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Abstract: Gut Microbiota (GM) dysbiosis associates with Atherosclerotic Cardiovascular Diseases
(ACVD), but whether this also holds true in subjects without clinically manifest ACVD represents
a challenge of personalized prevention. We connected exposure to diet (self-reported by food
diaries) and markers of Subclinical Carotid Atherosclerosis (SCA) with individual taxonomic and
functional GM profiles (from fecal metagenomic DNA) of 345 subjects without previous clinically
manifest ACVD. Subjects without SCA reported consuming higher amounts of cereals, starchy
vegetables, milky products, yoghurts and bakery products versus those with SCA (who reported to
consume more mechanically separated meats). The variety of dietary sources significantly overlapped
with the separations in GM composition between subjects without SCA and those with SCA (RV
coefficient between nutrients quantities and microbial relative abundances at genus level = 0.65,
p-value = 0.047). Additionally, specific bacterial species (Faecalibacterium prausnitzii in the absence
of SCA and Escherichia coli in the presence of SCA) are directly related to over-representation of
metagenomic pathways linked to different dietary sources (sulfur oxidation and starch degradation
in absence of SCA, and metabolism of amino acids, syntheses of palmitate, choline, carnitines and
Trimethylamine n-oxide in presence of SCA). These findings might contribute to hypothesize future
strategies of personalized dietary intervention for primary CVD prevention setting.

Keywords: Atherosclerotic Cardiovascular Diseases; Gut Microbiota; next generation sequencing

1. Introduction

Atherosclerotic Cardiovascular Diseases (ACVD) still contribute significantly to ex-
cessive mortality, despite pharmacological weapons substantially improving their treat-
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ment [1]. Moreover, the preventive perspectives are complicated yet at early stages because
the approaches to identify high risk subjects are complex. First, the presence of focal
atherosclerotic lesions, detected by currently used techniques (such as ultrasound) identify
subjects at increased risk of ACVD [1], although tracking Subclinical Carotid Atherosclero-
sis (SCA) progression by preclinical markers (including carotid Intima-Media Thickness—
IMT) remains an important step to further identify subjects in primary prevention [2].
Second, IMT and the presence of focal carotid vascular lesions (a more robust indicator of
ACVD risk [1]) are both predicted by classical cardiovascular risk factors (CVRFs) (e.g.,
Type 2 Diabetes (T2D), Metabolic Syndrome (MetS), dyslipidemia), and patterns of individ-
ual predisposition to other emerging factors such as low-grade inflammation [3,4]. Thereby,
early approaches to reduce the onset and burden of these factors in a personalized fashion
are surmised [5] and become feasible with the understanding of modifiable factors, like
changes in lifestyle and exposure to environmental factors that differently affect risk of
ACVD [6]. Under this vision, diet represents the first target for personalized approaches
since digestion, the metabolism of nutrients and the absorption of potentially bioactive
compounds shaping immune-metabolic functions of the host are demanded to Gut Micro-
biota (GM), which reflects the individual interaction with the environment [7]. Actually,
the physiological cross-talk between diet with GM richness and variety (namely “eubiosis”)
is well proven. On one hand, acute changes in dietary habits rapidly re-shape GM composi-
tion [8] while, on the other, GM compositions appears to be a superior factor (even beyond
the genetic and clinical background of the host) in determining individual metabolic and
inflammatory postprandial response to different foods [9]. This cross-talk is supported by
the exposure to different dietary patterns, contributing to the absorption of a multitude of
dietary metabolites that, in turn, critically foster well-described anti- or pro-inflammatory
metagenomic molecular pathways. For example, some short-chain fatty acids are beneficial
(e.g., butyrate and propionate activate intestinal gluconeogenesis), whereas others promote
pathogenic mechanisms leading metabolic impairments (e.g., acetate promotes hepatic
gluconeogenesis predisposing to glucose intolerance [10]). Bile salts contribute to preserv-
ing the intestinal barrier while favoring the proliferation of inflammatory bacteria like
Clostridia by the Aryl hydrocarbon-receptor system [11,12]. Additionally, branched-chain
amino acids [13] in protein-based foods and products of tyrosine/tryptophan metabolism
(p-Cresol and indoles) exert inflammatory potential and promote insulin resistance [14].
Finally, the atherogenic properties of Trimethylamine n-oxide (TMAO), metabolized in
the liver starting from dietary choline, have been deeply described [15–20]. Despite these
robust data, whether the individual exposure to different dietary sources relates with GM
taxonomic alterations (namely, “dysbiosis”) even during initial stages of atherosclerosis
and before clinical establishment of ACVD is still to be understood. Whether this relation
is explained by the activation of bacterial cellular pathways involved in the metabolism
of dietary sources towards potentially active metagenomic compounds represents a sig-
nificant add-on the potential causal effect of GM in atherosclerosis [21–23]. This scientific
question is of current clinical concern given the continuous changes in dietary sources
nowadays among societies [6]. However, methodological criticisms affect GM composition
analysis [24], the design of interventional dietary trials is scarce up to now, small-sized
trials gave contrasting data about the effect of dietary intervention on changes of GM
composition and subsequent effect on markers of ACVD risk [25]. This sets the stage for an
immediate clinical value, since the clustering of taxonomic and metagenomic signatures
with individual dietary lifestyle might represent a pioneering approach of primary pre-
vention, identifying patients among the population at increased risk of future occurrence
of CVD. We here address the relation between functional metagenomic signatures and
individual exposure to diet during subclinical manifestation of CVD, studying people from
a general population-based study, in primary prevention, with low prevalence of CVRFs
and characterized by different stages of SCA.
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2. Materials and Methods
2.1. Study Population

