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Abstract: Infants born after intrauterine growth restriction (IUGR) are at risk of developing arterial
hypertension at adulthood. The endothelium plays a major role in the pathogenesis of hypertension.
Endothelial colony-forming cells (ECFCs), critical circulating components of the endothelium, are
involved in vasculo-and angiogenesis and in endothelium repair. We previously described impaired
functionality of ECFCs in cord blood of low-birth-weight newborns. However, whether early
ECFC alterations persist thereafter and could be associated with hypertension in individuals born
after IUGR remains unknown. A rat model of IUGR was induced by a maternal low-protein
diet during gestation versus a control (CTRL) diet. In six-month-old offspring, only IUGR males
have increased systolic blood pressure (tail-cuff plethysmography) and microvascular rarefaction
(immunofluorescence). ECFCs isolated from bone marrow of IUGR versus CTRL males displayed
a decreased proportion of CD31+ versus CD146+ staining on CD45− cells, CD34 expression (flow
cytometry, immunofluorescence), reduced proliferation (BrdU incorporation), and an impaired
capacity to form capillary-like structures (Matrigel test), associated with an impaired angiogenic
profile (immunofluorescence). These dysfunctions were associated with oxidative stress (increased
superoxide anion levels (fluorescent dye), decreased superoxide dismutase protein expression,
increased DNA damage (immunofluorescence), and stress-induced premature senescence (SIPS;
increased beta-galactosidase activity, increased p16INK4a, and decreased sirtuin-1 protein expression).
This study demonstrated an impaired functionality of ECFCs at adulthood associated with arterial
hypertension in individuals born after IUGR.

Keywords: intrauterine growth restriction; developmental programming; arterial hypertension;
endothelial colony-forming cells; oxidative stress; stress-induced premature senescence
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1. Introduction

Subjects born after IUGR are at an increased risk of higher blood pressure during
infancy [1], adolescence [2,3], young adulthood [4], and later in life [5–7]. Among the
mechanisms potentially involved in the developmental programming of hypertension,
alterations of the vascular system have been shown to play an important role in addition
to the long-term effects of a decreased nephron number endowment and hypothalamic-
pituitary-adrenal axis hyperactivity [8]. Low-birth-weight subjects display increased ar-
terial stiffness, increased intima-media thickness, decreased arterial compliance, and im-
paired endothelium-dependent vasodilation [9–12]. The endothelium is considered a
dynamic organ with different functions, which together regulate the antithrombotic and
anti-inflammatory states, improve angiogenesis, and regulate vascular tone and tissue
perfusion. Endothelial progenitor cells (EPCs) are critical circulating components of the en-
dothelium, and are identified as key factors in endothelial repair. EPCs can be distinguished
according to their phenotype and functional properties. Early EPCs are of hematopoietic
origin and promote angiogenesis through paracrine mechanisms, but cannot give rise to
mature endothelial cells [13–16]. In contrast, endothelial colony-forming cells (ECFCs)
or late outgrowth EPCs [13] have clonal potential and the capacity to produce mature
endothelial cells and promote vascular formation in vitro and in vivo. In particular, these
cells are able to proliferate, auto-renew, migrate, differentiate, and promote vascular growth
and neovascularization. In the clinical setting, decreased numbers and altered functionality
of EPCs have been observed in various cardiovascular disorders. In adult patients, reduced
numbers of circulating EPCs have been associated with cardiovascular disease [17] and
have been inversely correlated with arterial blood pressure values. In newborns, a positive
correlation was observed between birth weight and the number of circulating endothelial
progenitor cells [18]. ECFCs from low-birth-weight and preterm infants displayed reduced
numbers and dysfunction [19]. Ligi et al. showed impaired angiogenic properties in
ECFCs from low-birth-weight neonates [20,21]. Several factors regulating EPC number and
functionality have been identified. Notably, it has been reported that oxidative stress and
cellular senescence can negatively modulate EPC number and functionality [22]. Satoh et al.
observed increased oxidative DNA damage in EPCs from adult patients with coronary
artery disease [23]. In animal models, increased ROS production has been associated with
reduced EPC mobilization in bone marrow in the early post-infarction phase [24]. Imanishi
et al. showed that beta-galactosidase activity was increased and telomerase activity de-
creased in EPCs isolated from patients with hypertension, and that the induction of cellular
senescence was due to angiotensin-II-mediated oxidative stress [25]. Oxidative stress and
cellular senescence have been associated with fetal growth restriction [26,27]. ECFCs from
preterm infants have an increased vulnerability to hyperoxia-induced oxidative stress
leading to cell dysfunction [28,29]. In pregnant women with growth-restricted fetuses,
increased malondialdehyde [30], increased urinary 8-oxo-7,8 dihydro-2′deoxyguanosine,
increased plasma protein carbonylation, and decreased total antioxidant capacity have
been observed [31], all of which are consistent with similar observations made in IUGR
neonates [31–33]. However, the relationship between altered endothelial function in IUGR
subjects and oxidative stress is not completely understood. In addition, Ligi et al. observed
impaired proliferation, vascular network formation, and angiogenic capabilities of ECFCs
isolated from the cord blood of low-birth-weight newborns, associated with accelerated
senescence [20,21,34]. However, it is not well identified whether these early dysfunctions
of ECFCs persist through adulthood and constitute a possible link between IUGR and
arterial hypertension development, and which mechanisms could be involved.

Using a recognized rat model of developmental programming of arterial hypertension
related to IUGR, we investigated whether the proportion of ECFCs, their proliferative
capacity, and their vascular network formation are altered. We also studied their angiogenic
capacity and explored some markers related to oxidative stress and accelerated senescence.
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2. Results
2.1. IUGR-Induced Lower Body Weight at Birth and at Six Months of Life

We observed a significantly decreased body weight at birth in both sexes in the IUGR
group compared with the CTRL group (−32% for males and −33% for females). This
decrease in weight persisted at 6 months of life in the IUGR group (−22% for males and
−15% for females).

2.2. IUGR-Induced Increased Systolic Blood Pressure and Microvascular Rarefaction

The systolic blood pressure (SBP) was assessed using the tail-cuff method in six-month-
old rats. We observed an increased SBP in IUGR males (+22%; p < 0.01) compared with
CTRL, but no difference in females (Table 1). The capillary density was evaluated using
lectin-TRITC staining. We observed a reduction in lectin staining (−58%; p < 0.01) in the
tibial muscles of IUGR vs. CTRL males (Figure 1A). No difference was observed between
CTRL and IUGR females (Figure 1B).

