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Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade
ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little
mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is
available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated
chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential
reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell
and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the
first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in
dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are
promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts
distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and
which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in
focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into
distinct biological responses.

1. Introduction to Cold Physical Plasma

The advancement in medicine could not have been possi-
ble without the introduction of innovative technologies
from the field of physics to improve the diagnosis and
treatment of patients. From radiation therapy to magnetic
resonance imaging, these technologies have revolutionised
medicine, which allow clinicians to use advanced imaging
methods and sophisticated therapies to treat patients. In
the last decades, another technology from the physics
disciplines has gained visibility: physical plasma. Com-
monly referred to as the fourth state of matter [1],
plasma brings multiple opportunities for patient care that
range from cosmetic procedures to clinically relevant

pathologies (being the focus of this review) such as
wound healing and cancer treatment.

Cold physical plasma, from here on referred to as plasma,
is generated by supplying energy to a gas to induce partial
ionization. For medical purposes, there are two main princi-
ples, despite some sources not falling into the following
categories: (i) dielectric barrier discharges (DBD) that are
directly operated in ambient air and (ii) plasma jets that
ionize a stream of noble or inert gas that subsequently inter-
acts with oxygen and nitrogen of ambient air. DBDs generate
plasma in atmospheric air directly onto the treatment target
(Figure 1(a)). A high-voltage pulse is applied to an electrode
covered with an insulating barrier and brought near the
target, which acts as the second electrode. The barrier
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reduces the current that is passed to the tissue, making the
plasma generated in the gap between the electrodes, ther-
mally and electrically safe [2]. The electrodes used for
DBD systems could be fabricated for different sizes, making
them ideal for large surface treatments. While several plasma
jet configurations are available, they operate on the principle
that the bulk of the plasma is generated within the plasma
device (Figure 1(b)), which is filled with a constant flow of
discharge gas or gas mixture (e.g., argon, helium, and nitro-
gen) [3]. The generated plasma protrudes from the aperture
of the device and is brought in contact with the biological
target for treatment. The cross-section of this “plasma
plume” is on the order of micrometers, which allows for
high-precision treatment.

Common to both principles is the presence of free
electrons and ions, free radicals, and neutral molecules
in constant interaction [4]. Plasmas operated at ambient
pressure and body temperature are of particular interest
in biomedicine. The major biologically active component
of plasma is the variety of reactive oxygen and nitrogen
species formed upon reaction with molecules (oxygen,
nitrogen, and water) present in the ambient air [5–7].
Plasma-derived reactive species can be divided into reac-
tive oxygen species, such as ozone (O3), superoxide
(O2

•-), singlet delta oxygen (1O2), atomic oxygen (O),
hydroxyl radical (•OH), and hydrogen peroxide (H2O2)
on the one hand, and reactive nitrogen species, such as
nitrogen dioxide radical (•NO2), peroxynitrite (ONOO-),
and nitric oxide (•NO) on the other [8–10]. Since all
the biologically relevant RNS also contain oxygen, we will
use the term ROS in this review to refer to both ROS
and RNS.

ROS have been acknowledged as the main active agents
responsible for the biological effects of direct and indirect

plasma treatments (the latter refers to treating a liquid with
plasma that is subsequently transferred to cells or tissues)
[6, 11, 12]. Other physical components produced by plasma
(UV photons and electromagnetic fields) seem to have a
negligible cellular impact on their own [13–15] at the inten-
sities generated with plasmas. However, their ability to
exert biological effects in cells during direct plasma treat-
ments should not be overlooked. There is evidence that
exposure of cells to low electromagnetic field frequencies
can induce transient changes in protein [16] and mRNA
levels [17], decrease cell proliferation [18], and increase free
radical levels [19]. Further studies on the effect of the phys-
ical components of plasma other than ROS are needed to
elucidate their specific roles.

An advantage of plasma technology is the ability to exert
different biological responses based firstly on the type of ROS
delivered and secondly by their quantity. ROS have a crucial
role in physiological functions, and they can induce different
effects on cells depending on their nature, levels, and localiza-
tion [20]. In medicine, the potential of ROS is being exploited
in therapies in, e.g., dermatology, oncology, and dentistry.
Direct plasma treatments benefit from the presence of highly
active, short-lived ROS produced during ionization, which
present a unique chemical opportunity to modulate the
responses in target cells. The success of these therapies will
depend on the ability of plasma to induce the desired effect
in the target tissue, for which it is necessary to understand
the underlying mechanisms of action.

To set the stage for a discussion of the future of plasma in
the medical field, we outline the theories proposed to account
for the effects of plasma-generated ROS and the correspond-
ing signalling pathways at the cellular level. To understand
the mechanistic link between plasma and its therapeutic
effect, we will focus on the interactions occurring at the
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Figure 1: Schematic of two categories of commonly used plasma devices for medical application: dielectric barrier discharges and plasma jets.
In dielectric barrier discharges, plasma is generated in atmospheric air directly onto the biological target (a), while in plasma jets, plasma is
generated inside the device and delivered to the target via a flow of gas (b).
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membrane microenvironment and the translation of such
events into biological responses. The ultimate goal in plasma
medicine should be to identify specific types and quantities of
plasma-derived ROS (based on either different plasma
sources or different operational settings for one plasma
source) for the treatment of a specific pathological condition.

2. Plasma-Derived ROS in Medical Therapy

The spatiotemporal distribution of the ROS output of some
plasma sources like the kINPen is exceptionally well char-
acterized [21]. Naturally, more investigations are needed
for this and other types of plasma sources, but there is a
certain degree of consent on what ROS plasma sources typ-
ically generate and how this can be tuned by changing the
feed and ambient gas composition. The medical effects of
plasma treatment in patients are promising in dermatology
and cancer, as briefly outlined below. For a comprehensive
overview of other areas of medical application, the reader is
referred to a recent text book covering all aspects of plasma
medicine [22].

2.1. Dermatology and Skin-Based Infections. Nonhealing
wounds are a devastating problem for patients and healthcare
systems alike [23]. The increasing incidence of diabetes mel-
litus as a major ailment for diabetic foot ulcers, as well as the
increase in human life expectancy, is likely to magnify this
issue [24]. More than a decade ago, it was hypothesized that
wound healing is subject to redox control [25–27]. As
plasmas emit ROS, it was natural to test their potential effect
on nonhealing wounds. Several clinical observations and
studies found not only an antimicrobial activity but also a
wound healing promoting activity of plasma treatment in
acute as well as chronic wounds [28–35] and driveline infec-
tions [36]. Using hyperspectral imaging, an increase in
wound oxygenation and blood flow was found immediately
after plasma treatment [37]. Yet, the efficacy of plasma ther-
apy varies between patients. In general, the evidence level of
the majority of clinically relevant wound therapies is low
[38]. Part of this problem is a lack of standardization of
wound location, size, microbial colonization, and etiology
as well as varying treatment procedures prior to hospitaliza-
tion. Hence, a limited number of randomized clinical trials
(RCTs) as well as clinical trials without randomization is
reported. Due to the nature of cold physical plasma, blinding
the investigators (or patients) is hardly achievable. For the
medical product PlasmaDerm (NCT01415622), improved
wound healing was reported [39]. For the medical product
MicroPlaSter, three nonregistered RCTs showed a reduction
in bacterial load and a modest improvement in wound heal-
ing [40–43], while no improvement in patients with pruritus
was observed [44]. For the same device, one trial on biofilm
removal in diabetic ulcers is ongoing (ISRCTN17491903).
For pressure ulcers, another unregistered trial reported a
reduction in microbial burden and improved wound healing
using an argon DBD-based source called P-Jet [45]. To the
best of our knowledge, this source has not been accredited
as a medical device. For a novel, CE-marked, hand-held,
and battery-driven plasma device called PlasmaCare, there

is one recruiting interventional trial (ISRCTN98384076)
with the primary outcome measure of a reduction of bac-
terial load as a basis for its prospective accreditation for
wound healing. At the VU Medical Center Amsterdam, a
phase I study (primary outcome: safety; secondary out-
come: antimicrobial activity) using the plasma device for
wound healing was recently completed (NCT03007264).
A clinical trial on plasma-assisted wound healing after sur-
gical removal of hemorrhoids (NCT03907306) is currently
ongoing in the Russian Federation. Two trials to evaluate
the efficacy and safety of the RenewalNail device (USA)
targeting onychomycosis (fungal nail) were recently con-
cluded (NCT03072550, NCT03216200). Another US-based
device, the floating-electrode barrier discharge initially
designed at Philadelphia-based Drexel University, is cur-
rently being tested by The Skin Center Dermatology Group
in New York (NCT02759900) in patients with various skin
disorders (actinic keratosis, acne, verruca plana (warts), and
tinea corporis (superficial fungal infection)) up to the year
2023. The US-based Apyx Medical (formerly Bovie Medi-
cal Corp.) has completed a trial on their plasma device
(J-plasma) for safety and effectiveness against facial wrin-
kles (NCT03286283).

