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Abstract: New coordination oligomers and polymers of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin
have been constructed by the chelation reaction of its diaxialphenolates with Cu2+. The structure
and properties of the synthesized polyporphyrin arrays were investigated by 1H Nuclear Magnetic
Resonance (1H NMR), Infra Red (IR), Ultra Violet - Visible (UV-Vis) and fluorescence spectroscopy,
mass spectrometry, Powder X-Rays Diffraction (PXRD), Electron Paramagnetic Resonance (EPR),
thermal gravimetric, elemental analysis, and quantum chemical calculations. The results show
that the diaxial coordination of bidentate organic ligands (L-tyrazine and diaminohydroquinone)
leads to the quenching of the tetrapyrrole chromophore fluorescence, while the chelation of the
porphyrinate diaxial complexes with Cu2+ is accompanied by an increase in the fluorescence in
the organo-inorganic hybrid polymers formed. The obtained results are of particular interest to
those involved in creating new ‘chemo-responsive’ (i.e., selectively interacting with other chemical
species as receptors, sensors, or photocatalysts) materials, the optoelectronic properties of which
can be controlled by varying the number and connection type of monomeric fragments in the
polyporphyrin arrays.

Keywords: polyporphyrin arrays; chelation; fluorescence; hybrid materials

1. Introduction

Metal-coordination polymers are hybrid materials consisting of metal ions or clusters
interconnected by rigid organic molecules (tectons) [1,2]. The ordering of the components
in three dimensions, the possibility to use tectons of different natures and sizes, and the
dynamic properties of the frameworks provide coordination polymers with unique lu-
minescent, nonlinear optical, redox, magnetic, sorption, catalytic, ion exchange, sensory,
and other properties [3–10] Due to their structure and unique physicochemical and photo-
physical characteristics, particularlytheir photoactivity, optoelectronic, and electrochemical
properties, tetrapyrrole molecules are extremely promising objects for the construction
of metal-coordination polymers for various purposes [11–19]. It is known that metal
complexes of porphyrins and porphyrinoids are capable of selective reversible binding of
substrate molecules and, thus, can be used to construct simple and complex supramolecular
systems of various dimensions and architecture [20–27].

The aim of this work was to obtain new hybrid coordination oligomers and 1D-
polymers with chelating binding of Sn(IV)-porphyrindiaxial complexes (bis-thyrazine-
Sn(IV)-5,10,15,20-(4-sulfonatophenyl)porphyrin (I) and bis-diaminohydroquinone-Sn(IV)-
5,10,15,20-(4-sulfonatophenyl)porphyrin (II)) with Cu2+ cations. Structures of the com-
plexes I and II are depicted in Figure 1.
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Figure 1. Structures of the complexes I and II. 

Complexes I and II were used as tectons coordinating through Cu2+cations. Such lig-
ands have the ability to form stable chelate cycles with d-metal cations due to the simul-
taneous interaction of the metal cation with the ligand reaction centers of different na-
tures(the hydroxyl group oxygen and amino group nitrogen) [28]. Chain oligomerization 
of the Sn(IV)-porphyrindiaxial complexes (SnP(L)2) via Cu2+cations is ensured by one cop-
per cation forming two stable five-membered chelate rings, with the axial ligands belong-
ing to the neighboring porphyrinates. The result of this oligomerization is the formation 
of stable nanoparticles (in comparison with less stable oligomers, which can be formed by 
four- or six-membered chelate rings based on copper cations), the sizes and properties of 
which depend on the nature of the axial ligands and the concentration ratio of the Sn(IV)-
porphyrin axial complexes and d-metal cations. Coordination oligomers or polymers of 
this type are of particular interest to those involved in creating new ‘chemo-responsive’ 
(i.e., selectively interacting with other chemical species as receptors, sensors, or photocata-
lysts) or ‘size-responsive’ (i.e., capable of separating, storing, and transporting aggressive, 
toxic or explosive chemical species of different nature) materials, with their functional 
properties controlled by the number of monomeric fragments in the polyporphyrin ar-
rays. 

2. Materials and Methods 
2.1. Materials 

The high purity reagents were purchased commercially from PorphyChem 
(5,10,15,20-tetra(4-sulfonatophenyl)porphyrin tetraammonium), and Sigma Aldrich 
(St.Petersburg, Russia) (2,5-diaminohy droquinone dihydrochloride, L-tyrosine). 

2.2. Equipment 
All the 1H NMR (500.17) experiments were performed on a Bruker Avance III 500 

NMR spectrometer (Bruker Biospin, Karlsruhe, Baden-Württemberg, Germany) with 256 or 512 
scans and spectral windows of 20 ppm. The inaccuracy of the 1H NMR chemical shift 
measurement relative to the solvents (D2O and DMSO) was found to be ± 0.01 ppm. The 
UV-Vis spectra were recorded in the range of 190–1200 nm on a JASCO V-770 spectropho-
tometer (Tokyo, Japan). The fluorescence spectra were recorded in the range of 430–770 
nm on a Shimadzu RF 5301PC Spectrofluorimeter (Kyoto, Japan). The quantum-chemical 
calculations were performed using v.4.2.1 of the ORCA program system [29]. The Density-

Figure 1. Structures of the complexes I and II.

Complexes I and II were used as tectons coordinating through Cu2+ cations. Such
ligands have the ability to form stable chelate cycles with d-metal cations due to the simulta-
neous interaction of the metal cation with the ligand reaction centers of different natures(the
hydroxyl group oxygen and amino group nitrogen) [28]. Chain oligomerization of the
Sn(IV)-porphyrindiaxial complexes (SnP(L)2) via Cu2+ cations is ensured by one copper
cation forming two stable five-membered chelate rings, with the axial ligands belonging
to the neighboring porphyrinates. The result of this oligomerization is the formation of
stable nanoparticles (in comparison with less stable oligomers, which can be formed by
four- or six-membered chelate rings based on copper cations), the sizes and properties of
which depend on the nature of the axial ligands and the concentration ratio of the Sn(IV)-
porphyrin axial complexes and d-metal cations. Coordination oligomers or polymers of this
type are of particular interest to those involved in creating new ‘chemo-responsive’ (i.e.,
selectively interacting with other chemical species as receptors, sensors, or photocatalysts)
or ‘size-responsive’ (i.e., capable of separating, storing, and transporting aggressive, toxic
or explosive chemical species of different nature) materials, with their functional properties
controlled by the number of monomeric fragments in the polyporphyrin arrays.

