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Abstract: Bearing is one of the most important parts of rotating machinery with high failure rate,
and its working state directly affects the performance of the entire equipment. Hence, it is of great
significance to diagnose bearing faults, which can contribute to guaranteeing running stability and
maintenance, thus promoting production efficiency and economic benefits. Usually, the bearing fault
features are difficult to extract effectively, which results in low diagnosis performance. To solve the
problem, this paper proposes a bearing fault feature extraction method and it establishes a bearing
fault diagnosis method that is based on feature fusion. The basic idea of the method is as follows:
firstly, the time-frequency feature of the bearing signal is extracted through Wavelet Packet Transform
(WPT) to form the time-frequency characteristic matrix of the signal; secondly, the Multi-Weight
Singular Value Decomposition (MWSVD) is constructed by singular value contribution rate and
entropy weight. The features of the time-frequency feature matrix obtained by WPT are further
extracted, and the features that are sensitive to fault in the time-frequency feature matrix are retained
while the insensitive features are removed; finally, the extracted feature matrix is used as the input
of the Support Vector Machine (SVM) classifier for bearing fault diagnosis. The proposed method
is validated by data sets from the time-varying bearing data from the University of Ottawa and
Case Western Reserve University Bearing Data Center. The results show that the algorithm can
effectively diagnose the bearing under the steady-state and unsteady state. This paper proposes
that the algorithm has better fault diagnosis capabilities and feature extraction capabilities when
compared with methods that aree based on traditional feature technology.

Keywords: bearing fault diagnosis; feature extraction; wavelet packet transform; singular value
decomposition; entropy weight method; support vector machine

1. Introduction

Rotating machinery is one of the most common classes of mechanical equipment and
it plays a significant role in industrial applications [1]. As one of the key components in
rotating machinery, bearings health directly affects the performance of mechanical equip-
ment [2,3]. According to incomplete statistics, approximately 30% of failures are caused by
the bearing fault [4]. Therefore, the fault diagnosis of bearing is of great significance for
maintaining the safe operation of equipment [5].

Normally, it cannot be directly diagnosed due to the working environment of the
bearing. Sensors can be used to collect digital signals that can reflect the state of the
bearing [6–10], such as spectral signals [11], acoustic signals [12], and vibration signals.
Spectral signals and acoustic signals can be used for non-destructive flaw detection, and
have the advantages of obvious characteristic frequency and good early fault prediction.
However, these methods require high professional quality of equipment and operators.
The vibration signal of the bearing contains a wealth of fault energy information [13,14],
and the collection of the bearing vibration signal does not require complex equipment and
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professionals. Therefore, fault diagnosis that is based on vibration signals is a common
method for bearing diagnosis [15]. Vibration signals are affected by working conditions
and equipment environment, the frequency spectrum is relatively complicated, and there
are many interference factors. Therefore, the effective extraction of signal characteristics
is the key to bearing fault diagnosis. The commonly used methods for extracting bearing
signal features include empirical mode decomposition (EMD) and wavelet transform.
EMD is an adaptive time-frequency analysis method without any prior knowledge, which
has the ability of adaptive signal decomposition and noise reduction. However, EMD is
only an empirical method and it lacks a complete theoretical basis [16]. Besides, in the
decomposition process of EMD, modal aliasing is prone to occur due to problems, such as
over-envelope, under-envelope, and unreasonable convergence conditions [17,18], which
restricts the application of EMD. Wavelet packet transform (WPT) is a kind of wavelet
transform. It can divide the frequency band of the signal into multiple scales to obtain
information regarding signal in the low-frequency and high-frequency regions. Besides,
WPT can adaptively select the corresponding frequency band to match the frequency
spectrum of original signal according to the feature of signal, which has a more uniform
frequency feature extraction effect [19,20]. Zhong et al. [21] used WPT to decompose the
bearing signal, and the decomposed frequency band entropy is used as the input of Support
Vector Machine (SVM) to establish a rolling bearing classification model.

The wavelet packet can extract the time-frequency information of the bearing vibration
signal without omission, and more comprehensively describe the fault state of the bearing.
However, on the one hand, it will increase the dimension of the bearing signal feature
matrix and increase the computational complexity of the subsequent diagnosis model; on
the other hand, there may be some insensitive features or even invalid features, increasing
the probability that sensitive information will be submerged [22]. Therefore, after acquiring
the bearing signal feature matrix, it is necessary to be further extracted to remove the irrele-
vant and redundant features. At present, the methods to remove redundant and irrelevant
features of bearing include auto-encoder [23,24], neural networks [25,26], Principal Com-
ponent Analysis (PCA) [27], kernel PCA [28], and Singular Value Decomposition (SVD).
However, although intelligent algorithms, such as self-encoding and neural networks, have
been applied to diagnose bearing faults, they have disadvantages, such as low generaliza-
tion, slow calculation speed, and higher requirements for hardware equipment. For PCA
and kernel PCA, on the one hand, PCA needs to be spatially transformed. Furthermore,
the features of the original signal will lose their physical meaning through combination
transformation; on the other hand, when using PCA, it is necessary to standardize the
data. The noise in the data will affect the standardization process of data. SVD solves the
dimensionality reduction order through the singular value of the matrix. When compared
with PCA, the singular value has good stability and it is not sensitive to changes that are
caused by interference, such as noise. It can still collect data information more accurately,
even with small interference [29,30]. Kedadouche et al. [31] applied SVD to extract the
matrix after WPT and use it as the input of SVM to identify the fault mode of rolling
bearings. Cheng et al. [32] invented empirical mode decomposition to decompose the
vibration signal of a rotating machine into multiple natural mode functions, and used
SVD for the initial features matrix formed by these natural functions to obtain the singular
values of matrix and used it for SVM fault diagnosis. Although SVD has good stability,
as compared with PCA, the features extracted by SVD have relatively higher computa-
tional cost for subsequent diagnosis models. In view of this, Yuan et al. [33] proposed the
Weighted Singular Value Decomposition (WSVD) with the ratio of singular values as the
weight, and it is applied to radar emitter signals. The results showed that this method can
extract the features of radar emitter signals very well. Although this method can effectively
reduce the calculation cost of SVD, this method only tried to square the singular value after
dimensionality reduction, which cannot fully reflect the information of the data itself and
the importance of sensitive features.
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This paper presents a study of the fault diagnosis method based on feature fusion
when the bearing fault features are difficult to extract effectively which results in low
diagnosis performance. Figure 1 shows the flowchart of the bearing fault diagnosis method
based on feature fusion. The bearing vibration signal that is collected by the sensor obtains
the time-frequency domain characteristics of the bearing through wavelet packet transform
(WPT). This time-frequency domain feature is reduced dimension by the Multi-Weight
Singular Value Decomposition (MWSVD). The reduced dimensionality features are used
in SVM for fault diagnosis. The experimental results show the superiority of this method
when compared to some of the traditional feature techniques. The major contributions of
this paper include the following:

(1) a feature extraction method that is based on MWSVD is proposed and its ef-
fectiveness in two data set is evaluated. In the proposed method, the time-frequency
domain information of the vibration signal that is extracted by WPT is best preserved in
the low-dimensional space;

(2) the algorithm proposed in this paper is compared with some traditional feature
extraction algorithms, combined with support vector machines for fault diagnosis, and the
diagnosis effect is compared; and,

(3) a bearing fault diagnosis algorithm based on feature fusion is proposed, which can
timely and effectively diagnose bearings in both steady state and non-steady state.
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Figure 1. The flowchart of the bearing fault diagnosis method that is based on feature fusion.

The rest of this article is as follows: Section 2 introduces the Weighted Singular
Value Decomposition (WSVD) algorithm. Section 3 describes the process of wavelet packet
decomposition and weighted singular value decomposition, and it proposes a feature
extraction method based on fusion multi-weight singular value decomposition. Section 4
proposes a fault diagnosis method that is based on feature fusion. Section 5 shows the
fault diagnosis results of the two data sets and the comparison results with other methods.
Section 6 draws the conclusion.



Sensors 2021, 21, 2524 4 of 25

2. Weighted Singular Value Decomposition Method

The principle and steps of weighted singular value decomposition are as follows [33]:
Firstly, the data can be normalized by

Âi =
2× (Ai − Ai)

|max(Ai)−min(Ai)|
(1)

where Ai is the ith row data of matrix A, Âi is the ith row data after data normalization,
and Ai is the mean value of Ai. Secondly, perform SVD decomposition according to the
following equation

Â = Um×mΣm×sVT
s×s (2)

where Â is the normalized matrix of A, Σm×s=
[
Λs×s OT

(m−s)×s

]T
, O(m−s)×s is zero matrix,

Λs×s = diag(σ1, σ2, · · · , σs), σ1 ≥ σ2 ≥ · · · ≥ σs is singular value, Um×m and Vs×s are
the unitary matrix. The order r < s after dimensionality reduction is determined by the
cumulative contribution rate of singular value that is greater than 90%. Subsequently, Σm×s
becomes Σr×r = diag(σ1, σ2, · · · , σr),σ1 ≥ σ2 ≥ · · · ≥ σr after dimensionality reduction.
The weight is calculated according to the elements in Σr×r

wi =
σi

/
r
∑

i=1
σi

, i = 1, 2 · · · r (3)

Let the weight vector be [wi]1×r = [w1, · · · , wr], according to the weight

Dm×r = |Um×r| ⊗ wi =

 |u11|w1 . . . |u1r|wr
...

. . .
...

|um1|w1 · · · |umr|wr

 (4)

where uij is the element of row i and column j of the matrix Um×r. The matrix Dm×r can
be normalized according to the following equation to obtain the weighted singular value
decomposition matrix B

B =

 d11/ζ1 . . . d1r/ζ1
...

. . .
...

d1m/ζm · · · dmr/ζm

 (5)

where ζi =
r
∑
j

dij, i = 1, · · · , m, dij is the element in row i and column j of the matrix Dm×r.

3. Fault Feature Extraction Method Based on WPT-MWSVD
3.1. WPT

Suppose that Z is the set of integers, L2(R) is a square-integrable real function space,
and a series of closed subspace sequence {Vl}l∈Z on L2(R) is called the multi-resolution
analysis of space L2(R) if the following conditions are met:

(1) Monotonicity: Vl+1 ⊂ Vl , l ∈ Z;
(2) Translation invariance: f (x) ∈ Vl ⇔ f (x− α) ∈ Vl , α ∈ Z;
(3) Scalability: f (x) ∈ Vl ⇔ f (2x) ∈ Vl−1;
(4) Approximation: ∪

l∈Z
Vl = L2(R), ∩

l∈Z
Vl = {0};

(5) The existence of Riesz base: {ϕ(x− k)|k ∈ Z} form the Risez base of V0.
If {ϕ(x − k)|k ∈ Z} is a canonical orthonormal basis of V0 in {Vl}l∈Z for multi-

resolution analysis of L2(R), then {ϕl,k(x) = 2−
l
2 ϕ(2−l x− k)|k ∈ Z}l∈Z is the canonical

orthonormal basis of {Vl}l∈Z namely Vl = span{2− l
2 ϕ(2−l x− k)}k∈Z [34].
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Notice that Vl+1 ⊂ Vl , if the orthogonal complement of Vl+1 in Vl is Wl+1, that is
Vl=Vl+1 ⊕Wl+1, then Wl+1 is called the wavelet subspace of L2(R)

If W0 is a orthogonal complement of V0 on V−1, then {ψl,k(x) = 2−
l
2 ψ(2−l x− k)|k ∈ Z}l∈Z

is the orthogonal basis of Wl , that is Wl = span{2− l
2 ψ(2−l x− k)}k∈Z [35].