Figure 1. Microvascular density measurement. Capillary density was assessed in the anterior tibialis muscle of CTRL and
IUGR males (A) and females (B) at six months of life using lectin-TRITC staining. Nuclei were counterstained with DAPI,
and a negative control was performed (C). Magnification (20×); n = 5 animals/group; ** p < 0.01. N.S: not significant. Scale
bar = 100 µm.

2.3. Decreased Number of IUGR-ECFCs

Using flow cytometry, we observed a decrease (−50%; p < 0.05) in the proportion of
CD31+ versus CD146+ staining on CD45-viable cells IUGR-ECFCs compared with CTRL-
ECFCs (Figure 2A–D). Moreover, CD34 was significantly less expressed (−50%; p < 0.05) in
IUGR-ECFCs vs. CTRL-ECFCs (Figure 3A). The number of ECFCs can be modulated by
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inflammatory parameters. Therefore, we measured interleukin-1 beta (IL-1β) expression by
western blot in adipose tissue, which is considered the major source of pro-inflammatory
cytokine secretion. In IUGR males IL-1β expression was significantly higher (+110%;
p < 0.05) compared with CTRL males (Figure 3C).

Table 1. Body weight at birth and at 6 months of life, and systolic blood pressure (SBP) at 6 months
of age in CTRL and IUGR males and females.

Body Weight at Birth CTRL (gram) IUGR (gram) SIGNIFICANCE

Males (n = 25; 5 litters) 7.73 ± 1.03 5.23 ± 0.48 p < 0.001

Females (n = 25; 5 litters) 7.15 ± 0.48 4.76 ± 0.40 p < 0.001

Body Weight at 6 Months CTRL (gram) IUGR (gram) SIGNIFICANCE

Males (n = 25; 5 litters) 751.81 ± 64.64 586.16 ± 45.43 p < 0.001

Females (n = 25; 5 litters) 378.62 ± 35.95 319.78 ± 16.94 p < 0.001

SBP at 6 Months of Life CTRL (mmHg) IUGR (mmHg) SIGNIFICANCE

Males (n = 5; 5 litters) 125.72 ± 4.62 153.44 ± 2.51 p < 0.01

Females (n = 5; 5 litters) 112.56 ± 7.73 113.8 ± 5.92 p > 0.05

Figure 2. ECFC quantification. Flow cytometry analysis of cultured cells was performed on CTRL-ECFCs and IUGR-ECFCs
isolated from six-month-old male rats. (A–D). Left panel; FSC versus SSC plot. Cells were gated to exclude subcellular
debris. Right panel; CD45 versus DAPI staining on gated cells from left panel (A). Dead cells (DAPI+) and hematopoietic
cells (CD45+) were excluded by gating CD31+ versus CD146+ staining on CD45-viable cells (B). Upper panel, cells from
IUGR rats, lower-left three panels from CTRL rats, and values were reported in the histogram (D). Negative control stain on
CD45-viable cells (in the absence of CD31 and CD146) was represented in the lower-right panel (C); * p < 0.05.
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Figure 3. CD34 expression in ECFCs and IL-1β protein expression. CD34 expression was detected by immunostaining in
CTRL-ECFCs and IUGR-ECFCs isolated from six-month-old male rats. Magnification (20×). Nuclei were counterstained
with DAPI and a negative control (with no primary antibody) and a test for autofluorescence were performed. These
pictures are representative images from n = 4–5 animals/group. * p < 0.05 (A). Negative control and autofluorescence
tests were performed (B). Scale bar = 100 µm. In addition, IL-1β protein expression was measured in adipose tissue from
six-month-old CTRL and IUGR male rats (C). n = 3–5 animals/group. * p < 0.05.

2.4. Altered Proliferation and Capillary-like Outgrowth Sprout Properties

The proliferative capacity of ECFCs in both groups was assessed by measuring ab-
sorbance at 450 nm at 6 and 24 h after BrdU incorporation. Compared with CTRL-ECFCs,
we observed a significantly reduced proliferation capacity in IUGR-ECFCs at 6 h (−48%;
p < 0.01) and at 24 h (−75%; p < 0.01) (Figure 4A). We also evaluated the capacity of ECFCs
to form a capillary-like structure at 6 and 24 h using Matrigel cultures and observed a
greatly altered capacity at both time points in IUGR-ECFCs vs. CTRL-ECFCs. Indeed, they
formed open, short capillary-like structure tubes with a reduction in the number of closed
tubes and branches (Figure 4B).
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Figure 4. Proliferation and capillary-like structure formation properties of ECFCs. The proliferation capacity of CTRL-
ECFCs and IUGR-ECFCs isolated from six-month-old male rats was quantified using BrdU incorporation at 6 and 24 h;
n = 6–7 animals/group; ** p < 0.01 (A). The capillary-like outgrowth sprouts were evaluated using Matrigel cultures at
6 and 24 h in CTRL-ECFCs and IUGR-ECFCs isolated from six-month-old male rats. Magnification (5×) (B). These pictures
are representative images from n = 5–6 animals/group. Scale bar = 25 µm.

2.5. Impaired Angiogenic Capacity

NO production in ECFCs was assessed with fluorescent DAF-2DA. In IUGR-ECFCs
compared with CTRL-ECFCs, we observed a decreased basal NO production (−41%;
p < 0.01) (Figure 5A) as well as after stimulation by acetylcholine (−56%; p < 0.01) (Figure 5B).
We also observed decreased eNOS protein expression in IUGR-ECFCs compared with
CTRL-ECFCs by immunofluorescence (−66%; p < 0.05) and by western blot (−41%; p < 0.05)
(Figure 6A,C).

We evaluated the angiogenic profile of ECFCs by immunofluorescence. In IUGR-
ECFCs vs. CTRL-ECFCs, we observed a decrease in expression of angiopoietin (−48%;
p < 0.05) (Figure 7A), angiomotin (−31%; p < 0.05) (Figure 7B), vascular endothelial growth
factor receptor-2 (VEGFR-2) (−42%; p < 0.05) (Figure 7C), and vascular endothelial growth
factor-A (VEGF-A) (−41%; p < 0.05) (Figure 7D). However, we observed a slight increase in
the expression of thrombospondin-1 (+77%; p < 0.05) (Figure 7E).
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Figure 5. NO production in ECFCs. NO production was evaluated using DAF-2DA in CTRL-ECFCs and IUGR-ECFCs
isolated from six-month-old male rats under baseline conditions (A) and after stimulation by acetylcholine (B). Magnification
(20×). Nuclei were counterstained with DAPI. An autofluorescence test was performed (C). These pictures are representative
images from n = 5 animals/group; * p < 0.05. Scale bar = 100 µm.

