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Abstract 

Background  Proprioceptive impairments of the upper limb are common after stroke. These impairments are not typ-
ically addressed during assessment or rehabilitation. Currently, most robotic paradigms for training of the upper limb 
have focused solely on improving motor function or have targeted proprioception in individuals with combined use 
of visual feedback. Our goal was to design a training paradigm that directly targets proprioception of the upper limb, 
while minimizing reliance on other sensory information to improve sensorimotor function after stroke.

Methods  In this pilot study, 5 individuals with stroke and 5 age-matched controls were tested on a single-day 
proprioceptive training paradigm. Here, participants used a joystick with their less-affected arm to send commands 
to a KINARM exoskeleton that would passively move their more-affected arm. To complete the passive reaching task, 
participants relied only on proprioceptive feedback from the more-affected arm and were only given knowledge 
of results information after each trial. Sensorimotor function of the upper limb was measured pre- and post-training 
via robotic measures of motor function [Visually Guided Reaching (VGR)] and position sense [Arm Position Matching 
(APM)]. Sensorimotor function was quantified as a Task Score, which incorporated multiple task-relevant parameters 
for both VGR and APM. Changes in sensorimotor performance due to training were calculated as the pre- to post-
training difference for VGR and APM within the control and stroke groups.

Results  We found significant improvements from pre-training to post-training for VGR in individuals with stroke 
(p < 0.001, CLES = 100) that were not observed in control participants (p = 0.87, CLES = 80). We observed significant 
changes from pre- to post-training in both VGR (Posture Speed, Reaction Time, Initial Direction Angle, Min–Max Speed 
Difference, and Movement Time) and APM (Contraction/Expansion Ratiox and Shifty) parameters.

Conclusions  Our novel proprioceptive training paradigm is one of the first to implement a self-guided sensory 
training protocol. We observed improvements in motor function and proprioception for individuals with stroke. This 
pilot study demonstrates the feasibility of self-guided proprioceptive training to improve motor and sensory function 
in individuals with stroke. Future studies aim to examine multi-day training to examine longer-term impacts on upper 
limb sensorimotor function.
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Background
Proprioception refers to our sense of static position 
(position sense) and movement (kinesthesia) in space 
[1]. Proprioception is critical for movement execution of 
the upper limb [2–5] and when proprioception is largely 
eliminated, as in individuals with sensory deafferentation, 
movement quality is significantly compromised [6, 7]. 
Neurological impairments, such as stroke, have also been 
shown to impair proprioception, with many individuals 
(~ 50 to 60%) after stroke exhibiting some type of pro-
prioceptive impairment [8–12]. 

Historically, motor impairments following stroke have 
been studied extensively and remain a primary area for 
targeted improvement in neurorehabilitation [13–18]. 
In contrast, proprioceptive impairments are an often 
underexplored area of rehabilitation, as clinicians report 
that 1–25% of completed evaluations contain proprio-
ceptive assessments [19]. Further, they report that use 
of evidence-based somatosensory training occurs in 18% 
or less of clinical interventions [20]. However, recent 
work has utilized robotic paradigms for the upper limb 
to examine whether proprioception can be improved 
[21–26]. Previous work in adults who are neurologically 
intact has shown efficacy for training proprioception 
using forced choice paradigms. Here, the participant’s 
arm is passively moved to the right or left of the mid-
line. They report the perceived direction of movement 
and then receive feedback on response accuracy [21, 24, 
26]. Other paradigms have required participants to make 
unseen reaches in 3D space to remembered targets [22] 
and actively retrace a pattern after being passively moved 
through the pattern [23]. A recent study implemented a 
forced choice paradigm in individuals with stroke and 
found improvements in both motor and propriocep-
tive behavior, providing promising evidence for tar-
geted improvement of proprioception after stroke [25]. 
It is unsurprising that proprioceptive training improved 
reaching behavior as proprioception is critical for smooth 
and coordinated reaching movements [2, 4, 6, 27, 28]. 
Additionally, two of these studies have promoted active 
subject participation [22, 23] and yielded more robust 
improvements in proprioception compared to those 
studies with more passive designs [21, 24–26]. 

The goal of the current study was to design a proprio-
ceptive training paradigm to improve proprioception in 
individuals with chronic stroke that would build on the 
insight gathered from a set of recent successful proprio-
ceptive training studies [21, 23–26]. Here, we target the 
following task objectives: (1) promotion of active sub-
ject participation during task execution, (2) require and 
encourage participants to use real-time proprioception of 
the more-affected limb for task success, (3) cooperative 
interplay between the less-affected limb to actively guide 

passive movement of the more-affected limb. For evalu-
ation of the developed paradigm, a sample of individu-
als post-stroke and control participants were recruited 
to participate in a single-session proprioceptive training 
protocol. We hypothesized that robotic proprioceptive 
training would result in a reduction of proprioceptive 
deficits associated with chronic stroke. Therefore, we 
predicted that (1) individuals with stroke would improve 
both their motor and proprioceptive performance after 
training, and (2) individuals with stroke would show 
more spatial and temporal errors and slower learning 
during proprioceptive training compared to age-matched 
controls [29]. 

