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Abstract

RNAs adopt specific structures to perform their functions, which are critical to fundamental

cellular processes. For decades, these structures have been determined and modeled with

strong support from computational methods. Still, the accuracy of the latter ones depends

on the availability of experimental data, for example, chemical probing information that can

define pseudo-energy constraints for RNA folding algorithms. At the same time, diverse

computational tools have been developed to facilitate analysis and visualization of data from

RNA structure probing experiments followed by capillary electrophoresis or next-generation

sequencing. RNAthor, a new software tool for the fully automated normalization of SHAPE

and DMS probing data resolved by capillary electrophoresis, has recently joined this collec-

tion. RNAthor automatically identifies unreliable probing data. It normalizes the reactivity

information to a uniform scale and uses it in the RNA secondary structure prediction. Our

web server also provides tools for fast and easy RNA probing data visualization and statisti-

cal analysis that facilitates the comparison of multiple data sets. RNAthor is freely available

at http://rnathor.cs.put.poznan.pl/.

Introduction

Structural features are of importance for the biological functions of RNA molecules. Specific

RNA structures are recognized by RNA binding proteins, ligands, and other RNAs—these

interactions impact almost every aspect of cell life or viral replication. Therefore, there is a

great interest in developing novel approaches for proper and rapid RNA structure modeling.

The computational methods enable the obtaining of good quality models of short RNAs based

on sequence only, but the accuracy of structure prediction decreases with the length of RNA

molecules [1–5]. The inclusion of RNA structure probing data as pseudo-energy constraints

into the thermodynamic folding algorithms significantly improves the accuracy of RNA struc-

ture prediction [6, 7]. Among chemical and enzymatic methods, SHAPE (selective 20-hydroxyl
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acylation analyzed by primer extension) [8] and DMS (dimethyl sulfate) mapping [9] are the

best validated and most widely used techniques of RNA structure probing in vitro and in vivo
[10, 11]. Besides, the pipelines of SHAPE and DMS probing data incorporation into RNA

structure prediction software are well established [6, 12]. DMS modifies the Watson−Crick

edge of unpaired adenosines or cytosines, whereas SHAPE reagents create covalent adducts at

the 20-OH group on the RNA sugar ring in a flexibility-sensitive manner [8, 9, 13]. Several

SHAPE reagents that differ in their half-life and solubility have been developed until now [14–

16]. They act independently from nitrogen base and, consequently, one probing reagent can

be used instead of a combination of base-specific chemicals.

Effective detection and quantitative measurement of modification sites are critical for all

RNA probing experiments. Typically, RNA chemical modification is followed by a reverse

transcription to cDNA that is truncated or mutated at the adducts position [8, 17]. The sites of

RT stops in the cDNA can be read-out using the capillary electrophoresis (CE) or next-genera-

tion sequencing (NGS) but only the second technique can be used for the detection of adduct-

induced mutations [17, 18]. The NGS-based techniques allow genome-wide and transcrip-

tome-wide profiling of RNA structure. The CE is widely used for resolving reactivity data from

medium- and low-throughput RNA probing experiments. There are many examples of SHA-

PE-CE usage for analysis of the structure of many important RNAs, including ribosomal

RNAs [19, 20], long noncoding RNAs [21–23], viral RNAs [24–30], and retrotransposon

RNAs [31–33]. Besides, CE can also be used for the analysis of RNA probing experiments uti-

lizing other chemical reagents such as CMCT, kethoxal, hydroxyl radicals, and RNases [34–

37].

The extraction of quantitative data from CE electropherograms is challenging and requires

complicated, multistep analysis of fluorescence signals. Several computational tools can pro-

cess electropherograms from SHAPE-CE experiments [38–42]. Among them, ShapeFinder

[41] and QuShape [42] are the most widely used and yield high-quality SHAPE reactivity data

for 300–600 nucleotides in one experiment. Before the incorporation of probing information

into the thermodynamic RNA folding algorithms, the reactivity values must be normalized to

a uniform scale that is valid for diverse RNAs. Additionally, visual inspection of nonspecific

RT strong-stops (non-induced by adduct formation) is required.

Normalization and other quality control steps are very important aspects of structure prob-

ing data analysis. Therefore, we developed RNAthor, a user-friendly tool for fast, automatic

normalization, and analysis of the CE-based RNA probing data (Fig 1). Features of our tool

include (i) normalization of data from several experiments in the box-plot scheme at once, (ii)

automatic detection of strong-stops of reverse transcriptase, (iii) reactivity data visualization,

(iv) statistical analysis of the results to compare multiple data sets, and (v) RNA secondary

structure prediction based on reactivity data.