Some of these niche applications are partially supported
by clinical observations, for example, the decrease of the
severity of atopic [46] and superinfected dermatitis [47] in
patients. Future applications may concern treatment or
pruritic disorders, leishmaniosis, erythema, fungal infec-
tions (especially onychomycosis), impetigo contagiosa, and
folliculitis [48–50]. This is supported by numerous preclin-
ical studies suggesting a microbicidal and antifungal action
of plasmas, partially tested also on human skin [51–60].
Among the multiple applications of cold physical plasmas
is their use in dentistry, where so far only one trial on den-
tal restoration and caries prevention using the miniature
atmospheric cold plasma brush (m-ACPB) has been com-
pleted (NCT01529606). Altogether, evidence for plasma-
assisted wound decontamination and plasma-assisted wound
healing based on (R)CTs is improving, although structured
reviews are still missing. For other applications in dermatol-
ogy, including the treatment of (pre)malignancies, RCTs are
urgently warranted to increase the evidence level in plasma
medical applications. The different plasma devices used
across different countries will remain a drawback, each likely
similar and dissimilar in several aspects at the same time.
Here, basic and applied researches from physics to biology
need to address the challenge of categorizing plasma sources
and parameters under a unifying umbrella.

2.2. Oncology. Cancer is one of the biggest challenges in the
medical field. Solely in 2018, it was responsible for almost
10 million deaths globally [61]. These striking numbers
reveal the limitations of current therapy resources to improve
overall survival and often also the patient’s quality of life. For
example, a challenge in the palliation of end-stage head-and-
neck cancer patients is the extensive microbial growth on
tumors, which produces a hostile odor and hampers social
interaction. As these soft tumors are difficult to disinfect
chemically, plasma was chosen for this purpose. While the
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decontamination procedure worked in all patients, tumor
regression with plasma treatment was observed in some
patients [62–65]. Another benefit was the healing of tumor
wounds together with their decontamination with no or neg-
ligible side effects [62] and a decrease in the need for pain
medication [63, 64]. These clinical results are important
because they set the start point for future medical interven-
tions with plasma, not only for palliation, but also for the
treatment of less advanced cancers. However, treatment of
metastatic lesions of malignant melanoma in end-stage
patients with the plasma of the kINPen MED was so far of
limited success [66]. Currently, one nonrandomized clinical
trial (NCT03218436) in Tübingen, Germany is recruiting
patients for the treatment of cervical intraepithelial neoplasia
(ovarian cancer) with cold physical plasma.

A recent innovation in plasma oncology is the treatment
of carcinoma in situ, e.g., actinic keratosis [67–69]. These dry,
crusty, superficial lesions of the skin have a very high preva-
lence, and a significant percentage of lesions can develop into
invasive squamous cell carcinoma over time. Patients with
intraoral, precancerous leukoplakia or oral lichen planus
lesions face a similar fate. Repetitive plasma treatment over
several months successfully reduced and partially even
removed these lesions [70]. Hence, plasma treatment may
play a future role in the prevention of advanced cancer.

2.3. From Bench to Bedside to Bench. Despite the clinical suc-
cess of plasma treatment with some diseases, challenges

remain. First, how can the rate of nonresponders seen in
wound healing and cancer be decreased based on biological
mechanisms yet to be identified? Second, how can new
applications based on promising in vitro and in vivo
research, e.g., treatment of metastatic melanoma, be imple-
mented? Third, which are the promising therapeutic
avenues in combining plasma treatment with existing ther-
apies, e.g., immunotherapy in cancers, to maximize clinical
outcome? These questions can be addressed in multiple
ways, e.g., via tuning the chemistry of existing plasma
sources, construction of novel plasma sources, finding the
optimal dose and frequency of plasma treatment for each
clinical application, and investigating promising combina-
tion therapies with plasma that seamlessly merge into exist-
ing clinical protocols. Thus, a number of iterations need to
be tested in basic research on plasma redox chemistry and
biomedicine to motivate and stratify therapeutic strategies
in plasma medicine. Yet, while the physics of plasma is rea-
sonably well explored, sufficient understanding in the
chemistry and biology of plasma treatment is one current
bottleneck in pinpointing best-practice plasma ROS pat-
terns for the most efficient clinical response (Figure 2).
Especially cell membranes, the key interface between
plasma-derived ROS and cells, have been investigated only
poorly so far. With plasma medicine being a field of unpar-
alleled multidisciplinarity from physics and engineering,
over chemistry and biology to medicine, the following sec-
tions provide the current working hypothesis in the field
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Figure 2: Heat map of the current state of knowledge of cold plasmas for biomedicine. Blue: known and well-characterized commercial
plasma sources (left) and reported effects of plasma therapies in in vivo models and human patients (right). Yellow: many biologically
relevant plasma-generated ROS in air or in liquids have been described (left); however, it is still a challenge to tune the setups to deliver
specific ROS mixes for different biomedical applications. In the same way, multiple effects of plasma in cells have been reported, yet the
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together with key knowledge gaps that need to be addressed
to accelerate progress in this field.

3. Biological Mechanisms in Cells Exposed to
Cold Physical Plasma

Amacroscopic view of plasmas in biomedicine reveals multi-
ple positive outcomes in patients treated with this technol-
ogy. However, a microscopic view of the processes evoked
by plasma in cells indicates that multiple mechanisms of
action at the cellular and macromolecular levels are involved
in exerting such effect, most of them being underexplored. In
this section, we will discuss the collection of events that lead
to the biological outcome previously described, considering
the current state of the field with regard to challenges (Box 1)
and opportunities (Box 2). Before discussing observations in
plasma medical research, a brief summary of concepts in
redox biology is given as a basis for plasma medicine.

3.1. Current Concepts in Redox Biology. Oxygen is a chem-
ically aggressive molecule able to cause oxidative modifica-
tions in all biomolecules. At the same time, it is needed to
preserve life in aerobic species. In order to prevent oxida-
tive damage and maintain homeostasis, cells have devel-
oped efficient antioxidant mechanisms to cope with ROS
produced by biological processes (i.e., mitochondrial respi-
ration) and external insults (radiation, ionization). The
misbalance between the levels of prooxidants and antioxi-
dants in the cell results in oxidative stress, with the conse-
quent accumulation of ROS and oxidative damage to the
biomolecules that make up the cell. To prevent detrimen-
tal effects, cells are equipped with ROS detoxification
mechanisms that can be enzymatic (catalases, peroxidases,
and superoxide dismutases) and nonenzymatic (vitamin E,
vitamin C, reduced glutathione, β-carotene, etc.). The out-
come in redox biology will unequivocally depend on the
type of ROS produced over a certain period of time at a
specific location [71], as this is directly linked to the loca-
tion and availability of the detoxification mechanisms to
deal with the insult. The amount of ROS is also important,
as low concentrations have different effects compared to
higher concentrations, a phenomena coined as hormesis.

Hormesis describes the biphasic dose response to an
agent whereby a stimulatory or beneficial effect is obtained
with a low dose and an inhibitory or toxic effect is achieved
with a high dose. As an integral process of the normal func-
tion of cells, hormesis participates in multiple physiological
processes that involve ion channels, enzymes, and tran-
scription factors [72] (Figure 3). Hormesis then could be
described as an adaptive response to environmental chal-
lenges in order to preserve homeostasis [73]. The biphasic
dose response can be caused by multiple stimuli such as
toxins, radiation, neurotransmitters, and ROS [74]. In
wound healing and cancer, low concentrations of ROS have
proproliferative effects, while high concentrations are dele-
terious [75–77]. Importantly, in both situations, signalling
in response to ROS is key in subsequent biological effects.