Methods
Participants and protocol
A total of 10 participants (age-matched control: N = 
5 and individuals with stroke: N = 5) participated in a 
pilot training study using the KINARM Exoskeleton and 
a joystick (Fig. 1A) [30]. The following inclusion criteria 
were used for all participants: normal or corrected-to-
normal vision and at least 18 years of age. Individuals 
with stroke were included if they had a single, unilateral, 
chronic stroke (> 6  months post-stroke). The following 
exclusion criteria were used for all participants: previous 
recent history of significant upper body injury, history of 
a disease that may impact sensation (e.g., diabetic sen-
sory neuropathy), and any history of a neurological dis-
ease or injury (e.g., Parkinson’s disease) other than stroke 
(Table 1). The current study was approved by the Univer-
sity of Delaware Institutional Review Board and all par-
ticipants provided informed consent.

General robotic methods
Participants were seated in the KINARM exoskeleton 
with their shoulders at ~80° abduction. The lengths of 
the robot arm segments were adjusted to fit each partici-
pants limb length. Participants were then wheeled into 
the integrated augmented reality system to begin testing. 
For Pre- and Post-Assessments (see below), participants 
were seated with both arms supported by the KINARM. 
For the Training Protocol (see below), participants were 
seated with one arm in the KINARM and the opposite 
arm supported by a small table with the joystick secured 
to the table. This table was adjusted to be at the same 
height as the opposite arm that was supported by the 
KINARM (Fig. 1A). 

Clinical assessments
For participants with stroke, we used the following clin-
ical measures to characterize upper limb function: the 
Upper Extremity portion of the Fugl-Meyer Assessment 
(FM-UE) to examine motor function of the upper limb 
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[31], the Functional Independence Measure (FIM) to 
determine functional ability [32], the Thumb Localizer 
Test (TLT) to determine upper limb position sense sta-
tus [33], the Purdue Pegboard (PPB) to evaluate upper 
limb and hand dexterity [34], the Behavioral Inatten-
tion Test (BIT) to screen for visuospatial neglect [35], 
and the Montreal Cognitive Assessment (MoCA) to 
screen for cognitive impairment [36]. Participants with 
stroke also completed visual field confrontation testing 
to determine if visual field cuts were present (Table 1). 

Robotic pre‑ and post‑assessments
To assess the effects of training, we used two KINARM 
robotic tasks known to quantify upper limb motor con-
trol (Visually Guided Reaching (VGR), Fig. 1B) and upper 
limb position sense (Arm Position Matching (APM), 
Fig.  1C). The methods for both tasks have been previ-
ously described in detail [8, 9, 37–39]. During the VGR 
task, participants were instructed to make reaches to a 
visual target that would appear on the screen [39]. Briefly, 
a 1 cm red target would appear on the screen at one of 

Fig. 1  A Picture of the KINARM exoskeleton, integrated augmented reality display, and integrated joystick setup. Here, the participant has their 
left arm supported by the robot, while their right arm sits at an equal height supported by an adjustable table. The participant grips the joystick 
with their right hand while it is securely mounted to the table. Typically, a blocking screen covering the hands and arms, in addition to a bib 
around the shoulders are used to reduce visual feedback. However, for visualization of the methodology, the blocking screen has been opened 
to see the positioning of the participants’ right hand that is gripping the joystick. B Exemplar data from a control participant for the Visually 
Guided Reaching Task (VGR), where participants made reaching movements to each of four peripheral targets. The speed traces correspond 
to participant reaching performance to the bottom left-hand target. C Exemplar data from a control participant for the Arm Position Matching 
Task (APM), where for this subject the robot passively moved the left arm and the participant mirror-matched the end-point position of the robot 
with the right arm. Note, this task is completed in the complete absence of visual feedback of the limb. D Depiction of a single trial progression 
of the Proprioceptive Training Task. Here, in ”Move to Target”, a target is shown in the workspace on the side of the more-affected limb. Using 
the joystick that is gripped by the less-affected limb, the participant uses the joystick to engage passive control of the more-affected limb to align 
the more-affected limb with the target position. The participant then reports to the operator “Matched”, indicating that they feel that they have 
aligned their more–affected limb with the target. After the participant has indicated that they have matched the target, the robot passively moves 
the less-affected limb to correct residual error (“Correct Error”) and to passively align the participant with the end target. The operator then passively 
moves the more-affected limb to a pseudo-randomized starting location to eliminate memory of presented targets (“Operator Moves Arm”), 
after which a “New Trial” begins