2.6. Oxidative Stress

We measured superoxide anion production using the oxidative fluorescent dye hy-
droethidine and observed an increase in superoxide anion production (+511%; p < 0.001)
in IUGR-ECFCs vs. CTRL-ECFCs (Figure 8A). We determined the source of superoxide
anion production using pre-incubation with apocynin and L-NAME, inhibitors of NADPH
oxidase and eNOS, respectively. In IUGR-ECFCs, superoxide anion production was sig-
nificantly decreased after treatment with apocynin (−81%; p < 0.001) or L-NAME (−77%;
p < 0.05) (Figure 8B). In contrast, no effect on superoxide anion production was observed
in CTRL-ECFCs after treatment with these two inhibitors (Figure 8C).

We measured the protein expression of Cu/Zn superoxide dismutase and catalase
in CTRL-ECFCs and IUGR-ECFCs by western blot. In IUGR-ECFCs vs. CTRL-ECFCs,
we observed a decrease in expression of Cu/Zn superoxide dismutase (−27%; p < 0.05),
but no difference in the expression of catalase (Figure 9A). In addition, we measured
53BP-1 expression, a well-known DNA damage response factor, and observed an increase
in 53BP-1 staining (+204%; p < 0.05) in IUGR-ECFCs compared with those from the CTRL
group (Figure 9B).
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Figure 6. eNOS protein expression in ECFCs. eNOS protein expression was measured by immunofluorescence in CTRL-
ECFCs and IUGR-ECFCs isolated from six-month-old male rats (A). Magnification (20×). Nuclei were counterstained with
DAPI, and a negative control (with no primary antibody) and test for autofluorescence were performed (B). These pictures
are representative images from n = 4–5 animals/group; * p < 0.05. Scale bar = 100 µm. eNOS expression was also measured
in CTRL-ECFCs and IUGR-ECFCs by western blot (C).

2.7. Cellular Senescence

Cellular senescence was evaluated by measurement of senescence-associated–beta-
galactosidase (SA-β-gal). We observed an increase in beta-galactosidase staining (+103%;
p < 0.01) in IUGR-ECFCs compared with CTRL-ECFCs (Figure 10). We measured the
protein content of some senescence markers such as sirtuin-1, p21WAF, and p16INK4a,
and observed a decrease in sirtuin-1 protein expression by immunofluorescence (−63%;
p < 0.05) (Figure 11A) and by western blot (−31%; p < 0.05) (Figure 11B). No difference
in p21WAF expression between IUGR-ECFCs and CTRL-ECFCs (Figure 12A) was noted.
However, we observed an increase (+141%; p < 0.05) in p16INK4a protein expression in IUGR-
ECFCs (Figure 12B). We also found an increased phosphorylated p38 MAPKThr180+Tyr182/
p38MAPK protein expression in IUGR-ECFCs (+62%) (Figure 12C,D).
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Figure 7. Angiogenic profile of ECFCs. Angiopoietin (A), angiomotin (B), VEGFR-2 (C), VEGF-A (D), and thrombospondin-1
(E) protein expression was measured by immunofluorescence in CTRL-ECFCs and IUGR-ECFCs isolated from six-month-old
male rats. Magnification (20×). Nuclei were counterstained with DAPI. A negative control (with no primary antibody) and
test of autofluorescence were performed (F). These pictures are representative images from n = 4 animals/group; * p < 0.05.
Scale bar = 100 µm.
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Figure 8. Superoxide anion production in ECFCs. The superoxide anion level was evaluated by hydroethidine in CTRL-
ECFCs and IUGR-ECFCs isolated from six-month-old male rats under baseline conditions (A) and after 24 h pre-incubation
with L-NAME (100 µM) and apocynin (APO; 1 mM) in IUGR-ECFCs (B) and CTRL-ECFCs (C). Magnification (20×). Nuclei
were counterstained with DAPI, and a test of autofluorescence was performed (D). These pictures are representative images
from n = 5 animals/group. ** p < 0.01; *** p < 0.001; N.S: not significant. Scale bar = 100 µm.
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Figure 9. Antioxidant protein expression and DNA damage in ECFCs. The expression of Cu/Zn SOD and cata-
lase proteins was measured by western blot in CTRL-ECFCs and IUGR-ECFCs isolated from six-month-old male rats;
n = 3–5 animals/group; * p < 0.05 (A). DNA double-strand breaks were evaluated by 53BP-1 staining in CTRL-ECFCs and
IUGR-ECFCs isolated from six-month-old male rats. Magnification (20×) (B). Nuclei were counterstained with DAPI,
and a negative control (with no primary antibody) and test of autofluorescence were performed (C). These pictures are
representative images from n = 4–5 animals/group; * p < 0.05; N.S: not significant. Scale bar = 100 µm.
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Figure 10. Beta-galactosidase activity in ECFCs. Beta-galactosidase activity was determined as the blue staining normalized
to the total number of cells in CTRL-ECFCs and IUGR-ECFCs isolated from six-month-old male rats. Magnification (20×).
These pictures are representative images from n = 5 animals/group; * p < 0.05. Scale bar = 100 µm.

Figure 11. Sirtuin-1 expression. Sirtuin-1 protein expression was measured using immunofluorescence in CTRL-ECFCs
and IUGR-ECFCs isolated from six-month-old male rats (A). Magnification (20×). Nuclei were counterstained with DAPI,
and a negative control (with no primary antibody) and a test of autofluorescence were performed (C). These pictures are
representative images from n = 5 animals/group; * p < 0.05. Scale bar = 100 µm. In addition, the sirtuin-1 protein expression
was measured using western blot in CTRL-ECFCs and IUGR-ECFCs isolated from six-month-old male rats (B); n = 3–5
animals/group; * p < 0.05.
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Figure 12. Factors related to cellular senescence. p21WAF (A), p16INK4a (B), p38 MAPK (C) and phosphorylated p38
MAPKThr180+Tyr 182 (D) protein content were measured in CTRL-ECFCs and IUGR-ECFCs isolated from six-month-old male
rats; n = 3–5 animals/group; * p < 0.05; N.S: not significant.
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3. Discussion

The findings from this study demonstrate that IUGR induced an increase in SBP and
the presence of microvascular rarefaction only in in six-month-old male rats. These changes
were associated with a reduction in the proportion of CD31+ versus CD146+ staining on
CD45-cells and CD34 expression in ECFCs and an alteration in their functionality. This is
shown by reduced proliferation and impaired capillary-like structure formation capability,
as well as altered eNOS expression and angiogenic profiles. These dysfunctions are related
to oxidative stress and stress-induced premature cellular senescence (SIPS).