Materials and methods

RNAthor workflow

In the RNAthor workflow, we distinguish five general stages: validation of the input data (Sha-

peFinder or QuShape file(s) and optionally RNA sequence), exclusion of unreliable data, nor-

malization of probing data, prediction of the secondary structure (optional), and statistical

analysis of the normalized data (optional) (Fig 1).

Validation of the input data. Initially, the user-uploaded files, resulting from ShapeFin-

der or QuShape, are parsed, and the basic validation of their format is executed. If, addition-

ally, a sequence is entered, RNAthor checks whether it is RNA and whether it is at least as long

as the sequence in the input file(s). A positive validation results in the next step of the
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computational process. Otherwise, the user receives an error message and is asked to provide

correct data.

Exclusion of unreliable data. Unreliable data usually correspond to premature termina-

tions of primer extension reaction due to reasons other than the formation of the adduct (e.g.,

preexisting cleavage or modification in RNA). These nucleotide positions are called RT strong-

stops. RNAthor offers two ways of detecting such data and excluding them from further pro-

cessing: a fully automated algorithm and an interactive procedure requiring manual selections.

The automated procedure (Fig 2) was implemented based on our experience with analyzing

data from RNA chemical probing experiments in vitro and in vivo. It was optimized for the

analysis of SHAPE and DMS probing data. It eliminates the data, which meet one of the follow-

ing criteria: the absolute reactivity value is negative; the background peak area is at least five

times larger than the average background peak area; the difference in peak areas between back-

ground and reaction is less than 35% of the average background peak area, and the background

peak area in this position is equal to or greater than this average. The alternative is a manual

procedure, recommended especially for processing the data from RNA probing experiments

other than SHAPE or DMS-probing. In this approach, users can identify unreliable data accord-

ing to their own experience. They define the negative reactivity threshold, and indicate how to

treat the negative reactivity values—they can be left as negative values, changed to 0, or marked

as no data. RNAthor displays the histogram with peak areas for modification reaction and back-

ground for each nucleotide. Based on this view, users manually select RT strong-stops0 posi-

tions. All identified RT strong-stops are next excluded from the normalization step.

Data normalization. In this step, the data are brought into proportion with one another,

and outliers are removed, to provide users with easy to interpret reactivity data on a uniform

scale. RNAthor applies the standard box-plot scheme, recommended to normalize the SHA-

PE-CE data [43, 44]. The normalization process involves: identifying outliers, determining the

effective maximum reactivity, and calculating the normalized reactivity values. The initial task

is to determine the first (Q1) and the third (Q3) quartile, the interquartile range (IQR), and

compute the upper extreme: UP = Q3 + 1.5(IQR). Reactivities greater than UP are considered

outliers and not taken into account in subsequent calculations following the principle: for

Fig 1. Workflow in the RNAthor system.

https://doi.org/10.1371/journal.pone.0239287.g001
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RNAs longer than 100 nucleotides, no more than 10% of the data are identified as outliers; for

shorter RNAs, maximum 5% of data are removed. The remaining values are used to compute

the effective maximum reactivity, i.e., the average of the top 8% of reactivity values. Finally, all

absolute reactivity values are divided by the effective maximum reactivity. It results in

Fig 2. Scheme of the RNAthor algorithm for unreliable data exclusion.

https://doi.org/10.1371/journal.pone.0239287.g002
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obtaining the normalized reactivity data on a uniform scale. Values close to 0 indicate no reac-

tivity (and highly constrained nucleotides), while values greater than 0.85 correspond to high

reactivity (and flexible nucleotides).

Secondary structure prediction. Optionally, users can obtain the secondary structure

predicted for the RNA sequence provided at the input. If the sequence is given, RNAthor auto-

matically executes the incorporated RNAstructure algorithm [45] that supports SHAPE / DMS

data-driven prediction. It takes the RNA sequence and the normalized probing data and gen-

erates the respective secondary structure. The graphical diagram of the structure is colored

according to the color scheme defined for the default reactivity ranges. The output structure is

also encoded in the dot-bracket notation.

Statistical analysis of the normalized data. Logged users can perform additional statisti-

cal analysis of the normalized probing data. The analysis includes 2–5 experiments selected by

the user. It consists of running the Shapiro-Wilk test for normal data distribution, Bartlett test

of variance homogeneity, non-parametric Mann-Whitney test (if the user selected 2 experi-

ments), and Kruskal-Wallis rank-sum test (if the user selected 3–5 experiments). Two latter

tests are performed if the probing data departure from the normal distribution. As a result of

the analysis, users receive numerical, textual, and graphical data—among others, the compara-

tive step plot, the box-and-whisker plot, and the violin plot.