Page 4 of 12Tulimieri et al. Journal of NeuroEngineering and Rehabilitation          (2025) 22:130 

four locations. Participants were instructed to move their 
arm, where their fingertip was represented as a 1 cm 
white cursor, to the target and hold until the next target 
appeared. Participants started each trial at the center 
of the four locations. All participants performed VGR 
with both arms. During the APM task, all visual feed-
back of limb location was eliminated. Without vision of 
their arms, the robot would passively move one arm to 
one of four positions within the workspace and partici-
pants would actively move their arm to mirror-match the 
final position of their passively moved arm [8]. For this 
task, individuals with stroke had their more-affected arm 
passively moved by the robot and actively matched the 
movement location of the robot with their less-affected 
arm. The limb that was passively moved was counterbal-
anced for age-matched controls.

Training protocol
The objective of each training trial was for participants to 
use a joystick to actively guide their opposite arm to a tar-
get position. More specifically, the joystick manipulations 
the participants made with their less-affected arm were 
translated to passive movement imposed by the robot on 
the opposite side. Three different end target locations and 
four different start positions for each end target (total 
of 12 starting positions) were used in the robotic train-
ing session. The start positions for each target set were 
defined as the vertices of a square with a 20 cm edge and 

centered around the target location (Fig. 1D). Before the 
training trials started, participants were allowed four 
familiarization trials with the joystick and KINARM set 
up. Here participants were allowed to use the joystick to 
control the position of their hand inside the KINARM 
to ensure they understood the relationship between the 
operation of the two devices. At the beginning of each 
training trial, visual information about the target hand 
location and current hand location was provided via a 
cyan and white circle with a diameter of 1  cm, respec-
tively. When the visual target appeared on the screen, 
the participant then used the joystick to guide passive 
movement of their opposite arm that was supported by 
the robot to the seen position of the end target. Visual 
cursor information for hand position was extinguished 
500 ms after the start of the trial, but the visual target 
remained on the screen to avoid memory confounds. 
After the participant verbally confirmed that they felt 
they reached the end target, the trial ended. After each 
trial ended, participants were passively moved to the 
next (pseudorandomized) starting position by the experi-
menter who would use the joystick to guide the arm to 
the next starting location. In this mode, visual informa-
tion about target and current hand location was provided 
to begin the next trial. The starting position sequence 
was pseudorandomized over a list of four starting posi-
tions for each target in order to make it difficult for par-
ticipants to perform the task by only refining their action 
plan that involved their less-affected arm. In that case, in 
fact, participants would be able to achieve task success by 
only recalling the exact sequence of actions to be imple-
mented with their less-affected arm to reach the target 
position and without having a reliance on online proprio-
ceptive feedback.

The experimenter-controlled joystick was implemented 
to (1) reduce potential proprioceptive drift in individu-
als with stroke, and (2) ensure uniform starting positions 
across participants. Participants completed 9 trials from 
each start position, for a total of 108 trials. There were 4 
unique trajectories per target set, for a total of 12 unique 
trajectories overall. Overall, the training took 38 ± 5 min 
for participants with stroke and 31 ± 4 min for control 
participants.

Implementation of joystick input to control the robotic arm
The joystick signal was processed and sent to the robot 
computer using Simulink (Mathworks, Natick, MA, 
USA). The joystick signal (two 14-bit signals for x and y) 
was converted in a normalized range ([−1, 1]), and pro-
cessed to ensure a continuous and smooth movement 
trajectory command signal fed to the KINARM. The 
joystick signal with magnitude smaller than 0.01 was fil-
tered out using a deadband filter to eliminate noise. The 

Table 1  Participant demographics

Values presented next to field name indicate scoring categories (TLT) or 
maximum value

M Male, F Female, R Right, L Left, A Ambidextrous, FM-UE Fugl-Meyer Upper-
Extremity Assessment, FIM Functional Independence Measure, TLT Thumb 
Localization Test, PPB Purdue Pegboard, BIT Behavioral Inattention Test, MoCA 
Montreal Cognitive Assessment. For age, BIT, and MoCA, values are reported as 
mean ± standard deviation. For month post-stroke, FM-UE, FIM, and PPB, values 
are reported

Age-matched 
control (n = 5)

Individuals 
with Stroke (n 
= 5)