Prenatal exposure to maternal undernutrition in rats is well known to induce IUGR in
offspring, and is characterized by a low birth weight and associated with the development
of cardiometabolic disorders at adulthood [35,36].

We observed in our rat model that 9% casein administrated to dams throughout
gestation led to a reduction of body weight in both sexes at birth and at six months of
life. However, only six-month-old male rats displayed an increase in SBP at this age. In
fetal programing of arterial hypertension in rats, it is well established that after puberty
only male growth-restricted offspring remain hypertensive. In contrast, female growth-
restricted offspring stabilize their blood pressure to the level of adult female controls. It has
been suggested that estrogen contributes to the normalization of arterial blood pressure in
female growth-restricted offspring at adulthood [37].

Reduced density of arterioles and capillaries, also named microvascular rarefaction, is
a mechanism that increases peripheral vascular resistance and contributes to the pathophys-
iology of arterial hypertension [38] in both animal and human studies [39]. We observed
reduced capillary and arteriole density in IUGR compared with CTRL males at six months
of life, as observed in another rat model of developmental programing of arterial hyperten-
sion [40]. Reduced microvascular density has been related to impaired angiogenesis, as
demonstrated on aortic rings of a similar rat model of IUGR [41].

Angiogenesis is important to maintain the integrity of tissue perfusion, which is
crucial for physiologic organ function, and so impaired angiogenesis could contribute
to the development of hypertension. EPCs, and more particularly ECFCs, play a major
role in the angiogenic process by maintaining microvasculature and stimulating postnatal
angiogenesis [42]. As we observed increased SBP and microvascular rarefaction only in
IUGR males, in this study we explored ECFC functionality in CTRL and IUGR males.

Previous studies have demonstrated that ECFCs express surface markers such as
CD31, CD146, and CD34 and are negative for CD45 [43,44]. Using flow cytometry, we
observed a reduced proportion of CD31+ versus CD146+ staining on CD45-cells in IUGR-
ECFCs compared with CTRL-ECFCs. In addition, we used immunofluorescence to measure
CD34 expression, a marker of tube-forming capacity [45], a property related to ECFCs, and
observed decreased CD34 expression in IUGR-ECFCs compared with CTRL-ECFCs. A
negative correlation between circulating EPC numbers and multiple cardiovascular risks at
adulthood has been observed in several human studies [46–49]. However, in individuals
born with low birth weight, data are relatively scarce. A smaller number of circulating
EPCs isolated from cord blood at birth has been observed in preterm infants [50] as well
as in IUGR-complicated pregnancies [51]. In addition, Meister et al. observed a decrease
of 50% in CD34+ cells in preterm neonates compared with term neonates [52]. These data
suggest that deleterious conditions during fetal life could alter EPC numbers. Particularly,
inflammation has been associated with IUGR as inflammatory cytokines seem to play an
important role in this process. Indeed, increased levels of pro-inflammatory cytokines such
as interleukin-8, interferon-gamma, and tumor necrosis factor-alpha have been observed in
individuals born with fetal growth restriction [53]. In addition, increased IL-1β levels have
been observed in newborns with low birth weight [54]. Moreover, high levels of IL-1β and
tumor necrosis factor-alpha negatively modulate CD34 expression at the antigen as well
as the mRNA levels [55]. Adipose tissue is the major source of proinflammatory cytokine
production. In adipose tissue from the same group of animals from which ECFCs were
isolated, we observed that IUGR males displayed a significant increase in IL-1β protein
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expression compared with CTRL males. This suggests that inflammation could play a
role in the decreased proportion of IUGR-ECFCs; however, the mechanisms involved are
still unknown.

We explored the functionality of ECFCs by measuring both DNA synthesis and their
capacity to form a capillary-like structure. We observed decreased proliferative capability
at 6 h, which persisted at 24 h, and reduced capillary-like structure formation at both
6 and 24 h in IUGR-ECFCs vs. CTRL-ECFCs, suggesting that IUGR-ECFCs have a reduced
ability to migrate and thus repair vascular damage. Ligi et al. demonstrated that ECFCs
isolated from cord blood of low-birth-weight neonates displayed reduced proliferation
capability and capillary-like structure formation [21]. To our knowledge, this study is
the first to observe that these early dysfunctions of ECFCs persist thereafter at adulthood.
The impaired functionality of IUGR-ECFCs could be due to impaired angiogenesis. Nitric
oxide (NO) is necessary for angiogenesis to occur [56], is involved in the mobilization of
EPCs, and improves their migratory and proliferative activities [57], notably by regulation
of their angiogenic activity [58]. We observed decreased NO production in IUGR-ECFCs
compared with CTRL-ECFCs under basal conditions as well as after stimulation by acetyl-
choline. Decreased NO production has been related to endothelial dysfunction and arterial
hypertension, and is often observed in individuals born after IUGR [8,59]. Moreover, a link
between eNOS expression/functionality and EPC function has also been described [60].
This could explain the reduced proliferative and migration capabilities of IUGR-ECFCs.
Similar observations have been made in human umbilical vein endothelial cells exposed
to hypoxia [61], a condition strongly associated with IUGR [62]. NO can interact with
angiogenic factors. Vascular endothelial growth factor (VEGF) plays an important role
in EPC differentiation and vascular repair [63,64]. A reciprocal relation between NO and
VEGF has been demonstrated as synthesis of VEGF can be induced by NO [65,66], and
VEGF increases NO production by eNOS promoting angiogenesis [67]. Thus reduced NO
bioavailability in IUGR-ECFCs could have an impact on VEGF expression and subsequently
on ECFC functionality, as observed in patients with coronary heart disease [68]. VEGF-A is
the most important VEGF family member and was the first to be characterized [69]. Three
receptors have been identified, VEGFR-1 (Flt-1), VEGFR-2 (Flk-1), and VEGFR-3 (Flt-3).
Amongst them, VEGFR-2 is able to bind to VEGF-A with an affinity 10-fold lower than that
of VEGFR-1. However VEGFR-2 is the main mediator of VEGF-A activity in endothelial
cell functions such as differentiation, proliferation, migration, angiogenesis, and vessel
permeabilization [70]. We observed reduced VEGF-A and VEGFR-2 expression in IUGR-
ECFCs. Decreased VEGF-A expression has been observed in preeclamptic pregnancy, an
obstetric complication often associated with an increased incidence of IUGR [71], and in the
pancreatic islets of IUGR fetal sheep [72]. In addition, VEGF was markedly downregulated
in EPCs isolated from patients with either coronary heart disease [73] or from diabetic
patients, and is associated with decreased eNOS expression [74]. Ligi et al. observed
that VEGF-A expression was significantly decreased in ECFCs from low-birth-weight
newborns [20].