ROS are constantly and purposefully made in the human
body to exert a variety of responses. On the cellular level,

ROS are produced to allow the development of oocytes after
fertilization [78] and to attract neutrophils to the site of
injury to clear pathogens and elicit inflammation [79]. On
the molecular level, responses to ROS are related to both
redox and phosphorylation signalling with proteins [80]. In
the former, oxidases and reductases control disulfide bond
formation of thiols, while in the latter, kinases and phospha-
tases control phosphor residues on target proteins. The
binary states activate or inactivate the (binding) activity of
proteins, and often both systems act in concert to achieve
distinct biological responses. For instance, growth factor
binding activates Src family members to phosphorylate per-
oxiredoxin 1 to render this antioxidant inactive. At the same
time, NAPDH oxidase (NOX) is activated to produce super-
oxide in the extracellular space, which then dismutates to
hydrogen peroxide, enters the cell through aquaporins, and
reversibly oxidizes target molecules such as protein phospha-
tases [81]. At the same time, redox proteins also act as sen-
sors of ROS. For example, upon ROS exposure, thioredoxin
reversibly releases the apoptosis signal-regulated kinases
(ASK1) to induce subsequent pathways for cell death [82].

With the exception of supraphysiological concentrations
of ROS leading to immediate necrosis, ROS-mediated cell
death is a form of regulated cell death as per consensus guide-
line [83]. This also delineates a link between ROS and a pleth-
ora of cell death pathways, including intrinsic apoptosis,
ferroptosis, NETosis, lysosome-dependent cell death, mito-
chondrial pore transition-driven necrosis, parthanatos,
necroptosis, and autophagy, largely because of the ROS’
intrinsic and pleiotropic roles in metabolism, mitochondrial
homeostasis, inflammation, and immunity. Importantly,
not all types of cells can undergo all types of cell death. For
instance, several tumor cell types are incapable of undergoing
necroptosis [84], NETosis is primarily observed in myeloid
cells [85], and oxycytosis is performed by red blood cells
[86]. Attributing ROS- (and hence, plasma-) induced cell
death to a certain modality is made complicated not only
by the heterogeneous and cell-type-specific cell death
responses but also by the fact that exogenous ROS exposure
can also lead to quick endogenous ROS generation, making
it difficult to distinguish primary from secondary ROS
responses. Pinpointing the specific type of cell death is not
only an academic question, as the type of cell death has
important implications for the functional outcome in dis-
eases. For instance, in wound healing, further excessive dam-
age (e.g., necroptosis) may be discouraged for appropriate
healing response, while in the treatment of tumors, a proin-
flammatory type of cell death would be encouraged to
unleash the power of antitumor immunity.

3.2. Functional Consequences in Plasma-Treated Cells and
Tissues. Hormesis accurately describes why plasmas are use-
ful in both wound healing and cancer therapies: while the
exposure to low levels of ROS can promote cell proliferation
to support tissue regeneration, platelet activation, and blood
coagulation [87–89], higher doses can induce cell death
[90–92], endogenous ROS generation, and DNA damage,
and lipid peroxidation [93]. This has been described in
HaCaT cells exposed to plasma, where a low amount of
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(1) New insights in redox chemistry and biology
Plasmas are ideal tools to generate gas phase-derived ROS on cells and tissues locally for certain species that would be otherwise
difficult or impossible to generate at sufficient concentrations and with spatial limitation. For example, nitric oxide-rich plasmas
can be used to study the effect of NO in several dermatological disorders in, e.g., animal models, potentially leading to new insights
on redox chemical reactions in cells and tissues as well as their functional outcome.

(2) Multi-ROS tool to mimic multiple oxidative or nitrosative changes in inflammation
One of the hallmarks of inflammation is the generation of multiple ROS, including NO, HOCl, O2

-, H2O2, and ONOO-, each
having partially different effector functions. However, producing such species for inflammation research is not possible chem-
ically. Cold physical plasmas overcome this challenge and may therefore be suitable tools to mimic the multi-ROS environment
in inflammation research.

(3) Delivery of therapeutic ROS in redox-related diseases other than wound healing and cancer
In general, redox control is a critical event in the maintenance of tissue homeostasis. The relevance in wound healing and cancer as
well actinic keratosis (with photodynamic therapy being one of the therapeutic options) is evident, and plasma has been success-
fully used for the treatment of these conditions in patients. However, diseases that also have so far not been considered to be treated
with ROS therapy showed promising response after exposure to plasma. This includes fungal infections of the skin and the mucosal
disease oral lichen planus. Increasing knowledge on the relevance of oxidative and nitrosative signalling events, e.g., nitration of
tyrosine residues in protein kinases, further widens the potential scope of plasma.

(4) Precision medicine by disease-optimized ROS cocktails via specifically engineered plasmas
The type and amount of reactive species can be customized with plasma sources. Especially plasma jets are well suited for this task
as their feed gas composition determines the reactive species output and hence the biological response. Optimized ROS composi-
tions have been identified to eradicate for instance Staphylococcus aureus and THP-1 leukemia cells. With more in vivo evidence to
come, the vision is to tailor plasma sources and ROS patterns specifically to promote the best efficacy for each pathological condi-
tion targeted by plasma treatment.

Box 2: Current opportunities in the field of plasma medicine.

(1) Multiplicity of plasma sources
Dozens of different plasma sources have been used for biomedical research, differing in the electrode configuration and principle of
plasma generation, the power input, frequency and waveform, the type and flow rate of the working gas used (if any), geometry,
and distance between source and target, ultimately determining ROS output. There is no current standard proposed in the field
of plasma medicine yet, e.g., plasma source, lead ROS entity, standard assays, and nomenclature, making the comparison of exper-
imental or clinical results challenging. The argument that, from a biological point of view, the type of plasma source with its
specific ROS pattern and output may be irrelevant (as all of them simply confer oxidation) is not in line with findings in the
field of redox biology that specify ROS entities can confer specific biological effects. This is further complicated by the mul-
ticomponent nature of cold physical plasmas.

(2) Multicomponent and multi-ROS systems
Plasmas are multicomponent systems comprised not only of ROS but also of electric fields; UV, visible, and NIR light emissions;
electrons; and gas ions, as well as neutral particles. While ROS seem to dominate biological effects, the specific role of the other
components is technically challenging to investigate. This includes potential synergistic or additive effects in the treatment of tis-
sues, in which individual cells are more difficult to manipulate and tomonitor (e.g., use of antioxidants andmultiple components of
microenvironment). Moreover, the ROS component of plasmas is extremely diverse, with hundreds of chemical reactions taking
place on short time scales, in the interdependence of the type of species and concentration present, and with additional dynamics in
the presence of organic molecules, as always the case in biomedical research.

(3) Time scales of primary plasma effects are short, while the biological processes continue on longer time scales
Similar to other physical technologies in medicine, such as ionizing radiation, pulsed electric fields, and photodynamic therapy, the
primary plasma effect is only active as long as the target is exposed to plasma (usually seconds to minutes). Once the plasma is
switched off, further impact of the treatment is determined by the cellular signalling pathways interpreting the exposure and trans-
lating it into biological responses. This implies that the key events of plasma medicine are taking effect during the treatment of the
target, which is challenging to investigate due to short time scales. This is especially different from drugs that are usually contin-
uously perfused into patients or added to cell cultures over several days and act unremittingly.

(4) Lack of tools for spatiotemporal resolution of plasma-derived ROS in cells and tissues.
Plasma medicine faces similar challenges as other fields in redox biology concerning the lack of research tools allowing a spatial
and temporal resolution of ideally different types of ROS separately in cells and tissues. Most redox-sensitive fluorescent dyes are
nonspecific in biological systems, and the action of ROS is usually identified indirectly via their modification of proteins and
lipids. Reporter assay systems engrafted into animal models are needed to identify the specific contribution of individual ROS
in specific (pathological) conditions in order to accelerate the knowledge of the field that would allow disease-specific tailoring
of plasma sources.