Age—mean ± std 64 ± 6 69 ± 9

Sex 2 M, 3 F 2 M, 3 F

Dominant hand 4 R, 1 L, 0 A 5 R, 0 L, 0 A

Months post-stroke 81 [18, 100]

More affected side 4 R, 1 L

FM-UE (maximum = 66) 43 [17, 65]

FIM (maximum = 126) 125 [121, 126]

TLT {0, 1, 2, 3} 3, 1, 1, 0

PPB 2.0 [0, 10]

BIT (maximum = 146) 143.2 ± 3.03

Field cut None

MoCA (maximum = 30) 26.6 ± 1.67
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filtered joystick input command was then scaled to the 
amount of force applied to a virtual mass-damper sys-
tem (gain:1.8E-5 N). The virtual mass-damper system 
had a mass of 1.25 kg and damping constant of 5 Ns/m in 
both the x and y direction. Via a Simulink transfer func-
tion model, we calculated the velocity of the virtual mass 
every 1  ms, subject to the force input extracted by the 
processed joystick signal. The resulting velocity signals in 
each x- and y-direction were filtered using a moving aver-
age filter with a 10-sample window. The filtered velocity 
signal was then sent from the computer running Sim-
ulink to the robot computer, which directly controlled 
the motors of the KINARM Exoskeleton via a Simulink 
Real-Time model, via UDP communication every 10 ms. 
To mitigate dramatic velocity command changes result-
ing from sampling ratio discrepancy between UDP com-
munication (0.1 kHz) and Simulink Real-Time Model (4 
kHz), a Kalman filter was implemented in the Simulink 
Real-Time Model. This filter estimates missing velocity 
commands between the velocity commands received via 
UDP communication.

Robotic parameters to quantify behavior
Both assessment tasks (VGR and APM) are standardized 
and thus have auto-generated parameters and reports. To 
quantify motor (VGR) and proprioceptive (APM) func-
tion, for each task we utilized a composite Task Score, 
as well as kinematic parameters to quantify behavior. 
The Task Score is a single-value composite measure of 
all movement parameters for the task. This value can be 
z-transformed to compare performance of an individual 
against a normative model controlling for age, sex, and 
handedness [40]. The use of these measures has been 
previously described [41–47]. In addition to the Task 
Score, the following parameters were used to quantify 
upper limb motor function with the VGR task and APM 
task (Table  2). All parameters from the VGR and APM 
tasks are reported as z-transformed parameters. There-
fore, performance is considered typical with scores rang-
ing from −1.96 to + 1.96, and performance outside of 
these bounds are considered atypical, controlling for age, 
sex, and handedness [40, 48]. For one parameter (posture 
speed), we were unable to calculate pre-testing posture 
speed values for 2 participants due to extremely poor 
limb stabilization. These participants were excluded from 
this analysis due to inability to quantify posture speed at 
rest.

Data and statistical analysis
To determine if sensorimotor learning occurred during 
the robotic training task, we first calculated and then fit 
trial time and end point error to a three-parameter expo-
nential decay model. Trial time was defined as the time 

from the start of the trial to when the participant ver-
bally announced they felt matched. End point error was 
defined as the Euclidean distance from the position when 
the participant verbally announced they felt matched 
to the desired position. We fit these data for each par-
ticipant with an exponential decay model with three free 
parameters: Initial Error ( E0 ), Learning Rate ( � ), and 
Asymptotic Error ( En ), as a function of Trial Number (t).

This model fit was bootstrapped to improve estima-
tion of fit parameters. To bootstrap this estimation, 
for 1,000,000 iterations, we re-sampled the data with 
replacement and fit the model. The bootstrapped esti-
mation was then determined as the median from each 
bootstrapped-parameter-distribution.

To test our predictions, for each participant group, we 
compared Task Scores from the pre- and post-training 
time periods for both VGR and APM. We used direc-
tional permutation tests ( H0 : post > pre ) with 1,000,000 
permutations for these comparisons, such that we 
expected participants to decrease their Task Score (i.e., 
improve behavior) after training [49]. To quantify the 
effect size, we used common language effect size (CLES) 
which describes how often a sample from one distribu-
tion will be greater than a sample from another distribu-
tion [50]. We then performed this same analysis on each 
parameter for both tasks. For example, for the VGR task, 
we compared performance for Posture Speed from the 
pre- and post-training assessments, and for the APM 
task, we compared performance for Absolute Errorx dur-
ing the pre- and post-training assessments. Additionally, 
we compared each of the three free parameters from the 
modified exponential decay model between individuals 
with stroke and age-matched controls. We used direc-
tional permutation tests for these comparisons, such that 
we expected individuals with stroke to show larger initial 
and final error as well as smaller learning rates [49]. The 
effect size of these comparisons was also quantified with 
CLES [50].