Suppose that the bearing signal f (x) belongs to Vl , WPT can decompose f (x) in the
form of a binary tree. The principle of WPT can be described, as follows [34].

Suppose that {Vl}l∈Z is a multi-resolution analysis of L2(R), ϕ(x) and ψ(x) are the
corresponding orthogonal scaling function and orthogonal wavelet function, and the
two-scale equations are satisfied

ϕ(x) =
√

2 ∑
k∈Z

hk ϕ(2x− k)

ψ(x) =
√

2 ∑
k∈Z

gk ϕ(2x− k)
(6)

where hk(�) and gk(�) are low-pass and high-pass filters, respectively. Let µ0 = ϕ(x),
µ1 = ψ(x), then 

µ0(x) =
√

2 ∑
k∈Z

hkµ0(2x− k)

µ1(x) =
√

2 ∑
k∈Z

gkµ0(2x− k)
(7)

The above formula is extended to the general situation
µ2n(x) =

√
2 ∑

k∈Z
hkµn(2x− k)

µ2n+1(x) =
√

2 ∑
k∈Z

gkµn(2x− k)
(8)

From Equation (8), the function set {µn(t) : n = 0, 1, 2, · · · } can be obtained that is
called wavelet packet determined by the orthogonal scaling function ϕ(x). The correspond-
ing space of wavelet packet {µn(x) : n = 0, 1, 2, · · · } is

Un
l = span{2− l

2 µn(2−l x− k), k ∈ Z}l∈Z (9)

Thus, the following formula is established [34]
√

2µn(2−l x− k) = ∑
b∈Z

hk−2bµ2n(2−l−1x− b)

+ ∑
b∈Z

gk−2bµ2n+1(2−l−1x− b), k ∈ Z
(10)

where h(�) and g(�) are the complex conjugates of hk(�) and gk(�). According to Vγ=Vγ+1⊕
Wγ+1, it can be obtained that

Un
l = U2n

l+1 ⊕U2n+1
l+1 , l ∈ Z (11)

In the case of l = 3, the corresponding structural decomposition is shown in Figure 2.
Suppose that f n

l (x) ∈ Un
l , f 2n

l+1(x) ∈ U2n
l+1, f 2n+1

l+1 (x) ∈ U2n+1
l+1 , then

f n
l (x) = ∑

k∈Z
cn

l,k2−
l
2 µn(2−l x− k) = f 2n

l+1(x) + f 2n+1
l+1 (x)

= ∑
b∈Z

c2n
l+1,b2−

l+1
2 µ2n(2−l−1x− b) + ∑

b∈Z
c2n+1

l+1,b2−
l+1

2 µ2n+1(2−l−1x− b)
(12)

where cn
l,k, c2n

l+1,b and c2n+1
l+1,b are the coefficients of function f n

l (x), f 2n
l+1(x), f 2n+1

l+1 (x) under
the corresponding subspace bases. By substituting Equation (10) into Equation (12), it is
concluded that
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
c2n

l+1,b = ∑
k∈Z

cn
l,khk−2b, b ∈ Z

c2n+1
l+1,b = ∑

k∈Z
cn

l.kgk−2b, b ∈ Z
(13)

Equation (13) is called the Mallat decomposition algorithm formula of wavelet packet [36].
In application, for the bearing continuous signal f (x), the sample sequence f (t),
t = 1, 2, · · · , mλ that is obtained by sampling can be directly approximated, as follows

c0
0,λ = f (t), t = 1, 2, · · · , mλ (14)

where mλ is the sampling length of the signal. Therefore, as long as the type of wavelet
packet function and scales l are selected, all of the wavelet packet coefficients cn

l,ν of
bearing signal sequence f (t), t = 1, 2, · · · , mλ under the scales l are obtained by Mallat
decomposition algorithm formula, where ν = 1, 2, · · · , mλ/2l , n = 0, 1, · · · , 2l − 1 is the
number of nodes corresponding to the scales l [37]. Taking the scale l = 3 as an example,
Figure 3 shows the corresponding Mallat decomposition process. The characteristic matrix
Am×s = (aij) of bearing signal is constructed by wavelet packet coefficient cn

l,ν, where m is
the number of samples of bearing signal, λ is the length of a single sample, and s = 2l is
the number of all wavelet coefficients of a single sample at the scale l. The element aij in
the matrix Am×s is the j-th wavelet packet coefficient energy at the scale l that is obtained
by the i-th sample through WPT. Algorithm 1 and Figure 4 show the specific process.

0

1U 1

1U

1

2U0

2U 2

2U 3

2U

3

3U
0

3U 1

3U

0

0U
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Figure 2. Schematic diagram of the wavelet packet structure decomposition at scale l = 3.

Algorithm 1 Wavelet packet decomposition of bearing signal

Input: bearing signal sequence f (t), t = 1, 2, · · · , mλ, window width λ, wavelet packet scale l, wavelet packet function
type

Output: Time-frequency feature matrix Am×s
1: Perform sliding window processing on the bearing signal sequence f (t), t = 1, 2, · · · , mλ;
2: The f (t), t = 1, 2, · · ·mλ was divided into m sequence, and each sequence fragment was λ;
3: for j = 1 : m do
4: According to the type of wavelet packet function, the wavelet packet coefficient cn

l,ν of the j-th sample is obtained
by Mallat decomposition algorithm formula of wavelet packet;

5: cn
l,ν is arranged according to the corresponding order under the l-th scale to form the j-th row of Am×s;

6: end for

Suppose that the sequence f (t), t = 1, 2, · · · , mλ is divided into m fragments, each
fragment is λ, as shown in Figures 3 and 4.