Box 1: Current challenges in the field of plasma medicine.
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ROS delivered over a minute of treatment was better toler-
ated than the fast delivery of the same amount of ROS over
a few seconds [94]. Similarly, a study performed in ocular
cells exposed to plasma for decontamination showed stimu-
latory effects at low doses and toxic effects at high doses
[95]. It must be noted that the mechanisms involved in the
hormetic response to ROS are differently activated (regarding
type and strength) among tissues and cells, and therefore this
should be considered in the analysis of the adaptive protec-
tive processes evoked by plasma [96].

One favorable advantage of cold plasma is the adjustable
generation of biologically active factors, such as single or
complex reactive species, at the site of interest by the admix-
ture of water, oxygen, and/or nitrogen to argon gas [97–99].
As one consequence, cold plasma induces physical or chem-
ical changes in fluids, cells, and tissues. The relatively short
lifetime and the quick reaction between plasma-generated
ROS and biomolecules, such as proteins, lipids, and nucleic
acids, especially the short-lived species, lead to the formation
of ROS intermediates. Such intermediates can directly func-
tion as signalling or redox-reactive molecules (e.g., NO and
H2O2) in secondary reactions in biological environments [8,
100, 101]. Their high reactivity, diffusion, and delivery via
pores, channels, and receptors influences the cellular avail-
ability and activates downstream signalling.

The oxidizing properties of ROS have an important
impact on membrane integrity [102, 103]. Reactive species
oxidize hydrophilic head groups and lipophilic tails of the
phospholipid bilayer, leading to an initial membrane rigidity
and an increase in fluidity [104]. Although the penetration
depth of plasma in tissues ranges from 5 to 40μm for O3 to
a few millimeters for H2O2 and molecular oxygen (O2)
[105, 106] (Table 1), the oxidizing nature of plasma by the
oxidation of redox-sensitive cysteine and thiols in proteins
[107–109] evokes paracrine effects [110, 111] and thereby
changes of the microenvironment in deeper layers
(Figure 4). Consequently, distant cells may benefit from
cell-cell communication via paracrine mechanisms. One

must also consider the presence of cells of the immune sys-
tem, which are able to move across tissues and evoke a
response at distant sites. Such is the case of immunogenic cell
death (ICD), a mechanism proposed to mediate the effect of
plasma in cancer and further discussed in this review. ICD-
inducing therapies promote the expression of cell surface
antigens and the release of damage-associated molecular pat-
terns to activate cytotoxic T cells that kill the tumor cells and
can stimulate antitumor immunity [112]. This mechanism is
currently being studied in the field of plasma medicine [113],
as it could extend the reach of plasma therapies from local-
ized to systemic targets.

Themaintenance of a physiological level of ROS is impor-
tant for redox signalling [114–117]. An imbalance between
the production and detoxification of reactive ROS intermedi-
ates affects the cellular stress level, e.g., cell cycle [118]. Cold
plasma modulates numerous cellular processes related to
redox signalling, and therefore, may be useful for targeting a
plethora of specific, wound healing-related pathways.

3.3. Signalling Events in Wound Healing. Changes in ROS
levels trigger a coordinated action of redox-sensitive tran-
scription factors (Figure 5) as part of cellular signalling
(Table 2). Cold plasma significantly alters the nuclear factor
erythroid 2-related factor 2 (Nrf2) pathway, as shown in
global -omics analyses by microarrays, as well as by liquid
chromatography and mass spectrometry, and in cytokine
profiling [119–121]. In an immunocompetent murine wound
model, gene and protein expression pattern revealed a strong
regulation of specific targets of the Nrf2 pathway after a daily
or three times per week treatment over 14 consecutive days
[122, 123]. Nrf2 signalling, since its downstream targets act
as sensors and/or effectors for increased oxidative stress,
was ranked among the most active regulatory networks and
canonical pathways after plasma treatment. Nrf2, itself, acti-
vates cellular rescue pathways against oxidative injury,
inflammation, or apoptosis and functions in cellular defense
against imbalances in redox homeostasis [124, 125]. The
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Figure 3: Scheme of hormetic responses. In the concept of hormesis, small concentrations of a given substance or molecules (including ROS)
can have opposing effects between small and large concentrations.
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primary event in downstream signalling of Nrf2 is the recog-
nition of plasma-generated ROS by specific oxidative stress
sensors such as the actin-binding protein Kelch-like ECH-
associated protein 1 (Keap1) [126]. Under basal conditions,
Nrf2 is associated with Keap1. This vital factor in Nrf2 sig-
nalling cascade retains Nrf2 in the cytoplasm where Nrf2 is
targeted for ubiquitin-mediated degradation [127, 128].
After the release of Nrf2 from Keap1 by oxidation events
at cysteine, Nrf2 translocates to the nucleus, binds to antiox-
idant responsive elements (AREs) that are located in the
promoters of its target genes, and activates their transcrip-
tion [120, 123]. To scavenge ROS and inhibit oxidative dam-
ages, cells activate Nrf2 and its downstream genes, which
encode ROS-detoxifying enzymes and antioxidant proteins.
Among the most robustly increased proteins, heme oxygen-
ase 1 (HO-1), NADPH quinone oxidoreductase 1 (Nqo1),

carbonyl reductase 1 (Crb1), γ-glutamylcysteine ligase cata-
lytic (GCLC) and modifier subunit (GCLM), superoxide dis-
mutases 1-3 (Sod1-3), thioredoxin (TRx), catalase (Cat),
glutathione peroxidase (GPx), cytochrome P450, and non-
enzymatic antioxidants like glutathione were found. Proteins
involved in thiol group reduction or coupling (glutathione-
S-transferases, e.g., GstK1, GstO1, and GstP1) showed an
increased abundance (ca. 70 molecules), demonstrating that
the glutathione metabolism is affected, which is a marker for
an Nrf2-related signalling event. The strongly increased
abundance of heat shock proteins (Hsp90 and Hsp40 deriv-
atives) also indicates cellular response to plasma in terms of
thermal or chemical stress [121].

Morphological changes such as cell size [122], the
reorganization of cytoskeleton, and altered cytoskeletal
[129, 130] and adhesion molecule expression [131–133]

Table 1: Overview of reported studies on penetration depths of plasma-derived ROS in original and artificial tissue models.

Penetration depth Plasma treatment Tissue or biosurface studied References

In vivo models

10 μm kINPen09 Human skin [255]

36 8 ± 14 2 μm kINPen09
In ovo tumour of pancreatic

adenocarcinoma cells
[106]

~65 μm∗ MicroPlaSter β plasma torch system Skin wounds in 129 Sv/Ev female mice [110]

2.8mm Helium plasma jet
Bladder carcinoma tumors in BALB/c

nu/nu male mice
[256]

~50 μm∗ Atmospheric-pressure helium plasma jet Skin of BALB/c female mice [257]

~300–400 μm kINPen09 Hair follicles [60]

In vitro surrogate
models for real tissues

1mm Helium plasma jet ROS delivery through pig skin into liquid [256]

500–1500 μm Helium+0.5% O2 plasma jet
ROS delivery through pig muscle

into various liquids
[258]

100–470 μm Helium+0.5% O2 plasma jet KI starch-containing gelatin films [259]

150 μm Helium plasma jet 2,7-Dichlorodihydrofluorescein/gelatin model [260]

150 μm Helium plasma jet ROS sensor-containing phospholipid vesicles in gelatin [261]

1mm
Helium linear- and cross-field

plasma jets
ROS delivery through gelatin or gelatin+NaNO2

films into distilled water
[262]

1mm Helium plasma jet
ROS delivery through gelatin, gelatin+BSA, or
poly(vinyl alcohol) targets into various liquids

[263, 264]

6mm (6min)
8mm (36min)
11mm (66min) Argon plasma jet

KI starch gel [265]

2mm (36min)
4mm (66min)

2% agarose

1.5–5.8mm Low-temperature plasma jet ROS delivery through agarose films into liquid [256, 266–269]

1–2mm Helium plasma jet Agarose films [270, 271]

2mm Helium plasma jet
DNA damage in HEPES solution, phospholipid

vesicles, or DNA embedded in gelatin
[272]

In silico models

Plasma ROS: 10–20μm
H2O2, O2

-: 1–1.2mm
HO2: 20–250μm
O3: 5–40 μm

Low-power He-O2 plasma
Highly hydrated biofilms and

plasma-tissue interaction models
[273]