Results
Effects of training on reaching behavior
To test our prediction that individuals with stroke would 
improve their reaching behavior post-training, we com-
pared VGR Task Scores from pre- and post-training 
(Figs. 2, 3A). We found that individuals with stroke signif-
icantly improved their reaching performance (VGR Task 
Score Pre-Training: 6.9 ± 4.8 and VGR Task Score Post-
Training: 4.9 ± 5.1; p < 0.001, CLES = 100). In contrast, we 
did not observe a similar improvement for age-matched 
controls (VGR Task Score Pre-Training: −1.2 ± 0.7 and 
VGR Task Score Post-Training: −0.8 ± 0.8; p = 0.87, CLES 

Learning value(t) = E0 ∗ e
−�∗t

+ En
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= 80). To better understand what aspects of the move-
ments improved to drive this difference for individuals 
with stroke, we compared all z-transformed movement 
parameters. Here, we found significant improvements for 
five parameters: Posture Speed (VGR Score Pre-Training: 
1.7 ± 2.6 and VGR Score Post-Training: 1 ± 2.1; p < 0.001, 
CLES = 100), Reaction Time (VGR Score Pre-Training: 
1.6 ± 2.6 and VGR Score Post-Training: 0.9 ± 2.3; p < 
0.001, CLES = 100), Initial Direction Angle (VGR Score 
Pre-Training: 5.1 ± 4.5 and VGR Score Post-Training: 
4.3 ± 4.1; p = 0.02, CLES = 80), Min–Max Speed Differ-
ence (VGR Score Pre-Training: 1.4 ± 1.6 and VGR Score 

Post-Training: 0.8 ± 1.8; p < 0.001, CLES = 100), and 
Movement Time (VGR Score Pre-Training: 6.0 ± 5.6 and 
VGR Score Post-Training: 4.9 ± 5.7; p = 0.001, CLES = 80) 
(Fig. 3B).

Effects of training on position matching behavior
To test our prediction that individuals with stroke would 
improve proprioceptive performance post-training, we 
compared APM Task Scores from pre- and post-training 
(Fig. 3C). We found that neither group demonstrated sig-
nificantly improved proprioceptive performance (indi-
viduals with stroke—APM Task Score Pre-Training: 2.5 

Table 2  Robotic parameters to quantify behavior

Parameters for Visually Guided Reaching (VGR) and Arm Position Matching (APM) tasks, and how these outcomes are measured

Parameter Outcome measurement

Visually 
Guided Reach-
ing (VGR) 
parameters

Posture speed Median hand speed when hand is resting

Reaction time Amount of time between end target onset and movement onset

Initial direction angle Angular deviation between vector from hand position at movement onset to end target 
and vector from hand position at movement onset and hand position after initial phase 
of movement (e.g., movement onset to first local minimum after max speed)

Initial distance ratio Ratio of distance between hand position at movement onset and offset and distance covered 
during initial phase of movement

Speed maxima count Number of hand speed maxima between movement onset and offset

Min–max speed difference Average difference between pairs of local speed minima and maxima

Movement time Time between movement onset and movement offset

Path length ratio Ratio of straight line from hand position at movement onset and offset and actual path travelled 
from movement onset to offset

Max speed Maximum hand speed between movement onset and offset

Number of no reaction times Number of trials when no movement onset was calculated

Number of no initial stabilizations Number of trials when participant did not stabilize in the start target

Number of false starts Number of trials when movement onset occurred less than 130 ms after end target turned on

Number of no movement ends Number of trials when movement offset was not detected before trial end

Number of end targets not reached Number of trials when the end target was not reached

Arm Position 
Matching 
(APM) para-
ments

Absolute Errorx Average absolute distance in x-dimension between passive hand position and mirror-reflected 
active hand position

Absolute Errory Average absolute distance in y-dimension between passive hand position and mirror-reflected 
active hand position

Absolute Errorxy Average absolute distance in the xy plane between passive hand position and mirror-reflected 
active hand position

Variabilityx Average standard deviation of hand position in x-dimension for all targets

Variabilityy Average standard deviation of hand position in y-dimension for all targets

Variabilityxy Average standard deviation of hand position in the xy plane for all targets

Contraction/expansion ratiox Ratio of absolute difference between average x-position of left targets and right targets 
between active and passive arms

Contraction/expansion ratioy Ratio of absolute difference between average position of average y-position of left targets 
and right targets between active and passive arms

Contraction/expansion ratioxy Ratio of area moved between passive and active arm, and negative values for medial shift)

Shiftx Average difference between mirror x-position of active arm and x-position of passive arm (posi-
tive values are lateral shift