NO and VEGF also interact with other angiogenic factors such as angiopoietin-1, an-
giomotin, and thrombospondin. In EPCs, angiopoietin-1 regulates their mobilization from
the bone marrow [75] and improves neovascularization thanks to NO [76,77]. Angiopoietin-
1 alone does not stimulate proliferation and tube formation of endothelial cells in vitro,
but seems to interact downstream with VEGF [78]. Angiomotin plays an important role
in proliferation and function of endothelial cells, as well as in the regulation of tube for-
mation [79]. On the contrary, thrombospondin-1 inhibits the migration of endothelial cells
and tubule formation in ECFCs, as well as VEGF release from the extracellular matrix and
VEGF signal transduction. We observed a decreased expression of angiopoietin-1 and
angiomotin in IUGR-ECFCs, as reported in pregnancies complicated by preeclampsia with
IUGR [80], in endothelial cells from knockdown angiomotin zebrafish [81], and also during
the postnatal period in ECFCs from low-birth-weight newborns [80].
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In contrast, we observed an increased expression of thrombospondin-1 in IUGR-
ECFCs. In EPCs, an up-regulation of thrombospondin-1 mRNA expression related to
impaired reendothelialization function in vitro and in vivo has been observed in diabetic
patients [74], and in ECFCs isolated from low-birth-weight newborns [20].

These data suggest that IUGR-ECFCs display an imbalance in their angiogenic profile.
An up-regulation of this anti-angiogenic factor could be related to the reduced proliferation
and impaired capillary-like outgrowth sprout formation capability that is observed in the
IUGR group.

Several factors have been shown to negatively regulate EPC functionality, such as
oxidative stress and cellular senescence. Oxidative stress occurs when the amount of
reactive oxygen species (ROS) exceeds the antioxidant capacity, resulting in an imbalance
between ROS production and elimination. ROS are chemically reactive components formed
during the metabolism of oxygen molecules and are mainly produced in endothelial
cells by NADPH oxidase and eNOS uncoupling [82,83]. Excessive ROS can react with
cellular macromolecules leading to altered biological activity. ECFCs are highly sensitive
to oxidative stress [84,85], and so to improve tissue repair they must have an antioxidant
defense system to survive. Compared with CTRL-ECFCs, we observed an increase in
superoxide anion production in IUGR-ECFCs, which was mediated by NADPH oxidase
and eNOS uncoupling as identified using apocynin and L-NAME, inhibitors of NADPH
oxidase and eNOS, respectively. These inhibitors have no effect on superoxide anion
production in CTRL-ECFCs. Other animal models of hypertension have also displayed
increased NADPH-driven superoxide generation in vessels [86–88]. In IUGR-ECFCs, we
observed decreased Cu/Zn superoxide dismutase but no difference in catalase expression,
which could explain the accumulation of the superoxide anion because Cu/Zn SOD
cannot correctly catalyze the dismutation of superoxide to hydrogen peroxide and O2.
Oxidative stress can induce lipid, protein, and DNA damage. In IUGR-ECFCs, we observed
increased 53BP-1 staining, which is an important regulator of the cellular response to DNA
double-stranded break repair that promotes the end-joining of distal DNA ends [89]. In
addition, hyperactivity of the renin-angiotensin system has been associated with altered
number and functionality of EPCs [90]. We have not explored the activity of the renin-
angiotensin system in ECFCs, but in a similar animal model of IUGR we previously showed
an upregulation of this system in carotid arteries, characterized by an exaggerated response
to angiotensin II and increased expression of the angiotensin II receptor type-1 [90,91].

Excessive ROS levels and the presence of DNA damage can contribute to cellular senes-
cence of endothelial cells, notably by decreasing NO production and impaired angiogenesis
thus altering vascular repair [92]. We evaluated cellular senescence by measurement of SA-
β-gal activity, which is the most extensively used biomarker [93]. We observed an increase
in activity of SA-β-gal in IUGR-ECFCs compared with CTRL-ECFCs, as observed in early
EPCs isolated from a rat model of IUGR [94] and ECFCs isolated from low-birth-weight
newborns [34].

In addition, we also measured some factors related to cellular senescence such as
p21WAF, p16INK4a, and sirtuin-1, a NAD+ deacetylase [89]. In IUGR-ECFCs compared with
CTRL-ECFCs, we observed no difference in p21WAF expression, but increased p16INK4a pro-
tein expression and a decrease in expression of the anti-aging protein sirtuin-1, suggesting
the presence of SIPS, which could be reversed in contrast to replicative senescence. Thus,
SIPS could be associated with the impaired functionality observed in IUGR-ECFCs. In
low-birth-weight newborns, Vassallo et al. showed that SIPS was associated with impaired
proliferation, capillary-like structure formation, and angiogenic factors [34].