∗Retrospectively measured with software from published images.
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are indispensable for skin repair in wounds and in the meta-
static behavior of cancer cells. Plasma-generated ROS alter
the barrier function and intercellular communication such

as gap junctional protein expression by a transient blocking
of connexin 43 (Cx43) [122] and a modulation of tight
junctional zona-occludens protein 1 (ZO-1) in skin cells

1 s
500 𝜇m

60 s
500 𝜇m

300 s
500 𝜇m

300 s
+300 s off

500 𝜇m

(a)

Dermis

Epidermis

Blood vessels

Subcutaneous tissue

Primary effect: 
Interaction of short-lived ROS with tissue

Secondary effect: 
Interaction of long-lived ROS with cells in 
deeper layers

Tertiary effect: 
No role of plasma-generated ROS 

Indirect paracrine effect of plasma due to 
cell signaling, posttranslational
modifications, oxidized biomolecules

(b)

Figure 4: Models for the study of the penetration of plasma-generated ROS into tissue. (a) In vitro approach for the analysis of ROS
penetration using 0.02% methyl red as a reporter of ROS in 0.5% agarose gel. The treatment applied with Ar/O2 (1%) kINPen MED at
4mm distance demonstrates that the penetration depth is directly proportional to the treatment time (unpublished/original data). (b)
Proposed mechanisms of action of plasma ROS and concomitant effects in tissues. The primary effect is exerted in the first layers of cells
that directly interact with the short-lived ROS. At this level, oxidative damage is induced in the extracellular matrix, cell membranes, and
intracellular components of cells located in the outermost region of the tissue. The long-lived ROS able to penetrate into deeper regions of
the tissue elicit a secondary oxidative effect in cells. However, the effect of plasma extends to more profound regions of the tissue due to
the oxidation of redox-sensitive cysteine and thiols in proteins with paracrine effects and via cell-to-cell communication.
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[134, 135]. The formation and maintenance of the skin
barrier function largely depends on the regulation of these
cellular connections (e.g., adherence and tight and/or gap
junctions), expression of junctional proteins, surface
markers, and growth factor receptors [136]. Also, wound
healing requires a well-balanced expression of extracellular
matrix (ECM) and matrix metalloproteinases (MMPs) [137,
138]. In this regard, chemical modifications of ECM and
MMPs were shown, affecting cells and tissues by cold
plasma-generated ROS [139, 140]. However, transepidermal
water loss (TEWL) was only transiently reduced after plasma
treatment but not further affected in the course of time [141].

Beyond the regulation of antioxidant gene expres-
sion, Nrf2 also contributes to the anti-inflammatory process
by orchestrating cytokine secretion of pro- and anti-
inflammatory factors, and an early infiltration and recruit-
ment of inflammatory cells such as macrophages [142]. The
regulation of most of such events, including inflammation
and immune cell infiltration [123, 143, 144], depolarization
of macrophages [145, 146], mitochondrial function and con-
tent [147], angiogenesis (e.g., Akt) [110, 123, 148], growth
factor signalling [123, 149], and cellular viability [134, 150]
are further responses after plasma treatment. Studies com-
bining electrical fields with plasma treatment demonstrated
a synergistic metabolic activation of mammalian cells [151]

besides the antibacterial effect [152]. Moreover, plasma-
induced activation of Nrf2 accelerates wound healing and
provides a faster wound closure by a concomitant increase
in basal proliferation and cellular migration [122, 153]. A
rapid and transient activation of the proliferative-acting
extracellular signal-related kinase ERK1/2, and a slower but
sustained activation of stress-activated p38 and c-Jun N-
terminal kinases was detected in skin cells [119, 154].

Beside this proliferative effect, apoptotic events include
the removal of inflammatory cells and inhibition of scar for-
mation of granulation tissue at later stages of wound healing.
The lower frequency of TUNEL-positive apoptotic cells on
early time points in plasma-treated wounds, either due to
enhanced macrophage numbers and activity or a redox-
mediated suppression caused by plasma-derived ROS inter-
mediates, and the increasing number of TUNEL-positive
apoptotic cells at later time points is an essential prerequisite
in skin wound healing [123]. Redox-sensitive transcription
factors, such as the tumor suppressor protein p53, are suscep-
tible to ROS-dependent modifications, which could impact
their biological functions and activities [155]. Moreover,
p53 can mediate a two-phase Nrf2 response: when p53
expression is relatively low, p53 enhances the protein level
of Nrf2 and its target genes to promote cellular protection
and survival at basal levels in a p21-dependent manner
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Figure 5: Overview of cold plasma-mediated signalling pathways, including oxidative stress (Nrf2), mitogen-activated protein (MAP) kinase,
p53, Wnt/β-catenin, cytoskeletal, cell adhesion or growth factor (GF) signalling, and differentiation.
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[156]. Contrary, the Nrf2-mediated survival response is
inhibited and senescence/apoptosis at higher ROS levels is
supported in the repression phase [157]. This cross-talk
between oxidative stress (Nrf2 signalling) and DNA damage
(p53 activation) defines the critical point where cell injury

may switch from an adaptation to an injury state [158]. Addi-
tionally, the phosphorylation status and therefore the activity
of p53 depends on wound stages and is timely regulated [159,
160]. A transient inhibition of p53 supports the early cell pro-
liferation required [157]. Later apoptotic events are induced

Table 2: Overview of cold plasma-mediated signalling pathways, including oxidative stress (Nrf2), mitogen-activated protein (MAP) kinase,
p53, Wnt/β-catenin, cytoskeletal, cell adhesion, or growth factor signalling and differentiation. He-GIW: helium-guided ionization wave;
SMD: surface microdischarge.

Signalling Cell type(s) Plasma source References

Nrf2

Keratinocytes (HaCaT) He-GIW [140]

THP-1 monocytes (human) kINPen [274, 275]

Breast, pancreatic, colon cancer, and melanoma kINPen [276]

Osteosarcoma cells kINPen [277]

Periodontal ligament (PDL) cells Plasma one dental [278]

Rat skin cells Single-jet system [279]

Murine skin cells kINPen [123]

Keratinocytes (HaCaT) kINPen [120, 121, 134, 148]

T-lymphoblastoid leukemia cells DBD [236, 280]

NFκB, MAPK

Monocytes, THP-1, and Jurkat kINPen [119, 154]

Cancer cells DBD [281]

HNC cells Spray-type jet [282]

Cancer cells (G631) APPJ [283]

Cancer cells (ES2) NEAPP [202]

Keratinocytes (HaCaT) kINPen [284]

Cancer cells (A375, 875) Surface BD [285]

p53

Melanoma cells SMD [286]

Keratinocytes (HaCaT) DBD [287]

Cancer cells Different [166]

Cancer cells (HSC3) DBD oxygen [288]

Cancer cells DBD [281]

T98G, A549, HEK293, and MRC5 Soft plasma jet [289]

Periodontal ligament (PDL) cells Plasma one [278]

Melanocyte cancer cells APPJ [283]

Keratinocytes (HaCaT) kINPen [164]

Murine skin cells kINPen [123]

Cancer cells (Huh7, Alexander, and HepG2) Air based [290]

Keratinocytes (HaCaT) DBD [291]

T-lymphoblastoid leukemia cells DBD [236]

Wnt/β-catenin, cell adhesion

Melanoma cells (SK-Mel-28) kINPen [292]

Keratinocytes (HaCaT) DBD [293, 294]

Keratinocytes (HaCaT) DBD [131, 132, 295, 296]

MNC DBD [297]

Normal and cancer cells Jet [133]

Cytoskeletal

Skin cells DBD, kINPen [110, 153, 298]

Keratinocytes (HaCaT) DBD [287]

Cancer cells (BHP10, TPC1) Spray-type jet [299]

Human dermal fibroblasts Jet like [129, 130]

Skin cells (HaCaT, MRC5), melanoma cells kINPen [122, 292]

Differentiation growth factors

Neuroblastoma 2a (N2a) DBD [300]

Keratinocytes (HaCaT) kINPen [149]

Human 3D skin model Single jet (MEF) [301]
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via caspase activation [119, 154], cell-cycle disruption [161],
and other multiple pathways [162, 163]. Cold plasma tran-
siently enhances total p53 protein expression, induces
nuclear translocation of p53, and alters the phosphorylation
level of p53 in a treatment and incubation time-dependent
manner [164]. Findings further suggested plasma-induced
cell reactions of stress sensing, along with metabolic alter-
ations [143, 165]. The interaction with the signal transduc-
tion pathway of p53 and related processes fosters the
understanding of plasma-induced cell protection against
DNA damage or DNA strand breaks.