3.2. Multiple Weighted Singular Value Decomposition Method

The time-frequency matrix Am×s that is obtained by WPT contains some insensitive
features. This paper proposes a multi-weight singular value decomposition algorithm
based on WSD in order to effectively extract the sensitive information in the time-frequency
feature matrix and eliminate the correlation between variables.
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Figure 4. The flowchart of wavelet packet decomposition of bearing signal.

Firstly, the feature matrix Am×s can be normalized by

A∗m×s =
Am×s − Am×s

Var(Am×s)
1/2 (15)

where A∗m×s is the normalized matrix of Am×s, Am×s is the mean of Am×s, Var(Am×s)
1/2

is the standard deviation of Am×s. Similar to the WSVD algorithm, the singular value
decomposition of the matrix A∗m×s is performed according to Equation (2) to obtain Um×m,
Σm×s and Vs×s. Because the characteristic matrix Am×s is the projection coefficient of
the sample sequence f (t), t = 1, 2, · · · , mλ of the bearing signal on the wavelet packet
subspace, the matrix Am×s is a real matrix, Um×m and Vs×s is orthogonal matrices. Similar
to the WSVD algorithm, the order r < s after dimension reduction is determined by the
cumulative contribution rate of singular value. Subsequently, Σm×s becomes Σr×r after
dimensionality reduction. The feature matrix Dm×s after the first weighting is calculated,
as follows

Dm×r = Um×r × Σr×r ⊗ wi =

 u11σ1w1 . . . u1rσrwr
...

. . .
...

um1σ1w1 · · · umrσrwr

 (16)

The second weighted weight is obtained by the idea of information entropy. The
feature matrix Dm×s needs to be processed according to the following formula before
calculating the entropy value

d∗ij =
dij −min{d1j, · · · , dmj}

max{d1j, · · · , dmj} −min{d1j, · · · , dmj}
, i = 1, · · · , m; j = 1, · · · , r (17)



Sensors 2021, 21, 2524 8 of 25

where dij is the element of row i and column j of the matrix Um×r. d∗ij is the element of row
i and column j of the matrix D∗m×r. The information entropy of the matrix Hj, j = 1, 2, · · · , r
is calculated, as follows

Hj = −
m
∑

i=1
pij ln pij

/
ln m

pij = d∗ij

/
m
∑

i=1
d∗ij

i = 1, 2, · · ·m ; j = 1, 2, · · · r (18)

if pij = 0, lim
pij→0

pij � ln pij=0. According to the information entropy of the matrix

Hj, j = 1, 2, · · · , r, the entropy weight is calculated, as follows:

vj =
1− Hj

r−∑ Hj
, j = 1, 2, · · · , r (19)

The weighted characteristic matrix is defined using Equation (15)

Tm×r = D∗m×r ⊗vj =

 d∗11v1 . . . d∗1kvr
...

. . .
...

d∗m1v1 · · · d∗mkvr

 (20)

Figure 5 shows the specific process of MWSVD.

SVD
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Figure 5. The flowchart of the Multi-Weight Singular Value Decomposition (MWSVD) feature extrac-
tion algorithm.
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In conclusion, the feature extraction method of bearing fault is given, as follows
Algorithm 2.

Algorithm 2 Feature extraction method of bearing fault

Input: bearing signal sequence f (t), t = 1, 2, · · · , mλ, window width λ, wavelet packet scale l, wavelet packet function
type

Output: The feature matrix Tm×r
1: The time-frequency feature matrix Am×s is obtained by Algorithm 1;
2: The time-frequency matrix Am×s is normalized. SVD is decomposed according to Equation (2), and weight is

calculated according to Equation (3);
3: The matrix Dm×r is obtained according to Equation (16), the matrix D∗m×r is obtained according to Equation (17);
4: The entropy weight of the matrix D∗m×r is obtained according to Equation (18);
5: The characteristic matrix Tm×r of the bearing fault is obtained according to Equation (20).

4. Fault Diagnosis Method Based on Feature Fusion

The core idea of SVM is to transform indivisible samples in low-dimensional space into
high-dimensional space through a kernel function, and realize the classification between
samples by seeking the optimal classification hyperplane [38].

Suppose that sample set {(xi, yi)|, xi ∈ Rn, yi ∈ {−1,+1}, i = 1, 2, · · · , q}, where q is
the number of training samples, and xi and yi are the i-th data points that belong to a
binary class yi.