These dysfunctions of IUGR-ECFCs related to SIPS might be due to an altered secre-
tory phenotype, named senescence-associated secretory phenotype (SASP), characterized
by secretion of growth factors, proteases, inflammatory cytokines, and the release of ex-
tracellular vesicles [95,96]. Notably, as we found no difference in p21WAF expression, the
DNA damage observed in IUGR-ECFCs could be due to the presence of SASP. Indeed,
SASP could contribute to the impaired functional properties of cells and tissues and so
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promote the progression of aging-related diseases [97]. Activation of p38MAPK activ-
ity [98] is associated with SASP [99], and is a major signaling pathway regulating DNA
damage and senescence in response to oxidative stress [100], as demonstrated by Shen et al.
on human umbilical vein endothelial cells [101]. Increased activity of p38MAPK protein
characterized by an increased ratio of phosphorylated p38MAPKThr180+Tyr182/p38MAPK
has been observed in IUGR-ECFCs. In addition, SIPS could be related to increased IL-1β
expression, as observed in adipose tissue from IUGR males, and as found in the cellular
senescence of human umbilical vein endothelial cells [102]. These data suggest that SIPS
might be induced by SASP and could be associated with the impaired functions observed
in IUGR-ECFCs.

4. Materials and Methods
4.1. Body Weight Measurement

The body weight was assessed at birth and at six months of life in both groups and
both sexes.

4.2. Animal Model

We used a rat model of IUGR (Swiss Veterinarian Animal Care committee-VD3050-
31.01.2017) [103]. Pregnant rats were randomly allocated during gestation to a control
diet (23% casein (version 0001 210 SAFE, Augy, France); CTRL group) or to an isocaloric
low-protein diet (9% casein (version 0040), SAFE); IUGR group). Each litter was then
equalized to ten pups per group to ensure a standardized nutrient supply until weaning,
and thereafter rats from both groups had free access to a standard diet (A04, SAFE Diets,
Augy, France) and water. Every sample animal originated from a separate litter.

4.3. Systolic Blood Pressure Measurement

SBP was measured in both sexes in CTRL (n = 5) and in IUGR (n = 5) rats as previously
described [59]. Briefly, the SBP was measured in six-month-old conscious animals using
the tail-cuff plethysmography method associated with thermostatically warmed restrainers
designed for rodents and adapted to the size of the animal (CODA™ High Throughput
System-Kent Scientific Corporation, Torrington, CT, USA). Each animal was acclimatized
to this procedure during one week before measurements, which were always performed
by a single operator.

4.4. Microvascular Density Measurement

Morphological measurements of microvascular density were performed in both sexes
on anterior tibialis muscle sections from six-month-old CTRL (n = 5) and IUGR (n = 5) male
rats using lectin-tetramethylrhodamine (TRITC) (Sigma-Aldrich, Saint Louis, MO, USA),
as previously described [41]. Briefly, anterior tibialis muscle sections were stained with
lectin-TRITC (1/100) overnight at 4 ◦C then were rinsed with phosphate-buffered saline
(PBS) and mounted using Fluoromount-G medium with 4′6-diamidino-2-phenylindole
(DAPI; Interchim, France). The slides were observed blindly by the same experimenter
using a fluorescence microscope (Eclipse Ti2 Series-Nikon Europe B.V, Amsterdam, the
Netherlands). Fluorescence of lectin was normalized to DAPI fluorescence and autofluores-
cence was subtracted. The pictures were evaluated using ImageJ software (Java 1.8.0_112,
National Institutes of Health, Southern Montgomery, USA, access on 01 july 2021). Each
experiment was performed in duplicate.

4.5. Endothelial Progenitor Cell Isolation

Bone marrow was collected from the tibialis and femur of CTRL and IUGR male rats
at six months of life. Briefly, bone marrow mononuclear cells were isolated by density
gradient centrifugation by diluting 1:1 in PBS and layering over a separating medium
(Histopaque 1077-, Sigma-Aldrich, Saint Louis, MO, USA). After 30 min centrifugation at
400× g, mononuclear cells isolated from the interface were washed three times in Roswell
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Park Memorial Institute medium (RPMI) medium, 10% fetal calf serum (Thermo Fisher
Scientific, Rockford, IL, USA), and resuspended in endothelial basal cell growth culture
medium-2 (EBM2) supplemented with endothelial cell growth medium MV2 (PromoCell,
Heidelberg, Germany) and penicillin/streptomycin. ECFCs colonies were identified as well-
circumscribed monolayers of cobblestone-appearing cells using an inverted microscope
(Nikon, Eclipse Ti2 Series) as previously described [21]. Colonies without cobblestone-like
morphology were mechanically removed to prevent them from becoming the predomi-
nant cells. The cells were isolated from CTRL (CTRL-ECFCs) and IUGR (IUGR-ECFCs)
rats at six-months old and were studied between passages 1–3. The ECFC experiments
represent individual animals taken from separate litters. Unfortunately, primary cultures
are particularly sensitive, and during the experiments, we had to face contaminations
and had to throw away some ECFCs, which explains the difference in number between
the experiments.

4.6. ECFC Quantification Using Flow Cytometry

Single-cell suspensions from CTRL-ECFCs (n = 3) and IUGR-ECFCs (n = 5) were stained
with fluorochrome-labeled monoclonal antibodies against CD31 PE (TLD-3A12), CD45 FITC
(OX-1), and CD146 (LSEC) APC (BD Biosciences, San Jose, CA, USA; or Miltenyi Biotech,
Bergisch Gladbach, Germany) in PBS/3%FCS for 20 min at 4 ◦C. After washing out unbound
antibody-conjugates by centrifugation, the cells were resuspended in 200 µL PBS/3%FCS
and 0.5 µg DAPI (Thermo Fisher Scientific, Rockford, IL, USA) was added to discriminate
dead cells. Samples were analyzed on a LSRII SORP flow cytometer equipped with 5 lasers
(BD). Data were analyzed with FlowJo software (FlowJo v10.8, Ashland, OR, USA).

4.7. ECFC Proliferation Test

The proliferative capacity of CTRL-ECFCs (n = 6) and IUGR-ECFCs (n = 7)
(20,000 cells/well) was measured by DNA synthesis after 6 and 24 h using a colorimet-
ric cell proliferation ELISA test based on the incorporation of 5′-bromo-2′-deoxyuridine
(BrdU) during DNA replication (Roche diagnostics, Basel, Switzerland) as previously
described [21]. Each experiment was performed in triplicate.

4.8. ECFC Capillary-like Structure Formation

The capillary-like structure formation of CTRL-ECFCs (n = 5) and IUGR-ECFCs
(n = 6) (20,000 cells/well) was evaluated in 96-well plates coated with 50 µL of growth
factor reduced Matrigel (BD Biosciences) at 6 and 24 h as previously described [21]. Each
experiment was performed in triplicate.