3.4. Effects on Cancer Cells. Plasma therapies for cancer have
shown promising results in multiple cancer types using a
variety of plasma sources [166]. Most studies report a
decrease in cell viability and elevated cytotoxicity upon
plasma treatments [167–177]. Part of the damage is induced
to the cell membrane, the first barrier to deal with the oxida-
tive stress induced by plasma. The first effect observed in
plasma-treated cancer cells is lipid peroxidation, a process
where lipids with carbon-carbon double bounds such as gly-
colipids, phospholipids, and cholesterol are oxidized [178].
The extensive peroxidation of lipids upon plasma treatment,
if present, may increase the entropy in the plasma membrane
and alter the assembly, dynamics, and structure of lipids,
facilitating pore formation [104, 179, 180]. In fact, the highly
porous, disorganized plasma membrane serves as the entry
door of multiple extracellular ROS, a process observed in
necrotic cells [181]. Interestingly, lipid peroxidation is char-
acteristic of ferroptosis, a Fe(II)-dependent cell death mech-
anism driven by oxidative stress and consecutive lipid
peroxidation [182]. One report suggests that plasma treat-
ment could promote ferroptosis in cancer cells via the reduc-
tion of Fe(III) to Fe(II) stored in ferritin [183]. In this case,
the increase in Fe(II) available within the cancer cell could
contribute to the Fenton reaction and the consequent forma-
tion of the highly reactive •OH radical, able to react with any
biomolecule present at close proximity [184].

Cancer cells are more sensitive than normal cells to oxi-
dative stress due to the increased steady-state ROS levels pro-
duced. The high glucose uptake and transformation to
lactate, even in the presence of oxygen (also known as the
Warburg effect), is responsible for the accumulation of intra-
cellular ROS in cancer cells [185]. It has been suggested that
increasing the oxidative stress by exogenous ROS (such as
plasma treatments) to a threshold incompatible with cell via-
bility could selectively eliminate cancer cells without damag-
ing the healthy ones [186, 187]. In the plasma field, it has
been suggested that an increase in aquaporins [188] or a
decrease of cholesterol in the plasma membrane of cancer
cells [179, 189] facilitates the transport and permeation of
ROS to the intracellular compartment, supporting a selective
effect of plasma on cancer over normal cells. The latter may
also be mediated by cell-cycle arrest [190]. It is possible that
the combination of these factors favors the selective elimina-
tion of cancer cells by plasma.

Plasma therapies for cancer have shown positive results
both for localized and metastatic cancers in animal models,
especially in melanoma [191]. Plasma can also induce immu-

nogenic cell death (ICD), a regulated cell death mechanism
that involves the release of damage-associated molecular pat-
terns by cancer cells and the recruitment of immune cells to
eliminate the tumor [83]. Direct plasma treatment of glio-
blastoma xenografts has been shown to increase the survival
rate and reduce tumor volume [192], as well as to induce apo-
ptosis and cell-cycle arrest [193]. This in turn may increase
their sensitivity to common chemotherapeutic drugs such
as gemcitabine [194, 195], doxorubicin [196], and novel
mitochondrial complex IV [197], as well as HSP90 inhibitors
[198] as well as to traditional radiotherapy [199]. Interest-
ingly, plasma treatments could suppress the growth of irradi-
ated and nonirradiated remote melanoma tumors in mice
(known as abscopal effect), suggesting the participation of
the innate immunity in the response to treatment [200].
The antiproliferative effect observed in plasma-treated
tumors equally affects chemoresistant and chemosensitive
cancer cells [201]. Plasma-treated solutions have proved to
be effective against metastatic cancers in murine models.
Intraperitoneal injections of plasma-treated medium were
able to inhibit dissemination of ovarian cancer [202], and
plasma-treated medium and saline solutions reduced the
tumor burden, promoted the infiltration of macrophages,
and increased T cell activation as well as immunogenic can-
cer cell death in vivo [203–205]. With direct plasma treat-
ment, ICD can be induced in localized colorectal tumors
[206] and melanoma tumors in mice by the short-lived spe-
cies produced by plasma [207]. Whether plasma-induced
ER stress [208] links to plasma as a type I or type II ICD
inducer [209] is the subject of current investigations. To date,
there is no report of resistance to plasma treatment, suggest-
ing that plasma could be a promising therapy for cancer.

4. Cellular Membranes as a Link between
Plasma Chemistry and Biology

One way for plasma treatments to be effective is that plasma-
derived ROS cross or interfere with the cell membrane to
affect its stability and permeability, ultimately altering the
intracellular circuitry [210]. The field of redox biology has
extensively addressed the effect of ROS in cell membranes;
for that reason, this section will put the effects of plasma
treatments on cell membrane components in context with
the current knowledge in redox biology (Figure 6). Several
studies have already provided evidence that skin lipids from
human volunteers undergo oxidative changes upon plasma
treatment, although the functional consequences remain elu-
sive [211–214].

4.1. Cellular Membranes as a Target, ROS Source, and
Transporter of Plasma-Derived ROS. Those ROS and RNS
produced by plasma in the gas phase that are able to pene-
trate the liquid or soft interphase characteristic of biological
substrates may directly or after transformation into addi-
tional ROS, react with cellular molecules and the extracellular
matrix. The exterior of mammalian cells is composed of a
complex lipid bilayer with a highly variable and dynamic
chemical composition, additionally diversified by interca-
lated proteins (compiled in [215]). Due to their projected
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position and chemical nature, lipids represent “ideal” targets
for oxidative modifications by plasma-derived ROS. Lipids
comprise a chemically heterogeneous group of compounds
that often combine hydrophilic and lipophilic substructures
in the molecule [216]. In phospholipids, long-chain fatty
acids are connected via a polyalcohol bridge (e.g., glycerol)
to a polar head group consisting of an orthophosphate
residue and an amine (choline, ethanolamine), creating a
zwitterion. Various numbers of isolated double bonds are
frequently found in the fatty acid tails, increasing sensitivity
towards oxidative events. Attacking the weak sp1 carbon-
hydrogen bond at the allyl position easily yields hydroperox-
yls, hydroxylations, and radical intermediates. Subsequent
reactions, like the Hock rearrangement may lead to chain
breakage [217]. The resulting short-chained fatty aldehydes
like 4-hydroxynonenal are relevant second messengers (see
Section 4.2), and the residual aldehyde fatty acids are more
polar, decreasing the order and crystallinity of the membrane
[178]. Further addition or substitution reactions can occur at
the double bond(s), yielding nitro- or chlorohydroxy fatty
acids, depending on the attacking species [218, 219]. Accord-
ingly, lipids are common targets of oxidative modifications
by plasma-derived ROS and/or RCS (reactive chlorine
species) that occur in specific conditions. Maheux et al. inves-
tigated the impact of a helium/nitrogen-driven DBD jet onto
liposomes made of 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-
phosphocholine (DOPC) [220]. Significant changes to the
physical properties of the lipid particles, including size and
zeta potential, were accompanied by the detection of dioxi-
dized DOPC and chlorohydrins. Yusupov et al. revealed the
impact of plasma-derived species, especially the •OH radical,
on lipids and lipid complexes, e.g., bilayer models, using

atomic scale simulations. Taking lipid bilayer geometry, rad-
ical species half-life, and reactivity into account, the predom-
inant target was identified as the lipid’s head group. In
contrast, a strong impact on the fatty acid chain yielding
cleavages was observed experimentally. A number of not
fully resolved structures connected to the investigated lipid
but showing cyclisation in the head group suggested that a
direct interaction of short-lived species, especially •OH radi-
cals, with the head groups cannot be excluded and may have
contributed to the side-chain oxidation. Ultimately, the sum
of oxidations yielded a decreased membrane stiffness of the
model liposomes [104].