SVM maps the input of the low-dimensional space to the high-dimensional space by
the nonlinear mapping θ(�) to obtain the linear classification function f (x) = ωTθ(x) + b,
where ω is the weight and b is the offset. For a binary classification issue with labels −1
and 1, all of the samples should meet a specific condition, as defined in Equation (21), thus
the two types of samples can be completely separated:

f (x) = wTθ(x) + b
{

> 1 f or yi = 1
< −1 f or yi = −1

(21)

To linearly solve non-separable problems, slack variable ξi and penalty factor C are
introduced, thus the best classification function is obtained by solving the minimum value
of Equation (22)

1
2
||ω||22+C

N

∑
i=1

ξi (22)

The Lagrange coefficient is introduced, Equation (22) is transformed into a quadratic
programming problem to solve

L(α) =
N

∑
i=1

αi −
1
2

N

∑
i,j=1

αiαjyiyjK(xi, xj) (23)

where K(xi, xj) is the kernel function. By solving the smallest L(α), the final classification
function is as follows

f (x) = sgn(
N

∑
i,j=1

αiyiK(xi, xj) + b) (24)

This paper chooses the Gaussian kernel function as the kernel function of SVM. Its
expression is as follows

K(xi, xj) = exp(−
|xi − xj|

2ε2 ) (25)

where ε is the kernel parameter. The penalty parameter C and the kernel parameter ε have
an important influence on the classification accuracy and generalization ability. There
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is currently no unified theoretical method to find the best combination of the above two
parameters. This paper uses the genetic algorithm to find the optimal value of the parameter

This paper uses the following equation to calculate the classification accuracy η of SVM

η=
S

∑
j=1

β j

/
S, β j =

{
1 i f predicting label = actual label
0 i f predicting label 6= actual label

(26)

where S is the number of samples in the test set. The appeal fault diagnostic model was
run τ times and the variance δ of the classification accuracy η is calculated, as follows

δ =
τ

∑
i=1

(ηi−η)2

τ−1

η =
τ

∑
i=1

ηi
τ

(27)

In conclusion, the bearing fault diagnosis method based on feature fusion is proposed

5. Experiments and Analysis Results
5.1. Case A: The Time-Varying Bearing Data from the University of Ottawa

The time-varying bearing data from the University of Ottawa [39]. The experiments
are performed on a SpectraQuest machinery fault simulator (MFS-PK5M). The experimental
set-up is shown in Figure 6. The shaft is driven by a motor and the rotational speed is
controlled by an AC drive. Two ER16K ball bearings are installed to support the shaft,
the left one is a healthy bearing and the right one is the experimental bearing, which are
replaced by bearings of different health conditions. An accelerometer (ICP accelerometer,
Model 623C01) is placed on the housing of the experimental bearing to collect the vibration
data. In addition, an incremental encoder (EPC model 775) is installed to measure the shaft
rotational speed. To ensure the authenticity of the data, three trials are collected for each
experimental setting. In this article, the operating speed condition selected is deceleration.
Table 1 shows the operating speed and health status of the selected bearing.

Table 1. Each Fault State and Corresponding Label in the Data Set.

Status Operating Rotational Speed Label

Normal Status from 28.6 Hz to 13.9 Hz 1
Inner Race Fault from 25.8 Hz to 12.0 Hz 2
Out Race Fault from 25.4 Hz to 10.3 Hz 3

Experimental features Both bearing health condition and varying speed condition will change
the frequency characteristics of the bearing vibration data

Data source location Ottawa, Canada
Data accessibility Mendeley Data. http://dx.doi.org/10.17632/v43hmbwxpm.1

Value of the data

� The data are collected from bearings operating under time-varying rotational speed conditions.
This dataset differs from existing datasets in the literature that have been collected under constant
speed condition.

� The collected data can be used to analyze the frequency characteristics of bearings of different
health conditions under time-varying speed conditions.

� The data can also be applied to assess the effectiveness of any newly developed method for bearing
fault diagnosis or condition monitoring under time-varying speed conditions.

1. Data

The data contain vibration signals collected from bearings under time-varying rotational speed
conditions. The data can be employed to evaluate the effectiveness of methods developed for bearing
fault diagnosis under time-varying speed conditions, such as the methods proposed in [1–4].

2. Experimental design, materials and methods

2.1. Experimental set-up

Experiments are performed on a SpectraQuest machinery fault simulator (MFS-PK5M). The
experimental set-up is shown in Fig. 1. The shaft is driven by a motor and the rotational speed is
controlled by an AC drive. Two ER16K ball bearings are installed to support the shaft, the left one is a
healthy bearing and the right one is the experimental bearing, which is replaced by bearings of
different health conditions. An accelerometer (ICP accelerometer, Model 623C01) is placed on the

Motor

AC Drive

Encoder

Healthy Bearing

Experimental Bearing

Accelerometer

Fig. 1. Experimental set-up.

H. Huang, N. Baddour / Data in Brief 21 (2018) 1745–17491746

Figure 6. Time-varying bearing experimental device at the University of Ottawa.
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In this paper, Table 1 shows each fault state and its corresponding label. Signals are
sampled at 200 KHz. For each state, 76,800 points are collected and labelde in turn. There
are also some other research data in the data set, which are not described because they are
not used in this article. Table 2 shows the experimental environment and experimental
parameters of this article.

Table 2. Experimental Environment and Parameters.

Experimental Environment Experimental Modal Parameters

Operating System Windows 10 Home Chinese Version The Size of The Sliding Window λ = 1024

CPU Intel Core i7-8550U @2.00 GHz Wavelet Function db10 [40]

RAM 8.00 GB wavelet packet scale l = 4

System Type 64 bit The Number of Runs τ = 100

SVM
Classifier

LIBSVM by Lin Zhiren of
National Taiwan University [41]

Cumulative Contribution
Rate of Singular Values

90%

According to Algorithm 3, 60 groups are randomly selected from the state category of
each bearing as the training set, and 60 groups are used as the test set, which are labeled
according to the state category that they belong to. To illustrate the effectiveness of the
proposed method, PCA, SVD, and WSVD [30] are selected as the comparison, Furthermore,
the SVM classifier is obtained from the training set data, and the classification accuracy and
diagnosis time of the test set data by the SVM classifier are used as the criteria for assessing
the optimal diagnosis method. To further illustrate the effectiveness of MWSVD method
that is proposed in this paper, after feature extraction three feature extraction methods are
visualized and analyzed to observe the effects of feature extraction.