For the purposes of this study, we collected fecal samples from 345 subjects in pri-
mary prevention for CVD from the population-based study representative of the general
population of the northern area of Milan (Progressione delle Lesioni Intimali Carotidee—
PLIC), which has been extensively described elsewhere [26,27]. Subjects of this study were
screened at the Center for the Study of Atherosclerosis at E. Bassini Hospital (Cinisello
Balsamo, Milan, Italy) for personal and familial clinical history and for absence of previ-
ous CVDs and personal history of T2D or MetS (defined according to validated criteria).
Additionally, we excluded: (i) subjects reporting use of glucose-lowering drugs, (ii) with
positive personal history of CVD (either ischemic heart disease, ST segment elevation
or non-ST elevation myocardial infarction, aortic-coronary by-pass grafting, angioplasty,
transient ischemic attack, stroke, heart failure from Class II to IV (according to New York
Heart Association (NYHA) definition or documented peripheral arteriopathy), (iii) with
MetS (defined according to harmonized criteria of the American Heart Association [28]),
(iv) chronic kidney disease (Glomerular Filtration Rate, GFR, <60 mL/min or documented
albuminuria > 30 mg/g), (iv) pregnancy and (v) reported malignancies. Data management
and statistical analyses were performed with the coordination of the Epidemiology and Pre-
ventive Pharmacology Centre (SEFAP) of the University of Milan. The study was approved
by the Scientific Committee of the University of Milan (SEFAP/Pr.0003). Informed consent
was obtained from subjects (all over 18 years-old), in accordance with the Declaration of
Helsinki. Systolic and diastolic blood pressure and Body Mass Index (BMI), waist and
waist/hip ratio were measured. Information on the presence of hepatic steatosis, available
on a subgroup of 133 subjects, was defined via ultrasound, as per already published pro-
tocols [26]. Blood samples were collected from the antecubital vein after 12 h fasting on
NaEDTA tubes (BD Vacuette®, Franklin Lakes, NJ, USA) and then centrifuged at 3000 rpm
for 12 min (Eppendorf 580r, Eppendorf, Hamburg, Germany) for biochemical parameters
profiling including: total cholesterol, HDL-C, triglycerides, ApoB, ApoA-I, glucose, liver
enzymes, creatinine and creatinine-phospho kinase (CPK). Measurements were performed
using immuno-turbidimetric and enzymatic methods thorough automatic analyzers (Ran-
dox, Crumlin, UK). LDL-C was derived from Friedewald formula. Separately, whole blood
in NaEDTA tubes was used for hematocrit analysis to derive a total count of leukocytes and
their fractions (neutrophils, lymphocytes, monocytes, eosinophils and basophils, indicated
as cells*1000/microliter).

Fecal samples of 345 subjects were collected and used for the analysis of GM taxonomic
composition. SCA was defined by ultrasound-based analysis of bilateral carotid arteries as
previously described [27]. In detail, common carotid IMT (one centimeter from the bulb)
was measured in longitudinal view, far wall, by a high resolution B-mode ultrasound-
based system (Vivid S5—GE Healthcare, Wauwatosa, WI, USA) connected to linear probe—
4.0 × 13.0 MHz frequency; 14 × 48 mm footprint, 38 mm field of view). A mean value for
both sides was averaged. “+ IMT” was determined as the presence of IMT above the 75th
percentile of the median IMT for a Caucasian population according to ASE guidelines [29].

SCA was defined when mean IMT was ≥1.3 mm or in presence of focal atheroscle-
rotic lesions larger than 1.3 mm using a manual caliper in longitudinal view either in
far or near wall and over every carotid tract (common, bulb section, bifurcation, inter-
nal or external branches). In two scans performed by the same operator in 75 subjects,
the mean difference in IMT was 0.005 ± 0.002 mm and the coefficient of variation (CV)
was 1.93%. The correlation between two scans was significant (r = 0.96; p < 0.0001).
The combination of information from IMT measurement and from presence/absence
of SCA allowed four different SCA stages to be identified: subjects without intimal
thickening and without SCA (“−IMT/−SCA”, n = 23); subjects with intimal thicken-
ing but without SCA (“+IMT/−SCA”, n = 173); subjects without intimal thickening but
with SCA (“−IMT/+SCA”, n = 121); subjects with both intimal thickening and SCA
(“+IMT/+SCA”, n = 23).
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Whole shotgun metagenomic sequencing analyses were performed on the same fecal
samples of 23 “−IMT/−SCA” and 23 “+IMT/+SCA”, whose clinical characteristics are
reported in (Supplementary Table S1). Further vascular characterization according to
validated criteria [30] allowed, among the +IMT/+SCA group, subjects with “no advanced
SCA” (stenosis < 30% and p/S < 125 cm/s) vs. the “advanced SCA” (stenosis 30% and
elevation of the p/S wave in the bilateral internal carotid branches) to be distinguished.
The advanced SCA was then divided by further characterization identifying: (a) SCA
causing stenosis between 30 and 50% with p/S < 125 cm/s; (b) SCA causing stenosis
between 50 and 70% and p/S between 125 and 250 cm/s; (c) SCA causing stenosis over
70% and p/S over 250 cm/s. We evaluated echolucencies of the atherosclerotic lesions
among all subjects from the −IMT/+SCA and from the +IMT/+SCA group, using grey-
scale definition and parameters of the QuickScan® and autoIMT® software included in the
ultrasound machinery (Samsung HM70a®, Samsung®, Seoul, South Korea).

Additional information, clinical criteria, and determination of biochemical parameters
are reported in Supplementary Materials.