2. Materials and Methods
2.1. Materials

The high purity reagents were purchased commercially from PorphyChem (5,10,15,20-
tetra(4-sulfonatophenyl)porphyrin tetraammonium), and Sigma Aldrich (St. Petersburg,
Russia) (2,5-diaminohy droquinone dihydrochloride, L-tyrosine).

2.2. Equipment

All the 1H NMR (500.17) experiments were performed on a Bruker Avance III 500 NMR
spectrometer (Bruker Biospin, Karlsruhe, Baden-Württemberg, Germany) with 256 or
512 scans and spectral windows of 20 ppm. The inaccuracy of the 1H NMR chemical
shift measurement relative to the solvents (D2O and DMSO) was found to be ±0.01 ppm.
The UV-Vis spectra were recorded in the range of 190–1200 nm on a JASCO V-770 spec-
trophotometer (Tokyo, Japan). The fluorescence spectra were recorded in the range of
430–770 nm on a Shimadzu RF 5301PC Spectrofluorimeter (Kyoto, Japan). The quantum-
chemical calculations were performed using v.4.2.1 of the ORCA program system [29]. The
Density-functional Theory (DFT) method with the CAM-B3LYP hybrid functional and
3–21 basis set was used to optimize the compound ground state. The pH was monitored
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by an Electroanalytical Analyzer (Type OP-300, Radelkis) ion meter. Elemental analyses
were performed on a Flash EA 1112 analyzer. The mass spectra were obtained on a Shi-
madzu Biotech Axima Confidence Maldi TOF mass spectrometer of Kratos Analytical
Limited-Great Britain, Manchester (with methanol as the solvent). The infrared analysis
of the solid porphyrins was done on a VERTEX 80 V infrared Fourier-spectrophotometer
(Ettlingen, Germany) with KBr pellets in the range of 4000–400 cm−1. The thermogravi-
metric analysis (TG) and differential thermal analysis (DTA) were recorded on a TG 209 F1
Iris thermomicrobalance (Netzsch, Germany) with dry samples at the heating rate of 10 C
min−1 in an argon atmosphere in the range from room temperature to 900 ◦C. The Electron
Paramagnetic Resonance (EPR) spectra of solutions in water were recorded on an EPR
10-MINI spectrometer (St. Petersburg) with an operating frequency of 9.45 GHz. The
magnetic field was calibrated using a standard DPPH (diphenylpicrylhydrazyl) sample.

2.3. Synthesis

Bis-thyrazine-Sn(IV)-5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (I) was obtained
according to the procedure described by us previously in [30] from the bis-hydroxy-
Sn(IV)-5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (III). Mass-spectrum (MALDI-TOF):
(m/z):[M+H]+ 1407.17; molecular formulaC62H46N6O18S4Sn-requires [M]+1406.01;UV-Vis
(H2O), λnm (lgε): 594 (4.06), 555 (3.57), 421 (5.04), 1HNMR (500 MHz, D2O), ppm: 9.41
(s, 8H, Hβ-pyr.), 8.72 (s, 4H, NH2-L), 8.36 (d, J = 7.8, 8H, ortho-C6H4), 8.14 (d, J = 7.8,
8H, meta-C6H4), 5.51 (d, 4H, ortho-Ar-L), 4.37 (t, 2H, CH-L),3.19(m, 4H, CH2-L), 2.28
(d, 4H, meta-Ar-L);IR-spectrum, (KBr), ν, cm−1:3420 (sb)ν (OH), 3143 (b) ν (NH3+str.),
2939(w),ν(C-H, Ar), 2814(w),ν(C-H, Ar), 1680 (b)ν(C=C, Ar), 1655 (b) ν (NH3+deg. def.),
1607 (s)ν (COO- assym.), 1561(b)ν(C=C, Ph), 1517 (m)νNH3+sym. def.),1384 (s) ν (COO-
sym.), 1367 bν(C=N), 1337 (w)ν (C-N, Por), 1246–45 (m) (NH3+rocking,),ν(C-N), 1200(w),
(C-N, Pr), 1197 (m), 1128 (m), 1116(m)δ(C-H), 1045(m)ν(S-C), 1015(m) δ(C-H), 998 (m)
ν(C-C),842–41, 744 (w)γ(C-H, Pyr), 706(w)γ(C-H, Ph), 706(w)γ(C-H, Ph), 646 (m) (COO-
wagging), 580m(COO- rocking), 562 (m) ν(Sn-O).