4.9. Measurement of NO Production by ECFCs

NO production by ECFCs was detected using the NO-specific fluorescent dye, 4,5-
diaminofluorescein diacetate (DAF-2DA) [59]. Briefly, CTRL-ECFCs (n = 5) and IUGR-
ECFCs (n = 5) were loaded with DAF-2DA (10 mM) and incubated in a light-protected
humidified chamber at 37 ◦C for 1 h. ECFCs were then incubated for 1 h at 37 ◦C in
N-2-Hydroxyethylpiperazine-N-2-Ethane Sulfonic Acid (HEPES) buffer alone or with
acetylcholine (100 mM) added. Digital images were observed blindly by the same exper-
imenter using a fluorescence microscope (Eclipse Ti2 Series). Three images per culture
well (2 wells per ECFCs) were captured. Fluorescence of DAF-2DA was normalized to
DAPI fluorescence and autofluorescence was subtracted. The pictures were evaluated with
ImageJ software. Each experiment was performed in duplicate.

4.10. Measurement of Superoxide Anion Production by ECFCs

Superoxide anion production was evaluated in CTRL-ECFCs (n = 5) and IUGR-ECFCs
(n = 5) using the oxidative fluorescent dye hydroethidine (2 µM, Sigma-Aldrich) [36,59] in
the presence or absence of the NOS blocker N-nitro-L-arginine methyl ester (L-NAME;
100 µM; 24 h pre-incubation (Sigma Aldrich) and NADPH blocker apocynin (1 mM; 24 h
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pre-incubation; Millipore Corporation, Burlington, MA, USA) in comparison to autofluo-
rescence detection. Digital images were observed blindly by the same experimenter using
a fluorescence microscope (Eclipse Ti2 Series). Three images per culture well (2 wells per
ECFC) were captured. The fluorescence of superoxide anion was normalized to DAPI
fluorescence and autofluorescence was subtracted. The pictures were evaluated using
ImageJ software. Each experiment was performed in duplicate.

4.11. Senescence Detection in ECFCs

SA-β-gal activity was performed in CTRL-ECFCs (n = 5) and IUGR-ECFCs (n = 5)
using a senescence detection kit (Cell Signaling Technology, Danvers, MA, USA) according
to the manufacturer’s instructions. SA-β-gal-positive cells were normalized as a percentage
of the total number of cells [34]. Each experiment was performed in duplicate.

4.12. Immunofluorescence

CTRL-ECFCs (n = 4–5) and IUGR-ECFCs (n = 4) were fixed using cold ethanol 70%
and stained with sirtuin-1, endothelial nitric oxide synthase (eNOS), 53BP-1 (rabbit, 1:100;
cell signaling, Danvers, MA, USA), CD34, angiopoietin, angiomotin, VEGF-A, VEGFR-2,
and thrombospondin-1 (rabbit, 1:100; Abcam, Cambridge, UK) overnight at 4 ◦C. ECFCs
were then washed with PBS and incubated for 2 h with Alexa Fluor-488 goat anti-rabbit
IgG (IgG 1:200), Abcam), and were rinsed with PBS and mounted using Fluoromount-G
mounting medium with DAPI. Autofluorescence was subtracted. A negative control was
obtained using incubation only with the secondary antibody. The slides were observed
blindly using a fluorescence microscope (Eclipse Ti2 Series) by the same experimenter.
Three images per culture well (2 wells per ECFCs) were captured. Fluorescence of each
factor was normalized to DAPI fluorescence. The pictures were evaluated using ImageJ
software. Each experiment was performed in duplicate.

4.13. Protein Expression Evaluation Using Western Blotting

Proteins were extracted from CTRL-ECFCs (n = 3) and IUGR-ECFCs (n = 5) using a
lysis buffer (HEPES 50 mM, EDTA 1 mM, EGTA 1 mM, Glycerol 10%, pH 7.4, NaF 50 mM,
AEBSF 0.1 mM, Leupeptin 10 µg/mL, Pepstatin 5 µg/mL, Aprotinin 3 µg/mL, Sodium
Vanadate 1 mM, CHAPS 20 mM) (Sigma-Aldrich). The cell suspension was left on ice for
5 min and then sonicated. The homogenate was centrifuged for 30 min at 10,000 rpm at
4 ◦C. The supernatant was retained for protein quantification (Life Technologies Europe B.V,
Zug, Switzerland) and western blot analysis. Denatured (NuPAGE sample-reducing agent;
10 min at 70 ◦C) ECFC proteins (35 µg) from the CTRL and IUGR groups were separated on
the same gradient gel (NuPAGE 4–12% Bis-Tris gel, Life Technologies Europe B.V) and trans-
ferred overnight at 4 ◦C (30 V) to Whatman nitrocellulose membranes (Life Technologies
Europe B.V). Ponceau staining (Life Technologies Europe B.V) confirmed the presence of
proteins on the membranes. All primary antibody incubations were performed in blocking
buffer (PBS-Tween 2%-bovine serum albumin (BSA) 3%; AppliChem, Darmstadt, Germany)
overnight at 4 ◦C. Antibodies against eNOS, catalase, Cu/Zn superoxide dismutase, IL-1β,
sirtuin-1, p21WAF, p16INK4a, p38 MAPK, phosphorylated p38MAPKThr180+Tyr182, and beta-
actin were purchased and used at the dilutions recommended for immunoblotting (1:1000,
Cell Signaling Technology Cell Signaling and Abcam). Incubations with HRP anti-mouse
or anti-rabbit secondary antibodies (1/2000; Cell Signaling) were performed for 2 h at room
temperature in blocking buffer (PBS-Tween 2%-BSA 3%). The antibodies were visualized
using enhanced chemiluminescence western blotting substrate (Life Technologies Europe
B.V)). A G-BOX Imaging System (GeneSys, Syngene, Cambridge, UK) was used to detect
specific bands, and the optical density of each band was measured using specific software
(GeneTools 4.03.05.0, Syngene, Cambridge, UK) [89]. We performed sirtuin-1 and Cu/Zn
SOD on the same membrane to reduce biological material consumption.
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4.14. Statistical Analyses

All data were presented as mean ± SEM. Experimental observations were analyzed
using the Mann-Whitney U test. GraphPad Prism 8 (version 8.3.0 (538), La Jolla, CA, USA)
was used for statistical analyses and creating graphics. The significance level was set at
p < 0.05.