2.2. Lifestyle Data, Collection and Analysis of Dietary Habits

Subjects self-reported their level and type of physical activity and smoking habit
and information about individual diet were collected in the PLIC study as previously
reported [31]. In detail, all subjects were requested to complete a semi-quantitative daily
food diary representative of seven days before the clinical evaluation and collection of the
fecal sample. The food diary was administered to subjects following instructions about the
reporting of quali/quantitative dietary information by two dieticians (blinded on subject’s
clinical history). In the food diary, subjects reported for each meal (breakfast, lunch, dinner
and snacks) the foods, the brand names of foods (where applicable), the methods of
preparation and dressings. During the seven days, dieticians were available for help and
to provide more instructions to subjects by phone or by email. A portion reference from
validated color photographs (the “Atlante Fotografico delle Porzioni degli Alimenti”; [32])
was also given to subjects, for further help in the interpretation of food quantities. Then,
after seven days, the filled-out food diary was analyzed by dieticians during the outpatient
evaluation in front of the subject: (i) to clarify details and improper indications and (ii) to
derive individual daily energy and the seven-day dietary averaged nutrient intakes (as
g/week), referring to the Italian BDA database [33]. BDA- Food Composition Database for
Epidemiological Studies in Italy—2015). Additionally, BDA and the reference values of the
Italian Society of Nutrition (“LARN”, Livelli di Assunzione di Riferimento di Nutrienti ed
Energia) were used to exclude outlier data about energy intake, deriving from the improper
self-reporting of the subject.

2.3. DNA Extraction from Fecal Samples

Total microbial DNA from all the fecal samples collected has been extracted as pre-
viously described [34], since the protocol herein described was specifically modified to
allow an efficient and unbiased bacterial DNA extraction from human fecal samples. Ge-
nomic DNA quality was assessed by using the TapeStation 2200 system (Agilent, Santa
Clara, CA, USA); only samples having a DNA Integrity Number (DIN) > 4 were used for
successive analyses.

2.4. Libraries Construction and Sequencing
Microbiome 16S Analysis

For each sample, the V3–V4 region of the 16S rRNA gene was PCR-amplified by using
primers carrying overhanging adapter sequences (primer selection originally described
in [35]), following the Illumina 16S Metagenomic Sequencing Library Preparation proto-
col [36] (Illumina, San Diego, CA, USA), and libraries were barcoded using dual Nextera®

XT indexes (Illumina). Indexed libraries were pooled at equimolar concentrations and
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sequenced on a HiSeq 2500 Illumina sequencing platform generating 2 × 250 bp paired-end
reads, according to manufacturer’s instructions (Illumina).

2.5. Metagenome Analysis

A total of 46 Metagenomic shotgun libraries were prepared from the DNA extracted
from fecal samples from 23 “−IMT/−SCA” and 23 “+IMT/+SCA; dual indexed libraries
were prepared following the Nextera® DNA Flex Library Prep Kit (Illumina); then, they
were pooled at equimolar concentrations and sequenced on a Novaseq 6000 Illumina
sequencing platform, generating 2 × 100 bp paired-end reads.

2.6. Statistical and Bioinformatic Data Analysis
Microbiome 16S Data Analysis

The 16S rRNA raw sequences were processed through a bioinformatic pipeline com-
posed of PANDAseq [37] and QIIME (release 1.8.0 [38]); Operational Taxonomic Units
(OTUs) were assigned at 97% similarity level and classified against the Greengenes database
(release 13.8; [39]). Biodiversity and distribution of the microorganisms were characterized
via alpha- and beta-diversity analysis evaluating specific metrics and distances. Statistical
evaluation was performed by non-parametric Monte Carlo-based tests and by analysis
of variance with partitioning among sources of variation (“adonis” function) in the R
package “vegan” (version 2.0–10; [40]) for alpha- and beta-diversity, respectively. Differ-
ences in abundances of bacterial taxa were analyzed by non-parametric Mann-Whitney
U-test using MATLAB software (Natick, MA, USA). Unless otherwise stated, p < 0.05 were
considered as significant for each statistical analysis. Detailed procedures are available as
Supplementary Materials.

2.7. Metagenome Data Analysis

Metagenomic reads were quality filtered using the recommended pipelines from the
Human Microbiome Project [41,42]. Resulting reads were then processed by HUMAnN2
pipeline (v. 0.11.2 [43]). In order to compensate for different sequencing depths, all
measures were expressed as copies-per-million (CPM).

Alpha- and beta-diversity analyses were performed on species-level taxonomic classi-
fication and MetaCyc reaction-level functional classification [44], using non-phylogenetic
indexes and distances in QIIME. Statistical evaluation was performed as described above.
Pathways were grouped to upper levels thanks to their lineage association in MetaCyc.
Detailed procedures are available as Supplementary Materials.

2.8. Dietary Data Analysis

Statistical data of nutrients composition for individuals with and without SCA was
performed by employing the non-parametric Mann-Whitney U-test. Overall separation
between patients was assessed calculating Bray-Curtis distances among patients on the
basis of the nutrients table and “adonis” function in the R package “vegan” was used.
In order to assess the correlation between dietary and microbial composition data, the
RV coefficient [45] was calculated; coefficient statistical significance of the coefficient was
calculated by 99,999 random permutations [46].

2.9. Data Availability

Sequencing data of 16S rRNA amplicons (raw reads, n = 345) and metagenomes
(after removal of human sequences and duplicates, n = 46) have been deposited in NCBI
Short-Read Archive (SRA) under accession number PRJNA615842 [47].

3. Results
3.1. Gut Microbiota Dysbiosis Associates with Cubclinical Carotid Atherosclerosis

We identified 144 subjects with SCA by carotid ultrasound examination and 201 gender-
matched subjects without SCA (clinical characteristics of both groups reported in Table 1).
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Table 1. Descriptives of the population according to SCA.