Bis-diaminohydroquinone-Sn(IV)−5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (II)
was synthesized similarly to (I): 7.38 mg of III (0.0068 mmol) and 3.62 mg of
2,5-diaminohydroquinone dihydrochloride (0.017 mmol) were dissolved in 20 mL of dis-
tilled water. The resulting solution was boiled for 5 h, cooled, and then evaporated to
dryness in a vacuum. The product was purified by column chromatography on neutral
alumina using an ethanol-water mixture (1:2) as the eluent. The product yield after re-
crystallization was equal to 93%.Mass-spectrum (MALDI-TOF): (m/z):[M+H]+ 1325.39;
molecular formula C56H38N8O16S4Sn-requires [M]+ 1324.01; UV-Vis (H2O), λmax (logε)
nm:419 (5.11),554 (4.10), 593 (3.61);1H NMR, (500 MHz, D2O): 9.10 (s, 8H,β-pyrr.), 8.45 (d,
J = 7.8 Hz, 4H, ortho-C6H5), 8.25 (d, J = 7.7 Hz, 8H, meta-C6H5), 8.59 (s, br, 2H, NH2 (L)),
5.32 (s, br, 2H, NH2 (L)), 5.97(t, J = 8.0 Hz, 2H, Ar(L)), 4,90 (s, 2H, OH(L)), 2.92 (t, J = 2.0 Hz,
2H (L)).IR-spectrum, (KBr), ν, cm−1:3357 (sb)ν (N-H), 3244 (sb)ν (O-H) ν, 3052,2930-ν
(C-H, Ar), 1695(b)ν(C=C, Ar), 1619(N-H)δ, 1582(b)ν(C=C, Ph), 1601, 1501, 1478 (C-C, Ar)
ν, 1381 bν(C=N, Por), 1359 (w)ν (C-N, Por), 1152 (C-O)ν, 1045(m)ν(S-C), 1015(m) δ(C-H),
998 (m) ν(C-C), 821, 7 50 (C-H) γ, 784 (N-H) γw, 699 (C-C)γ, 566 (m) ν(Sn-O).

Bis-hydroxy-Sn(IV)-5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (III) was synthesized
according to the method described by the authors of [31]. Mass-spectrum (MALDI-TOF):
(m/z):[M+H]+ 1081.23; molecular formula C44H26N4O14S4Sn-requires [M]+ 1080.02;UV-Vis
(H2O), λ max(logε) nm: 593 (4.10), 554 (3.60), 419 (5.40), 1H NMR, (500 MHz, D2O): 9.10 (s,
8H,β-pyrr.), 8.45 (d, J = 7.8 Hz, 4H, ortho-C6H5), 8.25 (d, J = 7.7 Hz, 8H, meta-C6H5). −7.02
(2H, OH).

The synthesis of dimeric (I-Cu-I, II-Cu-II), oligomeric (Cu-[I-Cu]6 and Cu-[II-Cu]6)
and polymers ([I-Cu]n and [II-Cu]n) porphyrins was carried out by heating an aqueous
solution of the corresponding axial complex I or II and copper chloride. The concentration
of the complexes was at least 5 × 10−4 mol/L.
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Synthesis of I-Cu-I, Cu-[I-Cu]6 and [I-Cu]n: 13.5 mg (0.0096 mmol) of complex I was
dissolved in 10 mL of distilled water. Then, 1.63 mg (0.0096 mmol) or 8.2 mg (0.0480 mmol)
of copper chloride dihydrate was added to the resulting solution to obtain a molar ratio of
I-Cu2+ equal to 1:1 or 1:5, respectively. To suppress hydrolysis, the reaction mixture was
acidified with several drops of diluted hydrochloric acid. The resulting reaction mixtures
were heated for 24 h at a temperature of 85–90 ◦C. After the reaction was completed,
the soluble and insoluble reaction products were separated by filtration at atmospheric
pressure. The insoluble reaction product ([I-Cu]n) was repeatedly washed with distilled
water on a filter.

Synthesis of II-Cu-II, Cu-[II-Cu]6,and [II-Cu]n: 12.5 mg (0.0094 mmol) of complex
II was dissolved in 10 mL of distilled water. Then, 1.6 mg (0.0094 mmol) or 8.0 mg
(0.0471 mmol) of copper chloride dihydrate was added to the resulting solution to obtain a
molar ratio of II-Cu2+ equal to 1:1 or 1:5, respectively. The rest of the procedure was similar
to the synthesis of polymers and oligomers of I with Cu2+.

3. Results and Discussion
3.1. Synthesis and Structure

It is well known that when amino acids, such as some other polydentate ligands,
interact with d-metal cations, they form stable compounds with one or two chelate rings [28].
The higher stability of such compounds is the result of each polydentate ligand binding to
the complexing cation by at least two bonds (-M-O, M← NH2 or M← NH). The products
of the amino acid interaction with d-metal cations can be mono- and bis-ligand particles. In
the latter case, bicyclic chelating of the copper cations occurs with formation of 4-coordinate
square planar geometry of the coordination center [32,33].

Depending on the self-assembly conditions, the products of the interaction of bis-axial
complexes I and II with the Cu2+ cations can be both porphyrin dimers ([I-Cu-I] and [II-Cu-
II]) and oligomers ([In-Cun±1] and [IIn-Cun±1]) consisting of several porphyrin fragments
and copper cations (Figure 2).

NSnP(L)2 + (n± 1)Cu2+ t→ [SnP(L)2]n − [Cu]n±1 (1)Polymers 2021, 13, x FOR PEER REVIEW 5 of 20 
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The structures of bis-axial complexes I and II and products of their self-assembly
(porphyrin dimers (I-Cu-I and II-Cu-II)), obtained by simultaneous interaction of Cu2+ with
the hydroxy and amino groups of axial ligands belonging to two different porphyrinate
molecules, were optimized by the DFT method with the CAM-B3LYP hybrid functional
and 3–21 basis set. The data obtained are shown in Figure 3 and Table 1.

Table 1. Geometric parameters of the studied compounds obtained by quantum-chemical calculations
using the Density-functional Theory DFT/CAM-B3LYP hybrid functional and 3–21 g basis.

Compounds I I-Cu-I II II-Cu-II

The maximum distance from the
upper point of the ligand to the

porphyrin core, Å
7.061 10.39314 6.560 7.3955

r(Sn-O), Å 2.0517 2.0517 2.0517 1.9902

r(Sn-N), Å 4.238 4.1662 4.2244 4.1778

r(Cu-O), Å - 1.81772 - 1.8220

r(Cu-N), Å - 1.92909 - 1.9377

<L-O-O-L(Ligand rotation angle) 98◦ 13◦ and 97◦ 159◦ 25◦ and 149◦

<Sn-O-L (The bridge angle) 122◦ 145◦ 131◦ 172◦

The angle between porphyrin end
aromatic ligand planes 41◦ 41◦

70◦ 50 ◦ 50◦

87◦

The angle between the porphyrin
planesin the dimer - 9◦ - 9◦

As seen from Figure 3 and Table 1, complexes I and II had similar Sn-O and Sn-N bond
lengths. A distinctive feature of I wasthe presence of additional points of binding between
the axial ligands and the porphyrin macrocycle due to the formation of intramolecular
hydrogen bonds, which could potentially prevent the formation of oligomeric and polymer
structures. The inclination angle of the axial ligand aromatic part of the axial ligand to the
porphyrin plane in complex I was 41◦, whereas in complex II, it was 50◦.