Experimental setup

RNA probing data for the RNAthor validation were obtained from SHAPE-CE and DMS-CE

experiments performed in our laboratory for Ty1 RNA (+1–560). The results of SHAPE-based

manual analysis were already published in [32]. The DMS experiment was performed especially

for this work; its details are presented below. Electropherograms from SHAPE and DMS prob-

ing were processed using ShapeFinder software according to the authors’ instructions [41].

For RNA probing with DMS, RNA (8 pmol) was refolded in 30 μl of renaturation buffer (10

mM Tris-HCl pH 8.0, 100 mM KCl and 0.1 mM EDTA) by heating for 3 minutes at 95˚C,

slow cooling to 4˚C, then adding 90 μl of water and 30 μl of 5x folding buffer (final concentra-

tion: 40 mM Tris-HCl pH 8.0, 130 mM KCl, 0.2 mM EDTA, 5 mM MgCl2), followed by incu-

bation for 20 minutes at 37˚C. The RNA sample was divided into two tubes and treated with

DMS dissolved in ethanol (+) or ethanol alone (-), and incubated at RT for 1 minute. The reac-

tion was quenched by the addition of 14.7 M β-mercaptoethanol. RNA was recovered by etha-

nol precipitation and resuspended in 10 μl of water. Primer extension reactions were

performed using fluorescently labeled primer [Cy5 (+) and Cy5.5 (-)] as described previously

[32]. Sequencing ladders were prepared using primers labeled with WellRed D2 (ddA) and

LicorIRD-800 (ddT) and a Thermo Sequenase Cycle Sequencing kit (Applied Biosystems)

according to the manufacturer0s protocol. Samples were analyzed on a GenomeLab GeXP

Analysis System (Beckman-Coulter).

Web application

RNAthor, implemented as a publicly available web server, has a simple and intuitive interface.

It runs on all major web browsers and is accessible at http://rnathor.cs.put.poznan.pl/. The

web service is hosted and maintained by the Institute of Computing Science, Poznan Univer-

sity of Technology, Poland.

Implementation details

The architecture of RNAthor comprises two components: the computational engine (backend

layer) and the web application (frontend layer). The backend layer, implemented in Java
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OpenJDK 8.0, applies selected modules of the Spring Framework: Spring Boot 2.1.6 enables fast

configuration of the application; Spring Security ensures user authentication and basic security;

Spring MVC allows compatibility with the Model View Controller and Apache Tomcat server;

Spring Test, via Junit and Mockito libraries, enables unit tests and integration; Spring Data

allows for comprehensive database services, including transaction management. The user inter-

face (frontend layer) is implemented in Angular technology. User data and basic information

about the experiments are collected in the PostgreSQL relational database, the input and output

data are saved on the server’s hard drive. The tool uses the Apache License 2.0.

Input and output description

At the input, RNAthor accepts ShapeFinder or QuShape output files in a tab-delimited text

format. Users upload their data via the New experiment page by selecting 1–15 files from the

local folder. All files in the multiple-input should come from several repetitions of the RNA

probing experiment performed for the same RNA. Repetitions increase the reliability of struc-

tural data for RNA secondary structure prediction. RNAthor processes all the input files in a

single run. It starts after data uploading and setting additional parameters for the normaliza-

tion process (algorithm for RT strong-stops detection, probing reagent, color settings). Addi-

tionally, users can provide an RNA sequence that is used to predict the RNA secondary

structure.

RNAthor generates a selection of output data. First of all, users obtain the output file in the

SHAPE format (�.shape) that is compatible with the RNAstructure software [45]. The file com-

prises two columns with nucleotide positions and normalized SHAPE / DMS-CE reactivity

data. For the multiple-input, the generated SHAPE file contains averaged reactivities from all

normalized data. Nucleotides for which there is no reactivity data are assigned -999 values as

recommended in [43]. If the user uploaded the sequence of the analyzed RNA molecule,

RNAthor provides the RNA secondary structure in dot-bracket notation and the graphical dia-

gram. Additionally, RNAthor generates files that can facilitate the analysis of RNA probing

experiments. One of them is the MS Excel file with spreadsheets containing the input data, the

normalized reactivity values, and averaged normalized reactivity data with standard deviation