Total SCA

Variable n = 345 No (n = 201) Yes (n = 144) p-Value

Men gender, n (%) 158 (45.80) 93 (46.50) 65 (44.83) 0.760
Age (years) 67.32 (11.0) 63.83 (11.52) 72.04 (8.18) <0.001 ***

<= 60 years-old 86 73 13
60–70 years-old 105 64 41
70–80 years-old 130 57 73
>80 years-old 24 6 18

Alcohol consumption, n (%) 231 (67.74) 129 (65.82) 102 (70.34) 0.380
Smoking, n (%) 37 (10.85) 22 (11.22) 15 (10.34) 0.800

Physical Activity, n (%) 175 (51.47) 115 (58.97) 60 (41.38) 0.001 ***
BMI (Kg/m2) 26.44 (3.90) 26.22 (3.85) 26.75 (4.00) 0.230

Lean, n (%) 114 76 38
Overweight, n (%) 165 86 79

Obese, n (%) 53 30 23
Waist-hip Ratio 0.89 (0.08) 0.87 (0.08) 0.91 (0.08) <0.001 ***

Systolic pressure (mmHg) 126.91 (14.41) 125.20 (13.74) 129.30 (15.01) 0.008 **
Diastolic pressure (mmHg) 75.75 (9.06) 75.06 (8.74) 76.71 (9.44) 0.100

Antihypertensive drugs, n (%) 155 (45.45) 73 (37.24) 82 (56.55) 0.004 ***
Total Cholesterol (mg/dL) 199.0 (32.71) 202.90 (32.13) 193.60 (32.86) 0.009 **

HDL-C (mg/dL) 60.57 (13.60) 62.23 (13.59) 58.29 (13.32) 0.008 **
LDL-C (mg/dL) 118.53 (27.62) 121.20 (27.23) 114.90 (27.83) 0.037 *

Triglycerides (mg/dL) 99.46 (37.75) 97.42 (36.76) 102.30 (39.03) 0.240
Apolipoprotein A1 (mg/dL) 157.91 (19.87) 160.30 (20.24) 154.60 (18.92) 0.008 **
Apolipoprotein B (mg/dL) 101.55 (24.70) 103.60 (25.35) 98.65 (23.57) 0.060
Lipid lowering drugs, n (%) 164 (48.09) 79 (40.31) 85 (58.62) 0.008 **

Fasting glucose (mg/dL) 100.36 (10.49) 100.30 (9.68) 100.40 (11.56) 0.910
Uric acid (mg/dL) 5.17 (1.44) 4.96 (1.35) 5.45 (1.52) 0.002 **

Creatinine (mg/dL) 0.84 (0.19) 0.82 (0.18) 0.86 (0.20) 0.030 *
ALT (UI/L) 21.13 (14.59) 21.63 (16.68) 20.43 (11.10) 0.420
AST (UI/L) 23.64 (6.03) 23.68 (6.39) 23.57 (5.52) 0.870
GGT (UI/L) 27.73 (36.43) 27.62 (37.85) 27.87 (34.50) 0.950

Liver steatosis, n (%) 33 (24.80) 11 (5.50) 20 (13.80) 0.061
CPK (mg/dL) 120.79 (62.65) 121.00 (66.09) 120.50 (57.78) 0.940

Hs-CRP (mg/dL) 0.11 (0.06–0.21) 0.10 (0.05–0.19) 0.11 (0.06–0.21) 0.176
Neutrophils (cells*103/µL) 3.50 (1.25) 3.42 (1.22) 3.61 (1.28) 0.180
Leucocytes (cells*103/µL) 6.26 (1.68) 6.12 (1.49) 6.46 (1.89) 0.080

Lymphocytes (cells*103/µL) 2.05 (0.92) 2.00 (0.52) 2.11 (1.28) 0.370
Monocytes (cells*103/µL) 0.51 (0.14) 0.49 (0.14) 0.53 (0.15) 0.019 *
Eosinophils (cells*103/µL) 0.16 (0.11) 0.16 (0.10) 0.17 (0.11) 0.460
Basophils (cells*103/µL) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.170

C-IMT (mm) 0.77 (0.18) 0.71 (0.13) 0.85 (0.19) <0.001 ***

Clinical parameters for the 345 selected subjects from the entire PLIC cohort (second column from left) and when divided for subjects
without Subclinical Carotid Atherosclerosis (SCA) (third column from left) vs. those with SCA (fourth column from left). “***” indicates
p < 0.005; “**” indicates p < 0.01; “*” indicates p <0.05. p refers to that of the two-sided Mann-Whitney U-test between subjects with
and without SCA. Data are presented as mean (standard deviation) if normally distributed or as median (Inter-Quartile Range) if not
normally distributed (Shapiro-Wilk test). BMI: “Body Mass Index”; HDL-C: “High Density Lipoprotein cholesterol”; LDL-C “Low Density
Lipoprotein cholesterol”; ALT: “Alanine aminotransferase”; AST: “Aspartate aminotransferase”; GGT: “Gamma-glutamyl transpeptidase”;
CPK: “Creatine phosphokinase”; c-IMT: “carotid Intima Media Thickness” (as averaged value of IMT values of right and left carotid arteries
at the common tract). Information on ultrasound hepatic steatosis was available on 133 subjects out of total studied cohort.