Plasma treatments have been shown to increase the cell
membrane permeability [221, 222]. Further, ROS delivered
by plasma such as O2, HOCl, O3,

1O2,
•NO, and ONOO-

can trigger radical chain reactions, resulting in propagated
lipid oxidation [223, 224]. The superoxide anion radical
O2

•-, produced either by plasma and/or as a cellular product
from a single-electron transfer reaction, is relatively nonreac-
tive by itself. However, its reaction with NO yields the strong
oxidant peroxynitrite, which in turn contributes to lipid oxi-
dation. Extracellular O2

•- and NO can be produced from
physical plasma as well as certain types of cells as a basis
for peroxynitrite generation [225]. The accumulation of oxi-
dized lipids in the bilayer upon plasma treatment reduces the
electric field threshold required for pore formation and
decreases the mechanical strength, thereby increasing the
permeability and fluidity of the membrane [179, 180, 226].
Similarly, lipid oxidations have been proposed to occur dur-
ing the electroporation of cells to facilitate membrane perme-
ability [180]. This suggests a concomitance of both processes
and emphasizes that lipid oxidation and/or chain cleavage

Extracellular

Intracellular

ROS diffusion

Chronic woundActinic keratosis

O
•NO H2O2•OH

O2
•–

O3

1O2

H

•NO2
ONOO–

H2O2
O3

•NO O

ONOOH

HOONOO
HNO3

HNO2

Figure 6: The cell membrane is the key compartment that plasma-derived ROS need to penetrate or interact with to elicit biological
responses. While some ROS are able to penetrate cellular membranes (e.g., ozone, nitric oxide and atomic oxygen), other more polar ROS
cannot (e.g., singlet delta oxygen, nitrite, hydroxyl radical, superoxide anion, hydrogen, and peroxynitrite). Hydrogen peroxide is actively
transported into the cells via transporters such as aquaporins.
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are key factors determining membrane fluidity and polarity
and ultimately membrane penetration. Of note, the mem-
brane lipid composition of normal and cancer cells differ in
the reflection of their metabolic state, contributing to a cer-
tain graduation of the impact of plasma or other prooxidant
physical treatment regimens [227, 228].

4.2. Secondary Messengers Deriving from ROS or Plasma-
Derived ROS. When looking into singular lipid structures
and related functional consequences in biological systems, a
vast list could be compiled. Many lipid oxidation products
act as second messengers having almost unrestricted access
due to their ambipolarity. Well-known examples are the fatty
acid oxidation derived eicosanoids with extensive impact in
inflammation regulation that are also targeted by mass-
market and high-selling drugs [229]. The first step, the enzy-
matic release of arachidic acid from a phospholipid can be
achieved by plasma as well, thereby increasing the pool for
the cyclooxygenases performing the following two-stage oxi-
dation leading to the intermediate prostaglandin H2. It con-
tains an endoperoxide, a structure that can be derived from
a singlet oxygen, a common species in plasma. Downstream,
this endoperoxide is replaced by oxo- and hydroxyl groups.
Although these structures are complex, many steps can be
performed by the plasma, opening an avenue to modulate a
range of pathways, including inflammation, cardiovascular
effects, or pain perception. Interestingly, a decrease of pain
was repeatedly reported by patients undergoing plasma treat-
ment of chronic wounds (see the results reported in [39]).

Some lipid oxidation products are cytotoxic and can
induce apoptosis, such as 7α,β-hydroxy-, 7-oxo-, and 5,6-
epoxycholesterol produced from oxidized cholesterol [230].
The reaction of •OH with cholesterol can lead to the forma-
tion hydroperoxyl radicals (HO2

•) and the corresponding
superoxide anion radicals (•O2

-), important due to their
multiple effects in cells. Excess HO2

•/•O2
- disproportionate

spontaneously or is enzymatically reduced forming H2O2,
ultimately yielding again •OH radicals through Fenton or
Haber-Weiss reactions, potentially leading to the initiation
of the chain oxidation of (poly-) unsaturated phospholipids
[178]. In the skin, plasma-derived H2O2 and O2 have been
named the main ROS responsible for cholesterol oxidation
[231]. It is possible that the propagation of the reaction con-
tinues within the plasma membrane, as O2 concentrates close
to the lipid tails inside the lipid bilayer where it can oxidize
other lipids [189, 231]. Interestingly, 1O2 can also oxidize
cholesterol to produce 5α-OOH, the most damaging hydro-
peroxide product due to its ability to accumulate and to
migrate from the production point to more sensitive sites
where iron-mediated cytotoxicity can be induced [224].
However, the participation of 5α-OOH in the response to
plasma treatments is so far unknown. Other ROS-derived
lipid peroxidation products such as 4-hydroxynonenal
(HNE) can form DNA adducts [232]. HNE in particular is
an important second messenger molecule that participates
in the activation of Nrf2, a regulator of cellular resistance to
oxidants [126].

Oxidized phospholipids (OxPL) can also serve as
ligands in damaged or stressed cells that are recognized

by receptors in cells of the innate immune system [233].
The scavenger receptors CD36, SRA, and SRB1 (present
in anti-inflammatory M2 macrophages) bind to OxPL in
apoptotic cells to trigger their clearance by the immune sys-
tem [234]. Plasma has been shown to effectively induce
apoptosis in cancer cells [235–238], and it is possible that
OxPL was formed in their plasma membranes. Interestingly,
it has been shown that plasma favors monocyte differentia-
tion towards a M2-like macrophage profile accompanied by
an increased CD36 expression [145]. It is conceivable to
think that plasma treatments could participate in both the
induction of apoptosis in cancer cells and their clearance by
macrophages. Nitrogen dioxide (NO2) generated from per-
oxynitrite can originate nitrofatty acids (NO2-FAs) [239] that
can inhibit the propagation of lipid peroxidation and protein
nitration and therefore counteract the proinflammatory and
cytotoxic effects [240]. NO2-FAs can release •NO into the
cell, inhibit the activation of the transcription factor NFκB,
and alter the activity of proteins involved in antioxidant
responses [188]. It has been shown that a plasma-treated
medium attenuated the NFκB pathway in the MDAMB231
human breast adenocarcinoma cell line [241], and the direct
plasma treatment combined with cetuximab modulated the
NFκB and p53 signalling pathways in head-and-neck cancer
cells [242]. In the same way, plasma decreased the antioxi-
dant activity of glioblastoma, thyroid carcinoma, oral carci-
noma, and nonmalignant embryonic cells [243], which
suggests a possible participation of NO2 and NO2-FAs in
the responses observed. Further studies of these intermedi-
ates and signalling pathways involved in the response in the
context of plasma therapies should be done.

4.3. Impact of Plasma-Derived ROS on Membrane-Associated
Proteins. Beside lipids as the dominant compounds in a cell
membrane, numerous proteins are integrated into it. As
discussed, ROS can be actively transported into the intra-
cellular compartment (aquaporins) or neutralized by
enzymes such as catalase or superoxide dismutase, thereby
modulating the impact of plasma. The expression of these
proteins in the membrane determine the susceptibly of cells
towards plasma. These proteins are also susceptible to oxi-
dation by exogenous ROS. Their main targets are amino
acids with aromatic side chains [244] and those containing
sulfhydryl groups [245]. The reaction of plasma-derived
•NO and O2

•- yields the strong oxidant peroxynitrite/per-
oxynitrous acid (ONOO-/ONOOH) which reacts with
lipid hydroperoxides to form 1O2 and induce protein oxi-
dation [178]. ROS can induce functional and structural
changes in cell membrane proteins that result in their acti-
vation, change in gene expression levels, or degradation, as
observed in cells treated with plasma (Table 3).

Although ROS can exert negative effects in cells, H2O2 is
normally produced extracellularly in low concentrations to
serve in both autocrine and paracrine fashion [246]. NOX
present in the cell membrane generates O2

•- into the outer
cell environment, which is later dismutated into H2O2
[247]. The main role of H2O2 as a signalling molecule is to
oxidize proteins on specific sites to modulate their function
and therefore regulate gene transcription, proliferation,
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Table 3: Overview of the main components of the cell membrane and their role in the response to plasma treatment.