Algorithm 3 Bearing fault diagnosis method based on Feature Fusion

Input: bearing signal sequence f (t), t = 1, 2, · · · , mλ, window width λ, wavelet packet scale l, wavelet packet function
type, Number of runs τ.

Output: classification accuracy η, calculation time, Variance of classification accuracy δ.
1: The feature matrix of bearing fault is obtained Tm×r by Algorithm 2;
2: The feature matrix Tm×r is randomly divided into the training set and test set, and different state types are labeled;
3: The SVM classifier is trained by the training set to obtain the SVM-based classification model;
4: The test set is input to the SVM-based classification model to obtain the predicted label of the test set. The actual label

and predicted label of the test set are calculated according to Equation (26) to calculate the classification accuracy η
of the diagnostic model. The total running time of bearing signal from MVSVD feature extraction to training SVM
classification model to test result is calculated;

5: The model is run τ times in sequence to get the classification accuracy η each time, and the variance δ of classification
accuracy is obtained according to Equation (27).

In this paper, a genetic algorithm is used to find the optimal parameters of SVM in
the training set after five-fold cross-validation. Table 3 shows the optimal parameters and
classification results of SVM on the training set under the optimal parameters (CA accuray).

Table 3. The optimal parameters of SVM

Fault Diagnosis Model Penalty Faramenter C Kernel Faramenter ε CA Accuraey(%)

WPT-PCA+SVM 25.48 990.5 55
WPT-SVD+SVM 5.65 4.13 81.67

WPT-WSVD+SVM 1.19 103.44 66.67
WPT-MWSVD+SVM 25.15 212.47 81.67
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Figure 7 is the Receiver Operating Characteristic Curve (ROC) curve diagram of the
four algorithms on bearing fault diagnosis in a single experiment. It shows that WPT-
MWSVD+SVM can effectively diagnose the fault of the bearing inner race and outer race
as compared to the other three methods. Figure 8 shows the Classification confusion matrix
of four algorithms on bearing fault diagnosis in a single experiment. It can be seen that:
WPT-WSVD+SVM and WPT-MWSVD+SVM can effectively distinguish the normal state
of the bearing; WPT-MWSVD+SVM can effectively diagnose the inner race fault, and
the diagnosis effect is better than the other three methods; WPT-SVD+SVM and WPT-
MWSVD+SVM can both effectively distinguish outer race faults, and the diagnostic effect
is much better than the other two methods. The four algorithms are run for 100 times
in sequence, and the experimental results are shown in Figures 9 and 10, Table 4. It can
be seen that the average classification accuracy of this method is 87.87%, which is higher
than the other three methods, and the average time used is 16.32 s, which is significantly
lower than the other three methods. This shows that the proposed method has better
computational efficiency and diagnostic accuracy. Besides, it can be seen from Figure 9b
that the fluctuation of the classification accuracy of this method is small. Table 4 shows
the variance of classification accuracy. To examine the computational cost of this method
in analyzing experimental data, refer to reference [42], and calculate the computational
efficiency of the model based on the classification time; the related processing times are
listed in Table 4. The results show that the average diagnosis time for WPT-MWSVD+SVM
model diagnosis to collect 1 s sample data only takes 10.63 s. Therefore, the method
proposed in this paper is superior to the other three methods for bearing fault diagnosis.
Because the difference between the four fault diagnosis methods lies on the extraction of
bearing fault features, this shows that the MWSVD feature extraction method proposed in
this paper can effectively extract sensitive features of bearing information and it has good
feature extraction capabilities.
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Figure 7. ROC curve diagram of the four algorithms on the fault diagnosis of the bearing inner race
(a) and outer race (b).
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Figure 8. Classification confusion matrix of four algorithms: (a) WPT-PCA+SVM; (b) WPT-SVD+SVM;
(c) WPT-MSVD+SVM; and, (d) WPT-WMSVD+SVM.
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Figure 9. The average classification accuracy of 100 runs (a) and each classification accuracy (b).
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Figure 10. The average classification time of 100 runs (a) and each classification time (b).

The four methods are visualized and analyzed to further illustrate the feature extrac-
tion capability of MWSVD, which are shown in Figure 11. It can be seen that the number of
principal components extracted by PCA is less than the number of singular values extracted
by the other three methods under the same cumulative singular value contribution rate.
WPT-MWSVD has a more scattered distribution of data samples as compared with the
other three methods, which can not only effectively improve the classification accuracy
of subsequent fault diagnosis, but also effectively shorten the fault diagnosis time, which
corresponds to the results presented in Table 4. Therefore, the MWSVD method that is
constructed in this paper can effectively extract bearing signal features and improve the
classification ability of SVM classifier.

Table 4. Classification results under different models.

Fault Diagnosis
Model

The Average
Accuracy η of
100 Runs (%)

Sample
Variance of
Accuracy δ

The Average
Time of 100

Runs (s)

Average Processing
Time for 1 s of Data

WPT-PCA+SVM 56.56 1.23 53.46 34.80
WPT-SVD+SVM 80.16 34.04 31.44 20.47

WPT-WSVD+SVM 61.38 1.67 26.43 17.21
WPT-MWSVD+SVM 87.80 1.94 16.32 10.62

5.2. Case B: Case Western Reserve University Bearing Data Set

The data used in this case are taken frome the Case Western Reserve University Bearing
Data Set [43]. Figure 12 presents a schematic diagram of the experimental platform, the test
stand consists of a 2 hp motor (left), a torque transducer/encoder (center), a dynamometer
(right), and control electronics (not shown). The test bearings support the motor shaft.
Vibration data were collected using accelerometers, which were attached to the housing
with magnetic bases. The test bearing are SKF6205-2RS deep groove ball bearing.