The formation of dimeric structures increased the inclination angle of the ligand
phenolate fragment relative to the porphyrin plane, probably due to the repulsion of the
aromatic fragments from each other. The functional groups involved in the chelation with
Cu2+ werelocated in the dimeric structures at the maximum possible distance from the
porphyrin plane. Obviously, in the case of a two-center interaction of the axial fragments
with Cu2+, such a structure is the most favorable energetically. In the case of I-Cu-I, the
formation of a chelate bond between the tyrosine and the copper cation destroys the
hydrogen bonds between the tyrosine and sulfophenyl moieties.

A significant increase in the Sn-O-L angle can be observed in the II-Cu-II structure
optimized by quantum chemical calculations. This increase is associated with the fact that
the amino group of the diaminohydroquinone fragment approached the pyrrole nitrogen
atom of the porphyrin macrocycle. Since there can be a significant electrostatic interaction
between the porphyrinate nitrogen atom and the amino group protons, such a structure
distortion can be energetically favorable.

Since the axial ligands in complexes I and II were of different sizes, the distance
between the porphyrin fragments in the I-Cu-I and II-Cu-II dimers differed significantly
and amounted to 21.3 and 17.6 Å, respectively. At the same time, the porphyrin fragments
in the dimeric systems were almost parallel to each other (Figure 3). The structures of the
porphyrin oligomers linked through Cu2+ werenot optimized. However, based on the data
about the dimeric structures, it can be assumed that the longer porphyrin oligomers were
almost linear, and the porphyrin polymers consisted of fragments similar to those shown
in Figure 3.
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According to the experimental data, the result of these self-assembly of Sn(IV)-
porphyrinates (I-II) in the presence of Cu2+ in aqueous solutions depends on the con-
centration ratio of the starting reagents, reaction time, and temperature. Table 2 shows
the empirical formula, molecular weight, and elemental analysis data of the reaction (1)
products at different concentrations of the starting compounds. Oligomerization was
achieved by heating compounds I and II for several hours at 90 ◦C. The self-assembly of
the porphyrinate fragments was monitored by changes in the UV-Vis spectra.

The self-assembly of the porphyrinate macrocycles into larger aggregates led to a
decrease in their solubility. The larger the oligomer, the lower its solubility. Upon reaching
a certain size, the resulting oligomers precipitated. The proportions of soluble and insoluble
self-assembly products in the studied systems are also presented in Table 2.

An analysis of the molecular weights of the substances presented in Table 2 shows that
the soluble products of the interaction of I or II with Cu2+ at an equivalent quantitative ratio
of the reagents were mainly porphyrin dimers (I-Cu-I and II-Cu-II). Under the conditions
of a five-fold excess of copper cations and prolonged heating of the reaction mixture (up to
24 h), oligomers with a large number of macrocycles were formed. The maximum number
of porphyrin fragments in soluble oligomers didnot exceed six. Chain oligomers with
more than six Sn(IV)-porphyrin units (polymers) precipitated during reaction (1). The
formation of porphyrin oligomers and polymers through strong bis-chelate binding with
the formation of a flat coordination center (Figure 2) was confirmed by UV-vis, IR, 1H NMR,
EPR spectroscopy, and thermogravimetric analysis. The composition of oligomeric chains
was estimated from the data of elemental analysis, mass spectrometry, and 2D NMR.
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Table 2. Empirical formula, molecular weight, and elemental analysis data of the reaction (1) products
with the ratio of reagents (1:1 and 1:5).

Compounds Yield,% Formula
Found/Calcd

Cu C H N

I - C62H44N6O18S4Sn
1407.01 - 52.89 3.15 5.97

II - C56H38N8O16S4Sn
1325.91 - 50.73 2.89 8.45

I: Cu (1:1) 94%
C62H44N6O18S4SnCu0.5

I-Cu-I
2877.57

2.19/
2.21

51.67/
51.72

3.06/
3.08

5.81/
5.84

II: Cu (1:1) 96%
C56H38N8O16S4SnCu0.5

II-Cu-II
2715.38

2.32/
2.34

49.40/
49.54

2.80/
2.82

8.22/
8.25

I: Cu (1:5) a 78%
C62H44N6O18S4SnCu1.17

Cu-[I-Cu]6
8892.89

4.98/
5.00

50.48/
50.24

2.96/
2.99

5.64/
5.67

II: Cu (1:5) a 84%
C56H38N8O16S4SnCu1.17

Cu-[II-Cu]6
8400.31

5.27/
5.30

47.98/
48.04

2.72/
2.74

7.97/
8.00

I: Cu (1:5) b 22%
C62H44N6O18S4SnCu

[I-Cu]n
n× [1471.56]

4.27/
4.32

50.62/
50.60

3.00/
3.014

5.68/
5.71

II: Cu (1:5) b 16%
C56H38N8O16S4SnCu

[II-Cu]n
n× [1389.46]

4.54/
4.57

48.37/
48.41

2.74/
2.76

8.05/
8.07

Soluble (a) and insoluble (b) products of the reaction (1).