Shifty Average difference between mirror y-position of active arm and y-position of passive arm (posi-
tive values for distal shift and negative values for proximal shift)

Shiftxy Root-sum-squares of shift in the x-dimension and shift in the y-dimension
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± 1.9 and APM Task Score Post-Training: 2.7 ± 1.0; p = 
0.66, CLES = 60 and age-matched controls—APM Task 
Score Pre-Training: −0.2 ± 1.9 and APM Task Score Post-
Training: −0.5 ± 0.9; p = 0.24, CLES = 60). Similarly to 
VGR, we compared pre- and post-training performance 
on APM parameters for individuals with stroke and 
found significant improvements in Contraction/Expan-
sion Ratiox (APM Score Pre-Training: 1.0 ± 2.3 and APM 
Score Post-Training: 0.0 ± 2.4; p < 0.001, CLES = 100) and 
Shifty (APM Score Pre-Training: −0.3 ± 0.6 and APM 
Score Post-Training: −1.6 ± 0.8; p < 0.001, CLES = 100) 
(Fig. 3D).

Training data
To test our prediction that individuals with stroke would 
show slower learning and more errors during training, 
we first bootstrapped the fits of each participant’s train-
ing data to an exponential decaying model (Eq.  1) and 
then compared the resulting group parameters (median 
of bootstrapped distribution for each participant) for 
both our learning metrics: trial time and end point error 
(Fig. 4). We found that the asymptotic value of end point 
error (parameter En) was significantly larger for indi-
viduals with stroke compared to age-matched controls 

(individuals with stroke: 2.8 ± 1.3 cm and age-matched 
controls: 1.4 ± 0.6 cm; p = 0.03, CLES = 84).

Discussion
We pilot tested 10 participants, 5 individuals with chronic 
stroke and 5 age-matched controls, on a novel proprio-
ceptive training paradigm and assessed changes in move-
ment and proprioception with separate standardized 
robotic tasks. We found that all individuals with stroke 
showed significant improvements in reaching behavior 
and most individuals with stroke showed improvements 
in proprioceptive behavior when comparing pre-training 
to post-training performance (Fig. 3). We also found that 
individuals with stroke did not significantly differ in their 
learning rate during training compared to age-matched 
controls (Fig.  4). Overall, our study suggests that our 
novel proprioceptive training paradigm may improve 
reaching and proprioceptive behavior in individuals with 
stroke.

Targeted training approach for improving proprioception
The main purpose of the current pilot study was to 
develop a robotic paradigm that directly targets pro-
prioception of the upper limb, while minimizing 

Fig. 2  Exemplar data from an age-matched control participant (A–E) and a participant with stroke (F–J). In each row, the displayed exemplar 
data coordinates with the progression of testing within the study. Initial pre-testing was completed using the Visually Guided Reaching Task (VGR) 
and the Arm Position Matching Task (APM), as depicted in panel A and B for the control participant and F and G for the participant with stroke. Here, 
we observe that the participant with stroke has poorer quality of movement (F) and increased position matching errors (G) compared to the control 
participant (A, B). Participants then underwent the training task (C—Control, H—Stroke). Here, we observed that training accuracy was worse 
in the participant with stroke (H) as indicated by splayed end-point trajectories that do not reach the intended end target. In comparison, we see 
that the end-point trajectories for the control participant (C) typically end in one of the target locations. During post-testing, we observe similar 
performance for VGR and APM for the control participant (D, E) and slight improvements in VGR and a return to normal (Z-Task Score < 1.96) for APM 
for the participant with stroke
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contributions from the visual system. Previous studies 
have demonstrated the efficacy of both active and passive 
proprioceptive training in neurologically intact partici-
pants and have shown improved proprioceptive thresh-
olds and/or accuracy [21, 22, 51]. Other studies have 
examined proprioceptive training in stroke survivors and 
have demonstrated positive outcomes for improvements 
in proprioceptive function of the upper limb and/or wrist 
[25, 52, 53]. Notably, these previous studies in stroke have 
typically relied on passive movement of the limb cou-
pled with verbal report about the status of the limb (i.e., 
psychometric tasks) or matched behavior with the less-
affected limb. Here, we engaged participants to self-guide 
position of the less affected limb using a framework that 

seeks to reduce visual confounds and increase participant 
engagement within the proprioceptive training para-
digm [54]. Previous work has demonstrated that with 
reduced explicit feedback (e.g., vision), self-guided learn-
ing effectively engages robust training patterns [55] and 
improved proprioceptive accuracy in older adults [56] to 
the benefit of motor performance. Within the objectives 
outlined as part of this study, we aimed to (1) promote 
active subject participation, (2) encourage use of real-
time proprioception of the more-affected limb, and (3) 
facilitate cooperative interactions between the less- and 
more-affected limb for guidance of the more-affected 
limb. We observed that not only was this a feasible train-
ing task for individuals with stroke, but that our pilot 