In this article, we choose the vibration acceleration signals were collected under the
condition that rotor speeds 1730 r/min with sampling frequency 12 kHz. These data include
three fault levels and four fault states. For each state under each fault level, 76,800 points
are collected and labeled in turn. Table 5 presents the details.
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Figure 11. The Visualization of feature extraction effect of four methods: (a) Distribution of the data
samples based on WPT-PCA; (b) Distribution of the data samples based on WPT-SVD; (c) Distribution
of the data samples based on WPT-WSVD; (d) Distribution of the data samples based on WPT-
MWSVD.

Motor

Figure 12. The schematic diagram of bearing experimental platform of Case Western Reserve University.

In this case, the wavelet basis function we choose is db6, and the number of wavelet
layers is l = 3. The experimental environment, experimental parameters, selection of train-
ing set and test set, selection of comparison model, and evaluation criteria of Section 5.2
are the same as Section 5.1, except that wavelet function, wavelet packet scale, and the
selected data set.

In this paper, a genetic algorithm is used to find the optimal parameters of SVM in the
training set after five-fold cross-validation. Table 6 shows the optimal parameters and clas-
sification results of SVM on the training set under the optimal parameters (CA accuracy).
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Table 5. Failure status label for each degree of fault.

The Severity of the Fault Fault Size of Samples Status Label

Minor Fault 0.1778 (mm)

Normal Status 1
Inner Race Fault 2

Ball Fault 3
Out Race Fault 4

General Fault 0.3556 (mm)

Normal Status 1
Inner Race Fault 2

Ball Fault 3
Out Race Fault 4

Serious Fault 0.5334 (mm)

Normal Status 1
Inner Race Fault 2

Ball Fault 3
Out Race Fault 4

Table 6. The optimal parameters of Support Vector Machine (SVM).

The Severity of
the Fault

Fault Diagnosis
Model

Penalty
Faramenter C

Kernel
Faramenter ε

CA Accuraey (%)

Minor Fault

WPT-PCA+SVM 0.54 89.44 98.33
WPT-SVD+SVM 1.42 31.46 98.33

WPT-WSVD+SVM 42.97 4.83 97.50
WPT-MWSVD+SVM 4.71 691.86 100

General Fault

WPT-PCA+SVM 79.78 39.67 75.42
WPT-SVD+SVM 0.20 2.32 100

WPT-WSVD+SVM 5.96 19.02 84.17
WPT-MWSVD+SVM 4.36 167.58 100

Serious Fault

WPT-PCA+SVM 4.89 34.84 87.08
WPT-SVD+SVM 4.21 9.62 98.33

WPT-WSVD+SVM 8.88 57.90 98.75
WPT-MWSVD+SVM 4.06 623.54 100

Figure 13 presents the ROC curve diagram of the four algorithms on bearing fault
diagnosis in a single experiment. It can be seen that Minor fault: the ROC curve area of
the other three methods is larger than that of WPT-WSVD+SVM under inner race fault and
outer race fault, and the ROC curve area of WPT-MWSVD+SVM is larger than the other
three methods under ball fault; general failure: the curve areas of WPT-SVD+SVM and WPT-
MWSVD+SVM are larger than the other two methods under three types of failures; serious
failures: the ROC curve area of WPT-MWSVD+SVM is larger than the other three methods
under inner race fault and outer race fault. This shows that WPT-MWSVD+SVM has better
bearing fault diagnosis capabilities. Figure 14 is the classification confusion matrix of four
kinds of bearing fault diagnosis in a single experiment under different fault degrees. It
can be seen that Minor fault: the diagnostic ability of WPT-MWSVD+SVM is better than
the other three methods under ball fault; general failure: the diagnostic capabilities of
WPT-WSVD+SVM and WPT-MWSVD+SVM are much better than the other two methods
under inner race fault and ball fault; serious failures: the diagnostic capabilities of WPT-
WSVD+SVM and WPT-MWSVD+SVM are better than the other two methods under inner
race fault. WPT-MWSVD+SVM can effectively diagnose outer race fault, and the diagnostic
effect is better than the other three methods. The four algorithms are run 100 times, in turn,
and the experimental results are shown in Figures 15 and 16 and Table 7. The results show
that this method has the advantages of high classification accuracy and short calculation
time under the three failure levels. Besides, in Figure 15, the fluctuation of the classification
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accuracy of this method is small. It shows that the algorithm in this paper can enhance the
sensitive features of bearing signals and reduce the interference of insensitive features on
the diagnosis model after twice weighting. Therefore, the diagnosis model that is proposed
in this paper has great accuracy. Table 7 lists the related processing times. The results show
that the average diagnosis time for WPT-MWSVD+SVM model diagnosis to collect 1 s
sample data only takes 10.63 s. Therefore, the method that is proposed in this paper is
superior to the other three methods for bearing fault diagnosis.
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Figure 13. ROC curve diagram of the four algorithms: the minor fault diagnosis of the bearing inner
race (a), Ball (b) and outer race (c); the general fault diagnosis of the bearing inner race (d), Ball (e)
and outer race (f); the serious fault diagnosis of the bearing inner race (g), Ball (h), and outer race (i).
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Figure 14. Classification confusion matrix of four algorithms: the minor fault (a) WPT-PCA+SVM;
(b) WPT-SVD+SVM; (c) WPT-MSVD+SVM; (d) WPT-WMSVD+SVM; the general fault (e) WPT-
PCA+SVM; (f) WPT-SVD+SVM; (g) WPT-MSVD+SVM; (h) WPT-WMSVD+SVM; the serious fault (i)
WPT-PCA+SVM; (j) WPT-SVD+SVM; (k) WPT-MSVD+SVM; and, (l) WPT-WMSVD+SVM.
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Figure 15. The degree of fault is minor fault (a), general fault (c) and serious fault (e); The degree of
fault is minor fault (b), general fault (d), and serious fault (f).
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Figure 16. The degree of fault is minor fault (a), general fault (c) and serious fault (e); The degree of
fault is minor fault (b), general fault (d), and serious fault (f).
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Table 7. Failure status label for each degree of fault.