5. Conclusions
5.1. Conclusion

The present study demonstrated that at 6 months after birth, adult male rats born
after IUGR had a reduced proportion of CD31+ versus CD146+ staining on CD45− cells
and CD34 expression in ECFCs, with altered functions of proliferation and capillary-
like structure formation. In addition, an imbalance in their angiogenic profile related to
oxidative stress and SIPS was observed. These dysfunctions were associated with arterial
hypertension and microvascular rarefaction (Figure 13).

Figure 13. ECFC dysfunction related to IUGR and developmental programming of arterial hypertension at 6 months of life.

5.2. Limitations

The present study was performed only in six-month-old male rats. Therefore, it was
not possible to determine whether the observed ECFC alterations precede the increase in
SBP. To answer this question, it will be necessary to explore the functionality of ECFCs at a
younger age at which SBP is not increased. In addition, ECFCs isolated from six-month-old
females were not investigated in this study because of the absence of an increase in SBP
in these individuals. It will be therefore necessary to determine whether ECFCs are also
altered in females even in the absence of increased SBP.
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Finally, the present data were obtained in a rat model of IUGR induced by a maternal
low-protein diet. Further investigation should be therefore performed in humans in order
to determine whether similar alterations could be observed.

5.3. Perspectives

In this study, the identification of mechanisms related to ECFC dysfunction, such as ox-
idative stress and SIPS, could enable us to design specific therapeutic or preventive strategies
and to accelerate the research for vascular regenerative therapies. Particularly, it would be
interesting to explore whether an antioxidant therapy could restore the functional properties
of IUGR-ECFCs, such as proliferation, capillary-like structure formation, and expression
of angiogenic factors, associated with a decrease in oxidative stress and reversion of SIPS.
Resveratrol is widely known as a phenolic compound with powerful antioxidant activity.
Resveratrol is present in several plants, including grape skins, grape seeds, giant knotweed,
cassia seeds, passion fruit, white tea, plums, and peanuts [104,105]. Wang et al. demonstrated
that resveratrol promotes the proliferation, adhesion, and migration of EPCs in a dose-and
time-dependent manner and increases the expression of VEGF to further induce vasculogene-
sis [106,107], which was mediated by the activation of sirtuin-1 [108]. Resveratrol also delays
the senescence of EPCs by increasing telomerase activity to maintain the appropriate levels
and function of EPCs [109,110], and by increasing sirtuin-1 functionality [34]. Resveratrol
also prevents oxidative stress induced by diabetes in EPCs via sirtuin-1 activation [111]. In
ECFCs isolated from low-birth-weight newborns, in vitro treatment with resveratrol has
improved ECFC functionality and reversed SIPS; however, whether resveratrol could exert
similar actions on ECFCs-IUGR isolated 6 months after birth is still unknown.

In addition, as mentioned above, it will be interesting to explore if impaired ECFC
functionalities precede, or are rather a consequence of arterial hypertension by exploring
the functionality of ECFCs at birth and at a younger age when SBP is not increased. In
addition, although females did not have increased SBP at six months of life, it will be
interesting to investigate their ECFC functionality. If ECFC alterations are observed in
6-month-old females, it would be interesting to study whether SBP increases later in life.

Further investigation of epigenetic processes implicated in the regulation of molec-
ular mechanisms identified in this study could be of interest to better understand the
developmental programming of hypertension after IUGR.

Because individuals born after IUGR may have subsequent catch-up growth that can
amplify cardiometabolic disease, it would also be interesting to observe whether a growth
catch-up (induced by litter-size restriction during the lactation period) could amplify the
adverse effects related to the IUGR in the present rat model.

Finally, the use of stem cells has emerged as promising for regenerative medicine
because of their capacity to contribute to organ repair and regeneration throughout life.
In particular, EPCs have been identified as having clinical potential, not only in vascular
regenerative applications [112,113] in ischemic diseases such as myocardial infarction and
peripheral vascular disease, but also in metabolic diseases and pulmonary and systemic
hypertension [114,115]. In particular, ECFCs represent ideal stem cell candidates thanks to
their properties of proliferation, autorenewal, migration, differentiation, vascular growth,
and neovascularization [116]. Indeed, intrajugular administration of human cord blood-
derived ECFCs in newborn rodents was able to reverse alveolar growth arrest, preserve
lung vascularity, and reduce pulmonary hypertension in a model of hyperoxia-induced
bronchopulmonary dysplasia [42]. This cell therapy also prevented cardiomyocyte hy-
pertrophy, as well as the myocardial and perivascular fibrosis observed after neonatal
hyperoxia exposure [117].

Concerning clinical applications, ECFCs could provide an interesting tool in the man-
agement of preeclampsia and IUGR and their adverse consequences. Whether ECFC
dysfunctions are already present at birth, they could be used as biomarkers to identify indi-
viduals with an increased risk to develop cardiometabolic disease later in life and to design
specific follow-up or preventative approaches for such individuals. Moreover, identification
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of mechanisms implicated in ECFC dysfunctions could help to design potential treatments
to reverse these alterations, as mentioned above. Such an approach could enable treatment
with ECFCs isolated from cord blood before re-injection in the neonate to limit long-term
adverse effects of IUGR or preeclampsia. Finally, identification of ECFC dysfunctions in
maternal blood in pregnancies complicated by IUGR or preeclampsia could be useful as an
early diagnostic tool to predict such complications and to improve their management. This
could facilitate the design of therapeutic interventions to limit or prevent the development
of IUGR or preeclampsia and thus prevent or limit their adverse consequences. Indeed,
preeclampsia often results in IUGR or preterm babies. The level of circulating ECFCs in
cord blood of preeclamptic pregnancies was reduced [118–120] and impaired angiogenic
factors have been associated with preeclampsia. Notably, the angiogenic factor VEGF plays
a major role in the management of blood pressure during preeclampsia, and low levels of
VEGF have been observed in preeclampsia [121]. Exogenous administration of VEGF has
been shown to reverse the antiangiogenic effects of preeclamptic plasma [122], and VEGF
represents an important regulator of ECFC functionality. Therefore, based on our present
study and these independent observations, future experiments could focus on the “rescue”
of ECFC functionality, either by pharmacological treatment or gene therapy, notably by
increasing their angiogenic potential by in vitro conditioning (eNOS, VEGF, CD146) as
previously published [123,124].
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