Fig. 3  Comparisons of pre- and post-training behavior for reaching and position sense. A We observed that individuals with stroke significantly 
improved overall behavior on the Visually Guided Reaching task (Task Score), which was not observed in control participants (stroke: p < 0.001, 
CLES = 100.00, controls: p = 0.87, CLES = 80.00). B For individuals with stroke, we examined pre- and post-training behavior on individual kinematic 
parameters to determine what aspects of motor performance showed marked improvement. We observed significant improvements in 5 of 12 
parameters for the VGR task (Posture Speed (p < 0.001, CLES = 100.00), Reaction Time (p < 0.001, CLES = 100.00), Initial Direction Angle (p = 0.016, 
CLES = 80.00), Min–Max Speed Difference (p < 0.001, CLES = 100.00), and Movement Time (p = 0.002, CLES = 80.00). C We observed that, on average 
both groups improved Arm Positing Matching performance (Task Score) from pre- to post-training; however, this comparison was not significant 
for participants with stroke or controls. D Examining individual parameters for the APM task for the stroke group found that individuals with stroke 
showed significant improvements on two APM parameters: Contraction/Expansionx (p < 0.001, CLES = 100.00), and Shifty (p < 0.001, CLES = 100.00). 
Markers represent individual participants. Triangle marker for individuals post-stroke indicates one participant with ipsilesional deficits as measured 
by the VGR task
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study demonstrates effectiveness of these methods for 
improving motor performance as well as some aspects of 
limb position sense, suggesting that this training method 
is likely effective for improving upper limb function after 
stroke.

Consistent improvements in reaching behavior
One of the most robust findings from this study was 
that all our individuals with stroke were able to improve 
their reaching performance after training (Fig.  3A). Not 
only did we observe a significant improvement in the 
Task Score, but we also observed improvements at the 
individual parameter level. Interestingly, we observed 
improvements in each “main” domain of movement as 
quantified in a previous study: upper limb postural con-
trol, reaction time, feed-forward control, and feedback 
control indicating that the proprioceptive training also 
improved many domains and components of reaching 

through improvements in proprioception [39] (Fig.  3B). 
This finding is in agreement with previous literature that 
has observed improvements in reaching behavior after 
proprioceptive training [57] and serves to further sup-
port the critical role proprioception plays in the genera-
tion of smooth, coordinated reaching movements [2, 4, 
6, 27, 28]. Given that these improvements were observed 
in a small, but heterogenous sample, this technique pro-
vides a promising avenue for training of upper limb func-
tion after stroke across a broad spectrum of impairment 
levels.

Less consistent improvements in position matching 
behavior
We found that most, but not all, of our individuals 
with stroke were able to improve their position match-
ing behavior (Fig.  3C). This result is consistent with 
previous literature that found that most, but not all, 

Fig. 4   Exponential fits of learning over the course of the proprioceptive training task via Trial Time (top) and End Point Error (bottom). A We 
examined whether there were consistent decreases in trial time over the course of training. We observed that most participants (stroke and control) 
demonstrated reductions in how long it took to complete a trial over the course of training, with most time reductions occurring within the first 
30 trials. B No significant differences were observed between control and stroke groups for Initial Error (IE), Asymptotic Error (AE), or Learning Rate 
(LR). C Similar to A, we observed decreases in End Point Error, with most error reductions occurring within the first 20 trials. D When the individual 
parameters were compared between groups, we found that individuals with stroke had higher End Point Error Asymptotic Error than control 
participants (p = 0.032, CLES = 84.00). In A and C, thin lines indicate individual participant fits, while the thicker line indicates the group median 
value
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individuals with chronic stroke showed proprioceptive 
improvements post-stroke [25]. While nearly all of our 
participants showed improvements in the Task Score 
for APM from pre- to post-training, group results for 
this measure were not significant. However, when we 
examined individual parameters, we found that the indi-
viduals with stroke significantly improved for two APM 
measures from pre- to post-training for Contraction/
Expansion Ratiox and Shifty. Additionally, it should be 
considered that the training task is both movement and 
position based. While we did not observe improvements 
on a position based proprioceptive (i.e., position sense) 
measurement, we would expect to see improvements 
on a movement based proprioceptive (i.e., kinesthesia) 
measurement given results from previous studies in this 
population [25]. Finally, it is important to note that one 
of our individuals with stroke exhibited ipsilateral motor 
deficits on the VGR task. Some individuals with stroke 
exhibit ipsilateral movement deficits which become 
apparent during online corrections of reaching move-
ments [58]. Therefore, for this individual, their APM task 
performance may look impaired, but this is likely due to 
combined impairments in ipsilateral proprioceptive and 
motor function. In fact, this was one of the two individu-
als with stroke that demonstrated worse performance 
after training suggesting that their “decrease” in perfor-
mance after training may be a result of impaired reaching 
(triangle, Fig. 3).