Subjects with SCA were older than those without SCA, showed higher waist/hip
ratio (0.91 ± 0.08 vs. 0.87 ± 0.08, p < 0.001) and they were more hypertensive (on anti-
hypertensive 56.55% vs. 37.24% respectively, p = 0.004). LDL-C was 7 mg/dL lower in
subjects with SCA vs. those without (114.90 ± 27.83 vs. 121.20 ± 27.23 mg/dL, p = 0.037)
because of the higher prevalence of lipid lowering treatments (58.62% vs. 40.31% respec-
tively, p =0.008). Subjects with SCA presented with comparable plasma high-sensitivity
C-Reactive Protein (hs-CRP) but with higher blood monocytes counts versus those without
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SCA (0.11 (0.06–0.21) mg/dL vs. 0.10 (0.05–0.19) mg/dL, p = 0.179 for hs-CRP; 0.53 ± 0.15
vs. 0.49 ± 0.14 ∗ 1000 cells/µL, p = 0.019 for monocytes).

We firstly investigated whether changes in GM composition still occur over SCA
progression, thereby analyzing taxonomic GM composition of the entire cohort (n = 345)
by 16S rRNA-based sequencing (Supplementary Figure S1), and we then performed a
metagenome shotgun sequencing on a subset of subjects with +IMT/ + SCA and of those
with –IMT/-SCA phenotype (n = 46), selected according to SCA presence and IMT mea-
surements as described above. This dual strategy allowed to gather, with a high degree of
consistency (Supplementary Figure S2), information about different relative abundances of
bacterial genera and species in the presence or absence of SCA.

The GM taxonomic composition significantly differed between subjects with SCA
(n = 144) and those without (n = 201) (p = 0.016, unweighted Unifrac distance, Figure 1A),
although no changes in GM richness were found (p > 0.05 in all alpha-diversity metrics).
The 16S rRNA-based analysis highlighted increased relative abundance of members of
Escherichia (2.8% vs. 1.4%, p = 0.008 in SCA and no SCA subjects, respectively) and
Oscillospira (6.5% vs. 5.7%, p = 0.013 in SCA and no SCA subjects, respectively) genera
(Figure 1B,C, Supplementary Table S2) in subjects with SCA.
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Figure 1. Taxonomic Gut Microbiota (GM) differences over SCA progression. (A) Principal Coordinate Analysis (PCoA)
plot of the unweighted Unifrac distances; data were divided according to experimental category (SCA vs. no SCA); each
point represents a sample; centroids are calculated as the mean coordinate of all samples per experimental category; ellipses
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SCA vs. no SCA experimental categories. Red lines indicate median and blue lines indicate mean values. Star indicates a
significant difference (p < 0.05, Mann-Whitney U-test).

Notably, these differences in GM diversity in the presence of SCA were significantly
explained by those from the subset of 23 subjects with +IMT/ +SCA phenotype, analyzed
by metagenome shotgun sequencing, as compared to all the other three groups (p ≤ 0.030
and p ≤ 0.004 for all pair-wise comparisons on unweighted and weighted Unifrac-based
PCoA, respectively, Supplementary Figure S3A). Moreover, we found few genera whose
taxonomic abundances were significantly different in fecal samples from the subset of
subjects with +IMT/+SCA (n = 23). In particular, Escherichia, Shigella and Streptococcus
were those mostly significantly increased while Bacteroides were reduced in subjects with
the most advanced SCA stage (Supplementary Figure S3B).
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On top of significantly different metagenomic profiles in subjects with −IMT/−SCA
vs. +IMT/SCA, both on alpha (p = 0.001, permutation-based t-test on observed species
metrics) and beta-diversity (p = 0.002, adonis test on Bray-Curtis distance) measures, this
strategy allowed the identification of increased abundance of E. coli, as well as of members
of the Streptococcus genus (i.e., S. salivarius, S. parasanguinis, S. anginosus) in metagenomes
of subjects with +IMT/+SCA. Vice versa, we found increased abundance of members
of Bacteroides genus (i.e., B. uniformis and B. thetaiotaomicron) in the metagenomes of
subjects with −IMT/−SCA (Table 2). Together these data allowed to conclude that specific
taxonomic and metagenomic markers can be found still during early stages of carotid
intimal thickening and SCA.

Table 2. Reduced and increased abundances of genera and species in +IMT/ + SCA.

Genus Species −IMT/−SCA +IMT/+SCA

Escherichia
E.coli 0.83 7.50 (**)

Uncl. Escherichia 0.18 1.93 (**)

Streptococcus
S. salivarius 0.23 0.50 (*)

S. parasanguinis 0.06 0.44 (**)
S. anginosus 0.00 0.04 (**)

Ruminococcus R. obeum 0.25 0.49 (*)

Lactobacillus
L. gasseri 0.00 0.11 (*)

L. fermentum 0.00 0.02 (*)
Dorea D. longicatena 0.16 0.50 (**)

- C2likevirus 0.00 0.04 (*)
Coprococcus Co. comes 0.18 0.40 (**)
Clostridium C. leptum 0.05 0.31 (*)

Parabacteroides Pa. goldsteinii 0.06 0.30 (*)
Eubacterium Eu. ramulus 0.08 0.26 (*)

Bifidobacterium B. dentium 0.05 0.16 (*)

Bacteroides
B. uniformis 5.19 1.69 (*)

B. thetaiotaomicron 0.86 0.25 (*)
Ruminococcus R. bromii 2.08 1.10 (*)

List of bacterial species whose relative abundance was statistically different between +IMT/+SCA and
−IMT/−SCA individuals (n = 23, each). “**” indicates p < 0.01; “*” indicates p < 0.05. p values refer to
that of the two-sided Mann-Whitney U-test. For clarity, bacteria are grouped according to increase/decrease
status and genus.

3.2. Functional Relevance of GM Dysbiosis over Subclinical Carotid Atherosclerosis

In order to highlight whether different shapes in GM composition over SCA stages
have a functional relevance, we harnessed data from metagenome shotgun sequencing to
predict the MetaCyc reactions (see Supplementary Materials) mostly encoded in GM of
subjects with +IMT/+SCA (n = 23).