Molecule Key physiological role(s) Reported role in response to plasma Redox-mediated downstream effects

Transporters

AQP1
Water, H2O2 [302], CO2, NO,

and ammonia
Favored H2O2 permeation into
intracellular compartment [251]

Signalling via the Keap1/Nrf2
system [303]

AQP3

Water, urea, H2O2 [304], glycerol,
and ammonia. Involved in cell
proliferation, invasion, and

angiogenesis [305]

Unknown
Activation of the Nox-2 and

PI3K/Akt or MAPK pathway [306]

AQP5
Water and H2O2 [307]. Involved

in tumor formation, cell
proliferation, and migration [308]

Unknown
Role in tumor formation related
to its phosphorylation status [309]

AQP8 Water, H2O2 [310], and ammonia
Required for anticancer effect

of plasma-treated medium (PTM)
on glioblastoma cells [311]

EGF induces AQP8 expression via
EGF/EGFR-ERK1/2 pathway [312].
H2O2 transport is controlled by

redox-mediated modifications [313]

AQP9

Water, H2O2 [314], urea, glycerol,
lactate, and pyruvate [309]
AQP9 knockdown reduced

H2O2-induced cytotoxicity [314]

Its absence does not impair H2O2
transport upon treatment with
PTM in glioblastoma cells [311]

Target of protein kinase A [307].
Possible interaction with ERK1/2

and MMP9 to enhance invasion and
migration of prostate cancer cells [308]

Cell membrane
receptors

Epidermal growth factor
receptor (EGFR)

Receptor tyrosine kinase involved
in signal transduction to stimulate
proliferation and cellular growth

and block apoptosis

EGFR was degraded and
dysfunctional in EGFR-

overexpressing oral squamous
carcinoma after plasma
treatment [315, 316]

Moderate exogenous H2O2 induces
the redox activation of EGRF and

increases protein kinase activity [317].

Transient receptor
proteins (TRP)

Calcium-permeable and voltage-
independent cation channels

which
act as multimodal sensors of

external stimuli

Unknown

In response to oxidative stress,
TRPC3 and TRPC4 increase

the intracellular Ca2+

concentration that leads to
cell death [318]

Integrins

Responsible for cell-to-matrix and
cell-to-cell adhesion. Integrins
transduce the external signals

to the cytoskeleton

DBD/air plasma enhanced
expression of α2-integrin/CD49b
and β1-integrin/CD29 in HaCaT

cells [295]
Marginal decrease in α5- and

β1-integrins in primary
fibroblasts and PAM cells [319]
Plasma activates β1-integrins
on the cell surface of WTDF3

mouse fibroblasts [320]
kINPen plasma jet treatment

downregulates integrin
expression in MRC5 cells [122]
and increases β1-integrin in

HaCaT cells [132]

Integrin-linked kinase (ILK)
signalling via PKB/Akt can

suppress apoptosis and anoikis
[321]. ILK is required to maintain

redox balance [322]
NRF2-mediated oxidative

stress response

E-cadherin
Calcium-dependent cell-to-cell

adhesion receptor

kINPen plasma jet treatment
decreases E-cadherin expression

in HaCaT cells [122, 132]
Argon plasma modulates
E-cadherin function and
induces its internalization
in HaCaT cells in vitro and
decreases the amount of

E-cadherin in mice epidermis

Oxidative stress causes the
selective disruption of

E-cadherin and beta-catenin
cell adhesion complexes [325]
In response to oxidative stress,

E-cadherin binds to Nrf2
to restrain Nrf2 nuclear

localization and activity [326]
Assembly of E-cadherin activates
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Table 3: Continued.

Molecule Key physiological role(s) Reported role in response to plasma Redox-mediated downstream effects

[323]. Others report an increase
in E-cadherin expression
in the wounds of rats [324]

several small GTPases and, in turn,
the activated small GTPases

control the effects of E-cadherin-
mediated adhesions on epithelial

biogenesis [327]
Involvement of ROS in the

regulation of cell adhesion and
signal transduction functions of
integrins and cadherins, pointing

to ROS as emerging strong candidates
for modulating the molecular

cross-talk between cell-matrix and
cell-cell adhesion receptors [328]
Redox-regulation of EMT [329]

Focal adhesions

Adhesive contact that anchors
the cell to the extracellular

matrix that mediates mechanical
and biochemical signalling

Plasma increased the amount
of vinculin and the focal
adhesion size in WTDF3
mouse fibroblasts [320]

Oxidative stress activates focal
adhesion kinase by Src kinase- and
PI3 kinase-dependent mechanisms,
which accelerates cell migration [330]

Lipids

Cholesterol
Provides rigidity to the cell
membrane and controls
membrane fluidity [331]

When present at low
concentrations in the cell

membrane, plasma oxidation
facilitates pore formation
and passing of ROS [179].
Unknown effect of toxic
by-product 5α-OOH after

plasma treatment

Oxidation by-products such
as HO•

2 can generate intracellular
H2O2 and

•OH, and propagate
lipid oxidation [178]. Induction
of apoptosis by 7α,β-hydroxy-,
7-oxo-, and 5,6-epoxycholesterol

[230] and formation of
5α-OOH [224]

Phospholipids
Main component of
biological membranes

Plasma oxidizes phospholipids
and affects lipid mobility [104, 332]

Plasma induces apoptosis
and flipping of phosphatidylserine
from the inner to the outer layer

of the cell membrane
[140, 236, 238, 333–335]

Plasma-treated cells present
disrupted cell membranes

[336–338]

Apoptotic cells presenting OxPLs
in the cell membrane are eliminated

by M2 macrophages [234]

Fatty acids
Form the hydrophobic
hydrocarbon tails of

phospholipids

Oxidation product NO2-FAs
inhibit activation of NFκB [188]

NO2-FAs stop the lipid
oxidation propagation and
protein nitration [240].

Peroxidation increases the rigidity
of the cell membrane [339]

Lipid rafts

Modulate distribution of
receptors and signalling
molecules in the cell
membrane [340]

Important in oxidative stress-
induced cell death [341]

In combination with hyperthermia,
plasma activates the FA receptor

(abundant in lipid rafts) and causes
FA-induced apoptosis [342]

Activation and aggregation of death
receptors such as FAs and TNFR1
located in lipid rafts and enhanced
activation of kinases recruited at the
raft site [341]. Ceramides produced

from the oxidation of
glycosphingolipids induce apoptosis
via activation of the JNK pathway and
regulation of Bax [343] and bind to
cathepsin D to mediate TNF-induced
cell death signalling [344]. In response

to H2O2, JNK activates to induce
the TRAF2/RIP-dependent pathway
for oxidative cell death [341]. Lipid
peroxidation affects the coupling

of receptors with effector systems and
decreases receptor density [339]
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metabolism, and migration [248]. Because the diffusion of
H2O2 across membranes is limited, aquaporins (AQPs)
transport H2O2 into the intracellular space to meet the phys-
iological demands [249]. It has been reported that cancer
cells overexpress aquaporins in their cell membrane com-
pared to normal cells, which could favor H2O2 transport into
the cytosol [250, 251]. This particular feature of cancer cells
could explain the selective effect of plasma in cancer cells,
as described before [188]. The contribution of aquaporins
to the response to plasma-generated ROS is currently under
study, as only the role of AQP1, AQP8, and AQP9 in H2O2
transport upon plasma treatment has been reported
(Table 3). Cancer cells that are resistant to ROS-induced
apoptosis can overcome the cytotoxic activity of exogenous
H2O2 by presenting catalase in the outer layer of the cell
membrane [252]. Membrane-bound catalase decomposes
H2O2 and ONOO

- and oxidizes NO present outside the cells.
Catalase therefore interferes with the ROS signalling through
the HOCl and the NO/ONOO- pathway [247, 253]. Interest-
ingly, 1O2 produced during the exposure of cancer cells to the
plasma-treated medium has been shown to inactivate the
enzymatic activity of membrane-bound catalase, restoring
the activation of the apoptotic pathway [254].

5. Conclusion

Treatment with cold physical plasma-derived ROS provides
new therapeutic avenues in the therapy of a number of dis-
eases. While the composition of ROS in the plasma gas phase,
as well as the functional consequences in cells, is reasonably
well explored, much more effort is needed to explore in
greater detail the interphase reactions between the ROS cock-
tail and cell membranes and tissues. To accelerate such
research, novel tools for studying the effects of different kinds
of ROS, as well as consensus guidelines of the plasma medi-
cine community, will be of great benefit.
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