The mass spectrometry confirmed the formation of dimeric forms of complexes I and
II in the products of reaction (1). In addition to the peaks with m/z 1406.01 and 1470.51,
corresponding to the [I-H]− and ([I-Cu]-H)− ions, the mass spectrum of the product of the
complex I interaction with Cu2+ (Figure 4) at a 1:1 molar ratio of the reagents hada peak
with m/z 2877.03 corresponding to the [I-Cu-I] dimer. It was not possible to confirm the
formation of larger (containing six macrocyclic fragments)porphyrin oligomers by the mass
spectrometry method, which was probably due to the oligomer instability in the conditions
of the mass spectral studies of the samples. Similar behavior wasobserved in the mass
spectra of the products of the complex II interaction with Cu2+ at 1:1 and 1:5 molar ratios
of the reagents.
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3.2. Thermogravimetric Analysis and Powder XRD

All the products of reaction (1) were thermally stable solids, indicating a strong metal–
ligand bonding. Figure 5 shows DTA and TG curves with endo- and exothermic peaks
of complex I and the oligomer based on it. The thermal behavior of the free molecules of
aminoacids, including tyrazine, has been well studied. According to the results found by
the authors of [34,35], the first endothermic stage of tyrazine decomposition occurs in the
temperature range of 276–322 ◦C and corresponds to the reactions of its decarboxylation
and deamination. Further, in the temperature range of 322–350 ◦C, the resulting interme-
diate product is relatively stable. The second stage of tyrazine decomposition occurs at
350–355 ◦C and involves oxidation of the phenolic fragment. At the same time, the por-
phyrin macrocycles in the general case [36], particularly the Sn(IV)-porphyrins [37], are
highly resistant to thermal oxidative destruction.

As Figure 4 shows, the decomposition of complex I consisted of four stages. At
the first stage, in the temperature range up to 100 ◦C, the complex thermal dehydration
occurred. The loss of 9.45% of the sample mass corresponded to water evaporation as
the sample itself was not subjected to preliminary drying. At the second stage, in the
temperature range of 217–441 ◦C, the loss of 15.8% of the sample mass indicates partial
axial ligand decomposition. The third stage, in the temperature range of 518–727 ◦C, the
loss of 29.2% of the sample mass corresponded to the detaching of four sulfo groups from
the porphyrin aryl fragments. The fourth stage consisted of the removal of the phenyl
fragments, both of the porphyrin and axial ligands (15.5% of the sample mass). The residue
mass (30% of the sample mass) indicates that the tetrapyrrole macrocycle containing the
Sn(IV) cation in the coordination center was not destroyed. Similar data on the thermal
decomposition of Sn(IV)-porphyrins have been described by the authors of [37]. The first
stage of decomposition of the tyrazine fragments in porphyrin complex I begins at lower
temperatures than that of the free aminoacid ligand, whereas the second stage (phenyl
fragment oxidation), on the contrary, occurs at a higher temperature.
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TG) curves with endo- and exothermic peaks for thermal decomposition of I (red line) and Cu-[I-Cu]6

(green line).

A thermal analysis of the hexamers shows that decomposition of this compound
consists of more stages. The first stage (up to 100 ◦C), as in the case of monomeric complex
I, was associated with thermal dehydration. The second stage, in the temperature range of
100–136 ◦C, consisted of the dehydration of the water molecules located in the coordination
bis-chelate center of Cu2+. The third stage of destruction, in the temperature range of
213–351 ◦C, corresponded to the destruction stage of the tyrazine fragments of the chelate
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cycles. At the next stage, in the temperature range of 434–605 ◦C, the porphyrin macrocycle
sulfo groups were eliminated. The last stage, in the temperature range of 736−925 ◦C, was
probably associated with the processes of removal of the phenyl fragments of the porphyrin
macrocycle and axial ligands. The residue mass (33% of the initial sample mass) indicates
that the residue contains Sn(IV)-porphyrin and CuO. Similar results were obtained for the
[I-Cu]n polymer. The data for the II and its hexamers are depicted in Table 3.

Table 3. Thermogravimetric analysis data of the II and its hexamer.

Compound Temperature
Range (◦C)

DTG Peak
(◦C)

TG Weight Loss (%)
Assignment

Calcul. Experim.

II

20–200 110 2.64 2.78 uncoordinated water (2 mole)

200–500 320.9
425.2

7.20
23.51

8.32
23.07

dehydroxylation and deamination
destruction of sulfo groups

500–800 690.1
820.9

22.35
10.88

20.80
12.02

oxidation of the Ph-fragment
of porphyrins

oxidation of the Ph- fragment
of ligands

>900 33.41 33.01 (SnC20H12N4O2 rest)

[II-Cu]n

20–200 100
180

2.46
2.46

2.32
2.56

uncoordinated water (2 mole)
coordinated water (2 mole)

200–500 352.9
425.2

6.71
21.91

7.23
18.47

dehydroxylation and deamination
destruction of sulfo groups

500–800 694.5
870.2

20.83
10.14

22.30
8.69

oxidation of the Ph-fragment
of porphyrins

oxidation of the Ph- fragment
of ligands

>900 36.57 38.43 SnC20H12N4O2, CuO rest

Powder X-ray diffraction (PXRD) was performed to verify the purity of [I-Cu]n and [II-
Cu]n. The PXRD curve of [II-Cu]n, shown in Figure 6 as an example, indicates a diffuse large
steam bun peak. The PXRD curve of [I-Cu]n looks similar. The absence of other obvious
sharp peaks in the corresponding curves indicates that the polymers wereamorphous, with
random growth during the self-assembly [38].
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3.3. UV-Vis and IR-Spectral Studies

The UV-Vis spectra of the water-soluble products of reaction (1) were recorded in
the UV-visible region (Figure 7 and Table 4). The spectra for the investigated copper(II)
complexes displayed bands at 610 nm and 661nm, assigned to 2B1g→2Eg and 2Eg →
2A1gd-d transitions. According to the authors of [39–41], this indicates that the investigated
complexes weremononuclear complexes with four-coordinate square planar geometry.
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Table 4. UV-Vis spectra of the studied compounds (I, II, Cu-[I-Cu]6, and Cu-[II-Cu]6).