Notably, in the metagenomes of this group of subjects, we predicted a higher number of
MetaCyc reactions as compared to those without subclinical atherosclerosis (−IMT/−SCA,
n = 23) (p = 0.009 and p = 0.003 for observed species and Simpson’s index, respectively)
(Figure 2A); moreover, considering MetaCyc pathway abundances, significantly differ-
ent functional profiles were evidenced (p = 0.001, adonis test on Bray-Curtis distances)
(Figure 2B).

Based on these findings we then sought to identify which were the over- or down-
represented bacterial metagenomic pathways in GM of subjects with +IMT/+SCA versus
those without subclinical atherosclerosis (−IMT/−SCA). Moreover, the contribution of
each species to MetaCyc reaction pathways was elucidated, highlighting the bacterial
species in GM related to over or down-represented pathways (Figure 3).
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Figure 2. Hit functional markers associated with +IMT/+SCA. (A) Boxplots deriving from level L4 of the MetaCyc pathway
hierarchy based on shotgun metagenome sequencing of +IMT/+SCA (n = 23) and −IMT/−SCA (n = 23) individuals as
determined by “observed_species” metric. (B) Principal Coordinates Analysis (PCoA) plots of Bray-Curtis distances among
+IMT/+SCA and −IMT/−SCA samples calculated on level L4 functional MetaCyc pathway classification. Each point
represents a sample; centroids are calculated as the mean coordinate of all samples per experimental category; ellipses
represent the standard error of the mean (SEM)-based estimation of the variance. The first and second components of the
variance are shown.

We found that E. coli was the bacterial species associated with altered microbial
pathways in samples from +IMT/+SCA individuals, including an increase in those related
to the biosynthesis of palmitate, arginine, glutamine, biotin, phylloquinone, ubiquinone,
menaquinone and phosphatidylethanolamine (PE). Notably, these pathways all clustered
together in metagenomes from +IMT/+SCA subjects, characterized by advanced SCA stage.

By contrast, Faecalibacterium prausnitzii was found to contribute to thirteen signifi-
cantly different MetaCyc reactions (with sulfur oxidation, starch degradation and multiple
biosynthetic routes of purine and pyrimidines as the most over-represented) in samples
from −IMT/−SCA subjects.

Together, these observations allowed the conclusion that taxonomic changes in GM
composition, occurring during first stages of subclinical atherosclerosis and coinciding
with individual exposure to dietary sources, highlight functional metagenomic relevance.

3.3. Individual Diet Clusters with Changes in Taxonomic GM Composition and SCA

These observations supported that early re-shape in taxonomic GM composition
occurs during the first SCA stages and prompted us to explore whether this might be
associated with different individual exposure to dietary sources.

Daily alimentary habits were profiled by the analysis of daily food diaries, filled in by
subjects one week before the collection of the fecal sample (see Methods and Supplementary
Table S3).

Subjects with SCA reported to consume higher amounts of mechanically separated
meats (p = 0.013) although a similar amount of ham, salami, sausages (p = 0.414), meat
products and substitutes (p = 0.470) and a similar amount of not preserved meat (beef,
veal, poultry and pork) (p = 0.683) as compared to subjects without SCA. Moreover, they
reported consuming more dried fruits (p = 0.02), also with a trend towards higher quantities
of fruits (both processed and fresh) and eggs. By contrast, subjects without SCA reported
to consume a higher amount of cereals (p = 0.009), starchy vegetables (p = 0.027), milky
products and beverages (p = 0.004 and p = 0.016, respectively), yoghurts (p = 0.047) and
bakery (p < 0.001) as compared to those with SCA (Figure 4A).
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Figure 3. Metagenomic pathways and bacterial genera more expressed with +IMT/+SCA. Heatmap
on top shows the MetaCyc L4-pathways statistically different between +IMT/+SCA (n = 23, red
bars at right) and −IMT/−SCA (n = 23, blue bar at right) individuals. Normalized and scaled read
counts (CPM) per pathway are standardized along rows. Within each experimental group, samples
are clustered for similarity using Pearson’s correlation metric and average linkage; the plot in the
middle represents the relative contribution of bacterial species to each differential pathway. Values
are average CPM calculated for −IMT/−SCA samples (indicated by the blue square below) and
+IMT/+SCA (indicated by the magenta square below). Average CPM values are standardized on a
per-column basis (i.e., on pathways), in order to highlight, for each pathway which bacterial taxa
contributes most. On the bottom, of the figure, the barplot indicates log2 fold-change between
+IMT/+SCA and −IMT/−SCA average CPM.
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Figure 4. (A) Barplots of significantly different (p < 0.05, Mann-Whitney U-test) nutrients based on
the analysis of daily food diaries for individuals with (n = 144) and without (n = 201) SCA. Bars
represent average intake and standard deviations are represented as error bars. Due to graphical
reasons, intakes were represented as log10 (B) Heatmap of the Spearman’s correlation coefficients
between bacterial genera relative abundances and nutrients intake. Correlations were calculated
for individuals belonging to “SCA” (n = 144) and “no SCA” (n = 201), respectively. Yellow dots
correspond to significant correlation (p-value of the linear model < 0.05) and bacteria with an average
relative abundance ≥ 1% in either experimental group were represented. (C) Biplot representing
samples according to dietary patterns for individuals with (n = 144) and without (n = 201) SCA.
Principal Coordinate Analysis (PCoA) was based on Bray-Curtis distances. Each point represents a
sample, centroids represent the average coordinate for the data points in each category and ellipses
represent the 95% Standard error of the mean (SEM)-based confidence interval of the data points. The
second and third principal coordinates are represented. The average coordinates of the statistically
different dietary component (p < 0.05) weighted by the corresponding abundance per sample was
superimposed on the PCoA plot to identify those mainly contributing to the ordination space
(black arrows).
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Moreover, these dietary intakes showed more significant correlations to bacterial
genera in subjects with SCA as compared to those without SCA (Figure 4B; red square
represent positive correlation while blue square indicates negative correlation; yellow dots
indicate significant correlations, p < 0.05). Of note, some of these correlation recapitulated
data from metagenomic analysis. For example, increased relative abundance of Escherichia
was inversely related with intakes of yoghurts, pulses and fresh vegetables while positively
correlated to bakery only in individuals with SCA.