The
Severity of
the Fault

Fault Diagnosis Model
The Average
Accuracy η of
100 Runs (%)

Sample
Variance of
Accuracy δ

The Average
Time of 100

Runs(s)

The Average
Processing
Time for

1 s of Data

Minor Fault

WPT-PCA+SVM 98.33 0 5.43 0.21
WPT-SVD+SVM 99.48 0.60 9.34 0.36

WPT-WSVD+SVM 95.11 2.76 4.59 0.18
WPT-MWSVD+SVM 100 0 3.67 0.14

General Fault

WPT-PCA+SVM 76.62 13.72 35.72 1.38
WPT-SVD+SVM 100 0 14.50 0.57

WPT-WSVD+SVM 76.78 2.93 30.66 1.20
WPT-MWSVD+SVM 100 0 4.67 0.18

Serious Fault

WPT-PCA+SVM 85.85 0.76 17.52 0.68
WPT-SVD+SVM 98.53 0.30 11.29 0.44

WPT-WSVD+SVM 97.73 0.65 6.82 0.27
WPT-MWSVD+SVM 99.52 0.58 5.57 0.22

The four methods are visualized and analyzed to further illustrate the feature extrac-
tion capability of the MWSVD method constructed in this paper, and the results are shown
in Figures 17–19. It can be seen that the number of principal components extracted by PCA
is less than the number of singular values extracted by the other three methods under the
same cumulative singular value contribution rate. WPT-MWSVD has a more scattered
distribution of data samples as compared with the other three methods, which can not
only effectively improve the classification accuracy of subsequent fault diagnosis, but also
effectively shorten the fault diagnosis time, which corresponds to the results shown in
Table 7. Therefore, the MWSVD method that is constructed in this paper can effectively
extract bearing signal features and improve the classification ability of SVM classifier.
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Figure 17. The Visualization of feature extraction effect of four methods under minor faults: (a) Dis-
tribution of the data samples based on WPT-PCA; (b) Distribution of the data samples based on
WPT-SVD; (c) Distribution of the data samples based on WPT-WSVD; and, (d) Distribution of the
data samples based on WPT-MWSVD.
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Figure 18. The Visualization of feature extraction effect of four methods under general faults: (a) Dis-
tribution of the data samples based on WPT-PCA; (b) Distribution of the data samples based on
WPT-SVD; (c) Distribution of the data samples based on WPT-WSVD; and, (d) Distribution of the
data samples based on WPT-MWSVD.
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Figure 19. The Visualization of feature extraction effect of four methods under serious faults: (a) Dis-
tribution of the data samples based on WPT-PCA; (b) Distribution of the data samples based on
WPT-SVD; (c) Distribution of the data samples based on WPT-WSVD; (d) Distribution of the data
samples based on WPT-MWSVD.

To sum up, we can see that:

1. in different bearing data sets or different failure degrees, the four algorithms are run
100 times in sequence. The bearing fault diagnosis method that is based on feature
fusion proposed in this paper has a high average classification accuracy rate. This
model has a shorter average time than the other three fault diagnosis methods, and
the average diagnosis time for the model diagnosis to collect 1-s sample data is the
lowest. This shows that the method in this paper not only has higher accuracy, but
also lower computational cost in bearing fault diagnosis; and,

2. In different bearing data sets or different failure degrees, the four feature extraction
algorithms are visualized and analyzed. The results show that, as compared with
the traditional feature extraction methods, the MWSVD feature extraction method
proposed in this paper can retain more bearing signals information. Besides, the
feature distribution of bearing signal extracted in this paper is relatively divergent.
This means that the MWSVD feature extraction method proposed in this paper can
effectively extract bearing signal features, reduce the computational complexity of
subsequent diagnostic models, and improve the diagnostic capabilities of subsequent
diagnostic models.

6. Conclusions

To cope with the problem that it is difficult to extract feature vector effectively in
rolling bearing fault diagnosis, our work is as follows: firstly, this paper constructs an
SVD feature extraction method thatis based on the fusion of multiple weights through the
contribution rate of singular values and entropy weights. On the one hand, this method
makes up for the problem that the traditional PCA algorithm loses its physical meaning
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due to the combination transformation of features in the process of removing feature
redundancy, and it reduces the impact of noise on the data; on the other hand, it makes up
for the problem that the effects of the features extracted by the traditional SVD algorithm
have a high computational cost for subsequent models. Secondly, this paper combines it
with the SVM classifier to propose a bearing fault diagnosis method that is based on feature
fusion. Finally, the time-varying bearing data of the University of Ottawa and the data
set of Case Western Reserve University bearing data center are used in the experiment. It
shows that, under the condition of the steady-state and non-steady-state of bearing, under
different sampling frequency and sampling time of bearing signal, and under a different
degree of damage of bearing, MWSVD can effectively extract the sensitive features in
the bearing and reduce the interference of non-sensitive features to the diagnosis model.
WPT-MWSVD+SVM diagnosis models can quickly and accurately identify bearing faults,
have good model adaptability, high calculation accuracy and calculation efficiency, and
they have great application potential. Besides, the SVD-based MWSVD feature extraction
algorithm is also suitable for other aspects of dimensionality reduction requirements, which
will be the author’s next research direction.
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