Compounds UV-Vis Spectra, λnm(lgε)

I 419 (5.04), 555 (4.06), 594 (3.57)

I-Cu-I 418 (5.00), 554 (3.87), 595 (3.45), 610 (3.33)

Cu-[I-Cu]6 418 (4.98), 554 (3.78), 595 (3.40), 610 (3.89)

II 419 (5.11), 554 (4.10), 593 (3.61)

II-Cu-II 418 (5.05), 553 (4.07), 592 (3.48), 609 (3.29)

Cu-[II-Cu]6 418 (5.03), 553 (4.07), 592 (3.35), 609 (3.54)

The Fourier Transform Infrared (FTIR) spectra of the metal complexes were recorded in
KBr discs over the range of 4000–400 cm−1. The data of the IR studies (Table 5 and Figure 8)
of the corresponding samples provide valuable information on how axial complexes I and
II bind to Cu2+ during the formation of chelate complexes. Based on the analysis of the
spectra of the reaction (1) products, it can be concluded that the amino and carboxyl groups
were simultaneously involved in the chelate complex formation. The IR spectra of the
oligomers now have new bands caused by the bending vibrations of the bonds formed due
to the coordination with Cu2+. The frequency ranges expected for these vibrations are well
known [42]. In addition to the vibrations of the amino and carboxyl groups, the processes
of chelation were also confirmed by the vibrations of the N-M and O-M bonds.

Table 5. Relevant IR bands for the compounds I and Cu-[I-Cu]6.

I Cu-
[I-Cu]6

I Cu-
[I-Cu]6

II Cu-
[II-Cu]6

II Cu-
[II-Cu]6

NH3+ NH2 COO- COO- N-H N-H O-H O-H

3188ν
3299ν
1655δd
1517δs
1246γr
1181γr

3201ν
3230ν
1668δd
1534 δ
1200γ
1166γ

1607νas
1384νs
646δas
580δs

1660νas
1405νs

606δ
588δ

3357ν
1619δ
764γw

3430ν
1638δ
747γ

3244ν
1378δd

-
-

C-O C-O

1152ν 1114ν

Cu-N Cu-N Cu-O Cu-O Cu-N Cu-N Cu-O Cu-O

- 633ν - 472ν - 620ν - 480ν
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Figure 8. IR spectra of complex I (blue line) and Cu-[I-Cu]6 (red line) in KBr discs.

The IR spectra of the aminoacid fragments with a bipolar structure contained charac-
teristic bands of the NH3+-group corresponding to symmetric stretching (in the region of
3200–3400 cm−1) and bending (in the region of 1550–1600 cm−1) vibrations. In the chelate
complexes, the stretching vibrations of the bound NH2 group were shifted to longer wave-
lengths. Such a decrease in the frequency and increase in the intensity of the amino-group
stretching vibrations can be interpreted by coordination interactions between the metal
cation and the nitrogen atom of the amino-group, which increased the dipole moment
value. Also characteristic of chelation is the band at 1160 cm−1, which was related to the
deformation vibrations of the NH2 group but was not observed in the bipolar compound.

A vibration band typical of the free carboxylate anion appeared at 1607 cm−1 and
1384 cm−1. The carboxyl group transition to the non ionized state caused this band to
disappear, and the vibration appeared in the longer wavelength region as ν(C=O) in the
carboxyl group. For the investigated complexes, the COO−asymmetric stretching frequen-
cies were shifted to lower values compared with those of the ligand. The bands in the
region of 480 cm−1 indicate the formation of a Cu–O bond and further confirm the ligand
coordination to the central metal ion via the oxygen atom of the carboxylate group [42].
Hypsochromic shifts were observed for the –NH2 frequencies during coordination. This
indicates bond elongation during the coordination, therefore suggesting probable square
planar geometry of the complexes. The new bands in the spectra of the complexes at
535–552 cm−1 were assigned to the (M–N) stretching frequency. The participation of the
lone pairs of electrons on the N atom of the amino group in the ligand in the coordination
was confirmed by these band frequencies [43].

3.4. EPR Studies

The conclusions about the planar-square structure of the obtained Cu(II) complexes
based on the results of the IR spectra were additionally confirmed by EPR spectroscopy
data [44–47]. In the EPR spectra of the studied compounds (Figure 9) at room temperature,
the hyperfine lines from the magnetic interaction of the unpaired electron spin with the
copper atom nuclear spin were well resolved. The isotropic EPR spectra are described by
a symmetric spin Hamiltonian and had four hyperfine lines of equidistant components
of different intensities and widths for nuclear spin projections, which is explained by the
McConnell relaxation mechanism [47]. The spectra were a superposition of the spectra
from the 63Cu nuclei, with the trans-N2O2 coordination environment of the Cu(II) ion.
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Table 6. Relevant 1H-NMR signals for studied compounds. 

Type of 
Protons 

Chemical Shifts of Signals Type of 
Protons 

Chemical Shifts of Signals 
I I-Cu-I Cu[I-Cu]6 II II-Cu-II Cu[II-Cu]6 

 -COOH 11.37 (s, 2H) 
11.35 
(s, H) 

- -OH 10.7 (s, 2H) 10.6 (s, H) - 

 -NH2 6.72 (s, 4H) 
6.71 (s, 2H), 
6.91(brs, 2H) 

6.93 (brs, 2H) -NH2 8.59 (s, 4H)  8.79 (brs, 2H) 

 -CH(L) 4.37 (t, 2H) 
4.36 (t, H) 
3.81 (t, H) 
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Figure 9. Powder Electron Paramagnetic Resonance (EPR) spectrum of Cu-[I-Cu]6 (a) and [I-Cu]n (b).