(the average and standard deviation are calculated separately for each nucleotide across sam-

ples). Each spreadsheet with the input data contains a histogram, identical to this created dur-

ing manual removal of RT strong-stops. Rows with normalized reactivity values are colored

depending on the user0s settings. In the processing of large RNAs, this file can help to combine

probing data from overlapping reads (with a different set of primers). RNAthor also prepares a

graphical output: step plot and bar plot presenting a reactivity profile for one experiment or

averaged data from several repetitions. The bar plot is colored depending on the settings: black

for reactivities in [0, 0.4), orange for reactivities in [0.4, 0.85), and red for reactivities in [0.85,

1) by default. Logged users that run statistical analysis of experimental data also obtain com-

parative step plot, box-and-whisker plot, violin plot, and summary of test results. The latter

one, available for download in .txt file, informs whether the uploaded data come from a normal

distribution, whether they have equal variances, what statistical test was performed, and what

is the p-value. The comparative step plot shows reactivity profiles of all compared experiments

in one chart. The box-and-whisker plot displays the distribution of data based on the position

measures, such as quartiles, minimum, and maximum. The violin plot presents the shape of

the distribution and probability density of normalized reactivity values. All generated plots can

be saved in PNG or EPS format. Users download the output files separately or in a single

zipped archive. They can also obtain them as an email attachment—if the email was provided

at the input. Additionally, the email contains a unique link to the result page. The results are
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stored in the system for 3 days (for guest users) or 3 months (for logged users). Logged users

can extend the storage time by an additional month.

Results

RNAthor allows for efficient, automated processing and analysis of RNA probing data from

SHAPE-CE and DMS-CE experiments and their use in data-driven RNA secondary structure

prediction. It was tested on multiple datasets, containing data from SHAPE and DMS probing

experiments resolved by capillary electrophoresis. The tests confirmed the reliability of the

results and showed the utility of the tool. Here, we describe the experiments performed to

compare the results of RNA probing data analysis carried out manually by an expert, and auto-

matically by RNAthor. For the experiments, we chose SHAPE-CE and DMS-CE probing data

obtained for RNA of yeast retrotransposon Ty1. The structure of the 50-end of Ty1 RNA was

extensively studied and determined under different experimental conditions and biological

states [31, 32, 46].

In the first test, we executed RNAthor for the ShapeFinder-generated files containing the

probing data obtained from three independent replicates of SHAPE experiment (raw data

used in this experiment are provided in the S1 File). We ran RNAthor with the default settings

and the automated algorithm for the identification of RT strong-stops. The generated normal-

ized reactivity data were next compared to the corresponding data published in [32], resulting

from manual analysis of the same input. We aligned the obtained bar plots (Fig 3A), and we

computed the correlation between normalized reactivity values (Fig 3B). In the second test, we

repeated the same procedure for data obtained from the DMS experiment (unpublished data;

the experiment was carried out for this work especially). “Blind” human experimentalist ana-

lyzed the DMS data preprocessed using ShapeFinder, normalized reactivity values, manually

identified unreliable data and applied OriginPro to generate the bar plot presenting the reac-

tivity profile. The results of this manual processing were compared to the output generated by

RNAthor that was executed with DMS reagent selected and automated identification of RT

strong-stops (Fig 3C and 3D).

From these experiments, we observe that all RT strong-stops identified manually by the

expert are also selected for exclusion by the automatic algorithm implemented in RNAthor.

On the other hand, few data assigned as RT strong-stops by RNAthor can be considered reli-

able in the human-dependent analysis. This is due to the rigid criteria for determining RT

strong-stops adopted in the algorithm. Table 1 presents the results of the detailed analysis we

did by comparing manual, expert-driven, and automatic, RNAthor-performed detection of

unreliable data. We computed basic measures used to evaluate the quality of binary classifica-

tion: true positives (TP)–data classified as reliable by both expert and RNAthor, true negatives

(TN)–data classified as unreliable by both expert and RNAthor, false positives (FP)–data indi-

cated as unreliable by the expert but classified as reliable by RNAthor, false negatives (FN)–

data indicated as reliable by the expert but classified as unreliable by RNAthor. Using these

measures, we calculated the accuracy (ACC), sensitivity (TPR, true positive rate), specificity

(TNR, true negative rate), and precision (PPV, positive predictive value) of the automatic algo-

rithm implemented in RNAthor. All these measures were determined for three datasets:

SHAPE probing data separately, DMS probing data separately, and data from both sets

together. They prove the high quality of the tested algorithm for all datasets. Accuracy and sen-

sitivity equal 0.99, where accuracy, ACC = (TP+TN)/(TP+TN+FP+FN), represents the ratio of

correct classifications to the total number of input data, and sensitivity, TPR = TP/(TP+FN),

indicates what part of the actual reliable data has been correctly classified by RNAthor. Speci-

ficity and precision are both equal to 1, which is because of FP = 0. Specificity, TNR = TN/(TN
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+FP) is a fraction of correctly classified unreliable data, while the precision, PPV = TP/(TP

+FP), informs about the fraction of unreliable data classified as reliable. Finally, the experi-

ments show that—despite some differences between expert- and RNAthor-driven analysis—

the normalized RNA probing reactivity values obtained in both approaches are highly similar.