We were overall able to cluster intakes of specific food patterns (including milk-
derived products, yogurts, total and leafy vegetables, processed cereals, mechanically
separated meats, fish, bread and bakery products) that significantly co-segregated with the
taxonomic diversities between subjects with SCA as compared to subjects without SCA (RV
coefficient between nutrients quantities and microbial relative abundances at genus level
= 0.65, p-value = 0.047) (Figure 4C). In addition to this finding, we also found similarly
significant changes (p = 0.04) in the individual diet in subjects with +IMT/+SCA versus
those without subclinical atherosclerosis (−IMT/−SCA) (not shown), further supporting
the interaction of dietary exposure on GM changes and early stages of SCA.

Together these data support that changes in taxonomic GM composition, occurring
still at subclinical stages of SCA, cluster and occur together with differences in individual
exposure to dietary sources.

4. Discussion

Despite effective strategies for the treatment of patients with clinically manifest
ACVD [1], the identification of subjects at higher risk of future development of the disease
is currently far from optimal, due to hardwired CVRFs [1] and individual predisposition
to low-grade inflammation [3]. Therefore, personalized approaches are sought, targeting
the host-derived CVRFs and those dependent on the individual exposure to environment,
in a tailored way [6]. The microbiome appears the most relevant potential target under
this perspective, due to its involvement in the metabolism of dietary sources and since it
is particularly sensitive to rapid changes in dietary habits [7]. We hypothesized, via an
innovative research design, that GM changes in taxonomic and functional signatures still
occur during subclinical stages of ACVD, before the clinical manifestation of CVRFs.

Currently, our data add further knowledge about the relation between GM and
ACVD since, in comparison to other studies involving patients with clinically established
ACVD, (either as coronary ischemic atherosclerosis [23], cerebrovascular events [23,40],
ST-elevation myocardial infarction (STEMI) [21], stable angina or coronary artery dis-
ease [22]), we here show changes in taxonomic GM composition in subclinical stages
of ACVD progression, when the effect of high cardio-metabolic impairment is not yet
clinically evident.

We analyzed the GM profile in 345 subjects (the majority of whom were aged between
60 and 80 years-old), prevalently lean/overweight, without clinically manifest ACVD, T2D
and MetS. Taxonomic compositions taken from this cohort (one of the largest of this kind)
were comparable to those found in other geographically distant Italian cohorts [48–50]
although they did not confirm some correlations between relative abundances of gen-
era/species and cardio-metabolic markers (Supplementary Materials Figure S4), that were
previously reported in populations characterized by different clinical phenotypes. For ex-
ample, we did not find correlation between relative abundances of Clostridium species
with increased BMI and with higher fasting glucose, findings that were reported in severe
obese post-menopausal women (34.5 Kg/m2 as mean BMI) [51], in 70 year-old overweight
subjects (28.0 Kg/m2 as mean BMI) but with T2D [52] and in younger and prevalently lean
subjects (43–63 y-old and 23.7 Kg/m2 as mean BMI) with diabetes (possibly including type
1 forms) [53]. Additionally, hepatic steatosis (which was only ultrasound-determined and
poorly prevalent in our cohort) as well as plasma hs-CRP, a marker of low-grade inflamma-
tion, did not correlate either with GM diversity (while recently reported in morbidly obese
patients [54] and in liver steatosis [55]), or with a reduced relative abundance of specific
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bacterial species (e.g., Akkermansia muciniphila (less abundant in insulin resistance [56] and
in obese individuals [57]). Although these data might exclude an impact of a gut-liver
connection during early stages of SCA, in depth evaluation on larger cohorts with more
advanced stages of liver disease should is warranted.

Vice versa, we found significant relations with taxonomic species which down- or
over-represent metabolic pathways of multiple dietary sources, hereby supporting an
early immune-inflammatory activation of GM dysbiosis engaged by different dietary
sources over SCA stages, before the clinical manifestation of ACVD and CVRFs. Different
lines of evidence sustain our scientific question. Firstly, in contrast to previous reports
in patients with metabolic syndrome [54,58], we here found an inverse relation between
reduced HDL-C and increased abundance of Escherichia only in subjects with +IMT/
+SCA, who also showed reduced HDL-C and increased plasma levels of the atherogenic
molecule TMAO (a coincidence with previous data [15–20,59,60], see Supplementary
Materials). Whether this is a consequence of TMAO produced by Escherichia (which has
been reported to inhibit both HDL-mediated reverse cholesterol transport and intestinal
HDL lipoprotein maturation [61]) requires further investigation. Additionally, we observed
that E. coli caiTABCDE operon genes (encoding for membrane transport and metabolism
of L-Carnitine to γBB and TMA [15,19]) were overrepresented in subjects with +IMT/
+SCA (see Supplementary Materials, Figure S5). Carnevale et al. [62] recently showed
higher E. coli abundance in GM of patients with STEMI, correlating to increased systemic
Lipopolysaccharide (LPS) absorption and infiltration in atheromas from endarterectomies
leading to macrophage activation [48]. In our investigation, we did not find increased
plasma levels of zonulin in +IMT/+SCA subjects (see Supplementary Figure S6), therefore
prompting the exclusion of systemic LPS absorption through a “leaky-gut” [63] yet at initial
stages of atherosclerosis. Vice versa, we found a more over-expressed biosynthetic pathway
of PE (strictly linked to the hepatic conversion to atherogenic TMAO [15] mediated by the
L-carnitine/γBB/TMA metabolic cascade [64]), as documented by the data presented in
Supplementary Figure S5, together with an increased number of circulating monocytes and
neutrophils in subjects with SCA. These subjects reported indeed to consume only higher
amounts of mechanically separated meats but a similar amount of unprocessed meats
(as more complex food matrices containing other nutrients, phospholipids and probiotics
that have been not associated with higher ACVD risk [65]) versus subjects without SCA.
Future analyses and interventional dietary approaches are requested to unveil whether
these connections reflect a gut-bone marrow connection fostering an activation of the innate
immune system.