The presence of two five-membered metallocycles in complex compounds, regardless
of the nature of the coordinated atoms, led to a planar conformation. The coordination
center in oligomers based on II increased the electron-donating properties of the nitrogen
and oxygen atoms. These conclusions were confirmed by the calculated parameters of the
EPR spectra. The EPR parameters for the Cu- [I-Cu]6 hexamer with tyrazine fragments
(L1), had the following values: g = 2.119, acu = 89.6 E, α2 = 0.81, whereas for the oligomer
with aminoresorcinol ligands, these values were within the following range: g = 2.108,
aCu = 95.84 E, α2 = 0.89. The αparameter calculated from the isotropic EPR parameters
using Formula (2) [48]:

α2 =
1

0.43

( αCu
0.036

+ g− 2
)
+ 0.02 (2)

characterizes the degree of covalence of the copper-ligand bond. If the oligomer based on
II had α2 = 0.89, then the oligomer based on I was somewhat lower (0.81).

3.5. NMR Spectroscopy Studies

The NMR spectroscopy is a very important tool for the investigation of the structure
of an unknown compound in solutions. Data of two-dimensional 1H NMR make it possible
not only to obtain information confirming the presence of chelate binding in the products
of reaction (1), but also to determine the number of porphyrinate fragments in the resulting
porphyrin oligomers. The formation of chelating bonds of porphyrinate axial ligands with
Cu2+ is evidenced by characteristic shifts in the signals of the ligand protons located in close
proximity to the inner coordination sphere of the copper cations. The NMR study results
are presented in Table 6.The absence of signals of protons of the -COOH and -OH groups
indicates the formation of the corresponding Cu(II)-complexes (due to the replacement of
H+ with the metal ion). The signal of the protons at the carbon atom, which was closer to
the NH2 group, was significantly shifted (by 0.5 ppm) in a strong field.

Diffusion-ordered spectroscopy (DOSY) was used to determine the composition of
the reaction (1) products between Sn(IV)-porphyrin axial complexes and Cu2+. It has
been reported in recent works [30,49–54] that this method is among the most effective
in the analysis of supramolecular complexes of macrocyclic compounds. This method
makes it possible to confirm the structures of the formed supramolecular complexes by
comparing the diffusion coefficients of the systems obtained by self-assembly with the
diffusion coefficients of the initial compounds (before the self-assembly) taken as objects
of comparison. In our case, diaxial complexes I and II were employed as the reference
compounds. The diffusion coefficients (D) of complexes I and II and the products of their
interaction with Cu2+ (in 1:1 and 1:5 ratios) were measured by the stimulated echo method,
with a bipolar gradient and a WATERGATE pulsed water suppression unit [55] in an
H2O/D2O mixture (in a 90:10 ratio) at 298 K. The results are presented in Table 7 and
Figure 10.
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Table 6. Relevant 1H-NMR signals for studied compounds.

Type of
Protons

Chemical Shifts of Signals Type of
Protons

Chemical Shifts of Signals

I I-Cu-I Cu[I-Cu]6 II II-Cu-II Cu[II-Cu]6

-COOH 11.37 (s, 2H) 11.35 (s, H) - -OH 10.7 (s, 2H) 10.6 (s, H) -

-NH2 6.72 (s, 4H) 6.71 (s, 2H),
6.91(brs, 2H) 6.93 (brs, 2H) -NH2 8.59 (s, 4H) 8.79 (brs, 2H)

-CH(L) 4.37 (t, 2H) 4.36 (t, H)
3.81 (t, H) 3.78 (t, 2H) -NH2 5.32 (s, 4H) 5.35 (s, 4H) 5.36 (s, 4H)

-CH2- 3.19 (m, 4H) 3.15 (m, 4H) 3.11 (m, 4H) Ph(L) 5.97 (t, 2H) 5.99(m, 2H) 6.03 (t, 2H)

2-Ph (L) 5.51 (d, 4H) 5.64 (m, 4H) 5.82 (d, 4H) Ph(L) 2.92 (t, 2H) 2.92 (t, 2H) 2.91 (t, 2H)

3-Ph (L) 2.28 (d, 4H) 2.30 (d, 4H) 2.35 (d, 4H) 2-Ph(Porph.) 8.45 (d, 8H) 8.46 (d, 8H) 8.44 (d, 8H)

2-Ph(Porph) 8.36 (d, 8H) 8.37 (d, 8H) 8.38 (d, 8H) 3-Ph(Porph.) 8.25 (d, 8H) 8.24(d, 8H) 8.23 (d, 8H)

3-Ph(Porph) 8.14 (d, 8H) 8.17 (d, 8H) 8.15 (d, 8H) β-Por 9.10 (s, 8H) 9.13 (s, 8H) 9.12 (s, 8H)

β-Porph. 9.41(s, 8H) 9.43 (s, 8H) 9.42 (s, 8H)

Table 7. Diffusion coefficients (D×10−10, m2s−1) of the complexes I and II and the products of their
interaction with Cu2+ at the 1:1 and 1:5 concentration ratios of the reagents.

I I-Cu-I I-[Cu-I]n

2.96 2.26 1.55

II II-Cu-II II-[Cu-II]n

2.80 2.13 1.32

The measurement error is equal to ±0.04 ÷ 0.09 × 10−10, m2s−1.
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Figure 10. 1H NMR diffusion-ordered spectroscopy (DOSY) spectra of products of interaction the complex I (a) and
porphyrin dimers with Cu2+I-Cu-I (b).

The high accuracy of these measurements clearly indicates that the DOSY method
is sensitive enough for us to speak with confidence about the difference between the
complexes of the monomeric porphyrinates and oligomeric porphyrin systems and to
confirm the complexation process in the studied systems.