The comparison of the reactivity profiles indicates the conformity of manual and automatic

procedures. The averaged results from three independent probing experiments yield a Spear-

man correlation coefficient equal to 0.9987 for SHAPE and 0.995 for DMS-based analysis (Fig

3).

In the testing phase, we also executed statistical analysis to verify the repeatability of

obtained results for each nucleotide between the replicates, and compare the reactivity profiles.

Fig 4 shows an example of such verification for selected DMS-CE experiments previously per-

formed by RNAthor (raw data used in these experiments are provided in the S1 File). Experi-

ments 1 and 2 (denoted as DMSexp1 and DMSexp2 in Fig 4) were performed under identical

experimental conditions, while the higher concentration of DMS was used in experiment 3

(denoted as DMSexp3). We observed a high similarity between reactivity profiles generated

for experiments 1 and 2 (Fig 4A), whereas a significant difference was visible for experiment 3

Fig 3. Automatic and manual normalization of RNA probing data. SHAPE (A) and DMS (C) reactivity profiles calculated by RNAthor (red) and manually

(black). Correlation between RNAthor and manual analysis per nucleotide reactivity estimated for SHAPE (B) and DMS (D).

https://doi.org/10.1371/journal.pone.0239287.g003

Table 1. The results of validation of RNAthor algorithm for unreliable data identification.

dataset TP TN FP FN ACC PPV TPR TNR

SHAPE 2462 38 0 32 0.99 1 0.99 1

DMS 2431 35 0 25 0.99 1 0.99 1

ALL 4893 73 0 57 0.99 1 0.99 1

https://doi.org/10.1371/journal.pone.0239287.t001
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(Fig 4B). As expected, the box plot and violin plot present the comparable DMS data distribu-

tions for experiments 1 and 2 (Fig 4C). The statistical plots for experiment 3 clearly show a sig-

nificant increase in the number of more reactive nucleotides, and a concurrent decrease of

unreactive nucleotides, consequently, the overall median reactivity is higher (Fig 4C). From

these examples, we can see that additional options of RNAthor can be used for fast and easy

comparative and statistical analysis for RNA chemical probing experiments.

Conclusions

In this work, we presented RNAthor, the new computational tool dedicated to the study of

RNA structures that enriched the set of web-interfaced bioinformatics systems available within

the RNApolis project [47]. RNAthor was designed for a fully automatic, quick normalization,

and analysis of SHAPE / DMS-CE data. Although several programs can process the results of

CE-based RNA probing, so far, no automatic procedure could identify unreliable data, and

this step of the analysis was usually done manually. RNAthor incorporates the algorithm for

the automatic exclusion of RT strong-stops to minimize user involvement in the probing data

analysis. The tool can be applied to analyze data from other RNA probing methods if capillary

electrophoresis and ShapeFinder or QuShape were used for data collection. RNAthor also

visualizes the results of RNA probing data normalization, runs the data-driven prediction of

Fig 4. Example verification of the repeatability of RNA chemical probing experiments. Comparative step plot for repeatable (A) and non-repeatable (B) replicates of

Ty1 RNA probing with DMS. (C) The box-and-whisker plot and violin plot presenting the differences in reactivity data distribution obtained for repeatable and non-

repeatable experiments.

https://doi.org/10.1371/journal.pone.0239287.g004
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RNA secondary structure, and performs the statistical tests. The latter option facilitates the

comparative study of multiple probing experiments, allows to assess the compatibility between

experiments, and compare whole data sets of RNAs probed in different experimental condi-

tions (e.g., in vitro, in vivo, ex vivo, in virio, ex virio), or in the absence or presence of protein/

ligand. Compared to manual or semi-automated data processing, RNAthor significantly

reduces the time needed for data analysis; thus, it can highly improve the study and interpreta-

tion of data obtained from RNA chemical probing experiments.

In the future, we plan to extend the functionality of RNAthor by implementing procedures

combining RNA probing data from overlapping CE reads to facilitate the structural analysis of

large RNAs.
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