation phenomenon than i-DMRs, it is not
surprising that samples at diagnosis with fewer i-DMRs are
more likely to relapse. While our initial findings based on 18
patients need to be validated in a larger cohort, they illus-
trate how DXM could be applied to analyze subpopulation
methylation profiles in cancer samples.

In summary, here we have developed a new method
DXM to accurately deconvolve methylation profiles of al-
lelic subpopulations in genomic-bisulfite sequencing data.
We demonstrated its superior performance relative to simi-
lar methods, and through several case studies showed how
it can be used to study loss of imprinting, X-inactivation
and methylation heterogeneity in cancer. We expect that
DXM will have high applicability and utility for the analysis
of subpopulation methylation in any heterogeneous sample
and in the future a similar approach could be adapted to the
analysis of cell-free DNA.

DATA AVAILABILITY

DXM is available under the GNU GPL License on
GitHub at https://github.com/edwardslab-wustl/dxm or
as a Docker image at https://hub.docker.com/repository/
docker/edwardslab/dxm. DXM was written in Python3 and
was tested on CentOS7, though it should work on any
*nix system. For DLBCL samples, DXM on average used
300Mb memory and processed a sample in less than two
hours, using one CPU.

All bisulfite sequencing data has been made available as
a GEO accession GSE130556.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Nimwegen,E., Wirbelauer,C., Oakeley,E.J., Gaidatzis,D. et al. (2011)
DNA-binding factors shape the mouse methylome at distal
regulatory regions. Nature, 480, 490–495.

66. Brinkman,A.B., Nik-Zainal,S., Simmer,F., Rodrı́guez-González,F.G.,
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