Secondly, we found in metagenomes of +IMT/+SCA subjects a reduced contribution
of pathways (such as starch degradation, sulfur oxidation and the biosynthetic routes
of purine and pyrimidines) encoded by Faecalibacterium prausnitzii, previously reported
to be actively involved in gut permeability through the production of anti-inflammatory
butyrate [66–68]. This finding coincides with intakes of fibers, carbohydrates and proteins
from higher amounts of starchy vegetables, milky products and beverages, yoghurts
and bakery products that subjects without SCA reported consuming. In fact, inulin-
type fructans, fructo-oligosaccharides, polydextrose or soluble corn fiber support the
proliferation of Faecalibacterium prausnitzii which, in turn, mediates the metabolism of
fibers [68], ensures gut physiological transit time [69] and attenuates the pro-inflammatory
potential of specific dietary proteins [70].

We have to acknowledge several limitations in our study. Firstly, this epidemiological
study, gathering self-reported dietary data, does not allow the unveiling of the actual rela-
tion of causality. These limitations pave the road to dissecting this aspect in the near future,
a perspective that might be pursued: (i) by clustering a larger number of subjects on the ba-
sis of their exposure to different dietary patterns (daily collected using smartphone health
apps or other health mobile technologies to improve self-reporting) or (ii) by longitudinally
evaluating the actual effect of a single dietary pattern/habit on changes of GM composi-
tion/functionality in subjects with different SCA stages. Different hurdles undermining
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these approaches are to be accounted in the design of lifestyle and dietary intervention
studies (e.g., technical criticisms, difficulties in the interpretation of their resulting data and
the export to wider populations [24]). The cross-sectional design of this investigation can-
not rule out the burden of CVRFs prior to the examination, although significant differences
we observed in microbial composition comparing beta-diversity measures via Principal
Coordinate Analysis (PCoA) still take into account potential confounders, since they are
based on multivariate models, associated with data-reduction techniques that produce a
set of uncorrelated (orthogonal) axes to summarize the variability in the data set. Although
the effect of pharmacological interventions over time (especially anti-hypertensive and
lipid lowering drugs) cannot be ruled out, we did not find differences in the GM alpha and
beta diversities when comparing subjects with pharmacological therapy and those with
any treatments [23,71]).

Secondly, subjects with SCA were older in our cohort and we acknowledge that age,
the principal predictor of faster SCA progression over time [4], might act as a confounding
factor in the relation between GM taxonomy and SCA. However, the majority of subjects in
our study were aged between 60 and 80 y/old (Table 1), therefore prompting us to conclude
that data from younger cohorts or longitudinal evaluation on this same cohort are needed
in order to dissect how much age interacts in the relation between GM composition and
SCA progression over time.

Thirdly, our knowledge of the actual differences in metagenome-encoded functions
and their relation to the host health is limited by the fact that a relevant part of the
metagenome still remains undescribed (e.g., in our data, about half of the metagenomic
reads could not be mapped and a majority of the mapped ones could not be annotated to
a known reaction or pathway), due to the lack of complete description of bacterial genes
in databases.

Finally, we did not perform a complete analysis of circulating proteomic and metabolomics
markers validating the metagenomics pathways that emerged from our data. Since multiple
circulating proteins and metabolites (the majority of which are of lipid origin) have been
recently associated with different types of dietary patterns [72], this aspect is of relevance
and will be analyzed in the near future.

However, to the best of our knowledge, this is the first extensive taxonomic and
metagenomic characterization connecting GM dysbiosis with individual diet and SCA.
These cross-sectional data aim at setting the stage for future longitudinal studies and
dietary interventions, testing if personalized modifications in dietary habits over time
could affect GM composition contributing to the prevention of the onset of CVRF and the
clinical manifestation of ACVD.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-664
3/13/2/304/s1. Table S1: Descriptives of the entire cohort divided by SCA stages; Table S2: Reduced
and increased abundances of genera in SCA; Table S3: Daily intakes of food patterns reported by
subjects of the studied population divided according to SCA; Figure S1: GM Taxonomic relative
abundances of phyla, families and genera in SCA; Figure S2: Accordance between 16s rRNA and
shotgun metagenomic sequencing in the evaluation of relative abundances at the level of genera;
Figure S3: Hit taxonomic markers associated with +IMT/+SCA Figure S4: Correlation between most
abundant bacteria and cardio-metabolic markers according to SCA; Figure S5: E.coli metagenetic
markers associated with advanced SCA stage. Figure S6: Zonulin plasma levels are not increased in
subjects with +IMT/+SCA.
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