For the sake of simplicity of interpretation of the DOSY experiments, we conducted
a graphical analysis, which has been successfully applied to related/similar molecular
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systems earlier [56–58]. This graphical analysis is based on a model of a mass dependence
on the coefficient of translational diffusion, obtained from the Einstein–Smoluchowski
relation [59,60]. Thus, it is shown that the ratio of the diffusion coefficients for two different
molecular particles (Di/Dj) is inversely proportional to the square root or cubic root of the
ratio of their molecular masses (Mj/Mi) for rod-like and spherical forms of molecules, and
can be calculated by the formula:

2

√
Mj

Mi
≥ Di

Dj
≥ 3

√
Mj

Mi
(3)

This ratio can be used to calculate a set of theoretical diffusion coefficients (upper
and lower limits) for each supramolecular complex based on the diffusion coefficients of
starting complexes I and II (monomers). As shown by Cabrita and Berger [61], the use of
a reference compound is effective for solving problems associated with qualitative and
quantitative analysis of intermolecular interactions. For graphical analysis, in addition to
the theoretical curves of the solvent diffusion coefficients shown in Figure 11 (the black
line refers to the simulated theoretical dependence for rod-shaped oligomeric particles, the
dotted line refers to the simulated theoretical dependence for spherical oligomeric particles),
we indicated the experimental values of the self-diffusion coefficients determined both for
initial complexes I and II and the products of their interaction with Cu2+. The performed
graphical analysis showed that the experimental values of the diffusion coefficients of the
reaction (1) products at 1:1 and 1:5 ratios of the starting compounds fit well in the range of
the calculated theoretical curves. The data obtained indicate that the products of reaction
(1), with an equivalent ratio of reactants in the case of both complex I and complex II, were
most likely dimers with molecular weights of 2877.57 g/mol (I-Cu-I) and 2715.37 g/mol
(II-Cu-II). The systems formed with a five-fold excess of copper cations were characterized
by the formation of Cu-[I-Cu-]6 oligomers with molecular weights of 8892.89 g/mol and
Cu-[II-Cu-]6 oligomers with molecular weights of 8400.3 g/mol.
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values calculated by the Formula (3).
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3.6. Fluorescent Properties Studies

Figure 12 shows the change in the fluorescent properties of complexes I and II as the
corresponding dimers and oligomers were formed from them. The distinguishing feature
of the presented spectra was an additional peak in the region of 620–625 nm as the corre-
sponding porphyrin arrays with different numbers of tetrapyrrole chromophores (n = 2, 6)
were formed from the porphyrin monomers (complexes I and II). Such a peak probably
appeared because the porphyrin dimers and oligomers formed during the chelation had
an additional energy level, enabling an emitting transition to the ground state.
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Figure 12. Fluorescence spectra of the studied systems with different concentration ratios of the reagents, λex = 416 nm
(I-(a), II-(b)).

Strong quenching of the fluorescence (Figure 11) of complexes I and II in comparison
with bis-hydroxy-5,10,15,20-tetra-(4-sulfonatophenyl)porphyrin-Sn(IV) (III), according to
the literature data [62,63] and the results of our own studies [64,65], is caused by the
interaction of the closely spaced aromatic systems of the ligand and porphyrin macrocycle
(in complex I, the inclination angle of the axial ligand aromatic part to the porphyrin plane
was31◦, while in complex II, it was 50◦). The results of the quantum chemical calculations
show (Figure 2, Table 1) that as dimeric structures were formed, the inclination angle of
the phenolate fragment of the ligands relative to the porphyrin plane increased (the angle
became close to 90◦). The functional groups involved in the chelation with Cu2+ cations in
the dimeric structures were located at the maximum possible distance from the porphyrin
plane. It is logical to assume that the structural changes accompanying the formation of
dimeric and oligomeric systems weakened the mutual influence of the aromatic systems of
the ligand and macrocycles in them. This is in good agreement with the data presented in
Figure 13. In the case of complex I, the quantum yield of the systems formed at different
ratios of the reagents (1:1 or 1:5) increased by about two-fold. In the case of complex II, at a
1:5 molar ratio of the reagents, the quantum yield of fluorescence increased by about four-
fold. The difference in the quantum yields of the dimeric and oligomeric systems obtained
on the basis of complexes I and II could probably be explained by the different sizes of
the axial ligands in the corresponding complexes. The importance of spatial effects was
confirmed by the data in Tabl. 1, according to which the distance between the porphyrin
fragments in the I-Cu-I and II-Cu-II dimers differed significantly and amounted to 21.3 and
17.6 Å, respectively.

It should be also noted that some of the products of reaction (1) precipitated. It is
logical to assume that the polymer products of the reaction of the Cu2+ cation chelate
complex formation with the studied axial complexes of Sn(IV)-porphyrin were precipitated.
Currently, our laboratory is conducting research related to the establishment of their
structure and properties. According to the preliminary studies, these porphyrin polymers
are characterized by high porosity and capacity to selectively adsorb organic solvent
molecules. This suggests that coordination polymers of this type could be promising
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“size-responsive” materials (i.e., capable of separating, storing, and transporting aggressive,
toxic, or explosive chemical species of different natures).
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Figure 13. (a) Fluorescence quantum yields of complexes III and I and products of their interaction with Cu2+ depending
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4. Conclusions

Thus, the obtained porphyrin oligomers and polymers in solid state and in solution
are compounds in which the porphyrin fragments with tyrosine and diaminoresorcinol
axial ligands form stable coordination compounds with two five-membered square planar
metallocycles. Soluble products of the chelation of Sn(IV)-tetra(sulfonatophenyl)porphyrin
diaxial complexes with Cu2+ are porphyrin coordination oligomers with different numbers
of tetrapyrrole fragments (from two to six). The specific composition of the interaction
products depends on the concentration ratio of the reagents. If, at an equivalent concen-
tration ratio of the reagents, the main products are porphyrin dimers, then an excess of
Cu2+ leads to the formation of larger oligomeric porphyrin arrays. The obtained porphyrin
oligomers formed by five-membered chelate rings with Cu2+ are stable compounds (in
comparison with oligomers, which can be formed by four- or six-membered chelate rings
based on copper cations). The results show that chelation of Sn(IV)-porphyrin diaxial
complexes with Cu2+ is accompanied by an increase in the fluorescence of the resulting
hybrid organic-inorganic oligomers. The results obtained are of particular interest to those
involved in creating of new ‘chemo-responsive’ (i.e., selectively interacting with other
chemical species as receptors, sensors, or photocatalysts) materials, the optoelectronic
properties of which could be controlled by varying the number of monomeric fragments in
the polyporphyrin arrays.
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