Learning during training
Surprisingly, we found few differences between learning 
parameters for individuals with stroke and age-matched 
controls (Fig. 4). We believe that this was mostly due to 
our protocol, mainly the incorporation of familiariza-
tion trials before training trials. In typical motor learning 
studies, participants are not familiarized with the pertur-
bation before they need to adapt, and learning is often 
driven by both the sudden onset and large initial errors of 
the perturbation [59]. For our design, before participants 
were trained, they underwent four familiarization trials 
where they saw the cursor that represented their fingertip 
and were able to use the joystick to move the cursor and 
their arm. Thus, participants were able to learn the map-
ping of joystick command to robotic passive movement 
during this time. We believe that without these trials, 
we would have seen much larger errors, in both train-
ing time and end point error, at the beginning of training 
for both groups, but especially individuals with stroke. 
This in turn would have increased the initial error term 
and consequently the rate term as the asymptotic learn-
ing values would most likely remain similar. Despite not 
observing differences in learning rate, we did observe sig-
nificant differences in end point error asymptotic error 

between groups, where individuals with stroke typically 
had a higher end point error asymptotic error than age-
matched control participants. This difference suggests 
that while the initial learning process appears to be simi-
lar between the two groups, the amount of learning or 
completeness of learning may be diminished in individu-
als with stroke which is in partial agreement with recent 
work that observed both slower adaptation rates and less 
complete sensorimotor adaptation in individuals with 
stroke [29, 60, 61].

Limitations
We recognize that this study was done with a relatively 
small sample size (n = 5). However, the intended purpose 
of the current pilot study was to test the feasibility of a 
combined joystick and robot task in controls and indi-
viduals post-stroke. Additionally, while our intention was 
to recruit 5 age-matched controls for this pilot study, we 
must note that recruited adults who were neurologically 
intact had comparable, but not completely, matched ages 
to our cohort of individuals with stroke. We believe that 
the current results are promising in terms of the ability to 
improve sensorimotor function after stroke and require 
a larger sample size for more complete validation. Fur-
ther, the study was conducted within a single day. Ide-
ally, post-test assessments should be completed at least 
24 hours post-training to determine greater long-term 
effectiveness of training. Additionally, a visual compo-
nent was an element of the design of the task. Yet visual 
feedback in this task was only presented after trial com-
pletion and used to help the participant assess their own 
performance and recalibrate the mapping between their 
own proprioception sensation and the “true” value of 
their arm position. In any case, reliance on visual feed-
back could pose an issue for some individuals with stroke 
who are unable to integrate visual and proprioceptive 
signals [43, 62]. However, in comparison to previous pro-
prioceptive training tasks, we believe that we minimized 
the inclusion of visual information as best as possible, 
while still allowing participants to be exposed to a task 
where they can have some degree of success and remain 
motivated. Additionally, previous work has demonstrated 
that ipsilateral motor deficits occur in 37% of individu-
als with subacute stroke and 14% of individuals with 
chronic stroke, which must be considered as a potential 
limitation when considering how to utilize this proto-
col in future studies as it requires bilateral interactions 
between the arms [63, 64]. While individuals in this study 
were screened for ipsilateral motor impairment prior 
to training, all included participants had normal clini-
cal motor function of the ipsilesional arm (ipsilesional 
FM-UE = 66/66). Future studies using such techniques 
will need to comprehensively screen for motor status 
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of the ipsilesional arm to ensure proper guidance of the 
more-affected arm. Finally, in order to evaluate true 
effectivity of training, a long-term, multi-day training 
protocol needs to be conducted. Future studies will focus 
on implementing this protocol for a multi-week training 
to evaluate long-term effectiveness of our task design.

Conclusions
We designed a novel proprioceptive training para-
digm for individuals with chronic stroke and tested the 
effects of this training with standardized tasks for 10 
participants. This paradigm has shown to be effective 
at improving reaching and position matching behavior 
for several individuals with chronic stroke. We found 
that participants in all groups were able to learn dur-
ing the training task. This work has implications for 
neurorehabilitation of individuals with chronic stoke 
because it demonstrates that proprioceptive training 
using participant-driven passive guidance of the more-
affected limb can improve not only motor behavior, but 
also proprioception.
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