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Abstract: Hydrogen sulfide (H2S) is an endogenous, gaseous signaling molecule that plays a critical
role in cardiac and vascular biology. H2S regulates vascular tone and oxidant defenses and exerts
cytoprotective effects in the heart and circulation. Recent studies indicate that H2S modulates various
components of metabolic syndrome, including obesity and glucose metabolism. This review will
discuss studies exhibiting H2S -derived cardioprotective signaling in heart failure with reduced
ejection fraction (HFrEF). We will also discuss the role of H2S in metabolic syndrome and heart failure
with preserved ejection fraction (HFpEF).

Keywords: HFpEF; HFrEF; metabolic syndrome; obesity; cardiometabolic HFpEF; hydrogen sulfide
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1. H2S Therapy in Heart Failure with Reduced Ejection Fraction

Heart failure with reduced ejection fraction (HFrEF) is one of the leading causes of
mortality in the United States, with a 5-year mortality rate of 75% [1]. Heart failure patients
have reduced circulating H2S levels, and H2S levels progressively decline as heart failure
symptoms worsen [2]. These diminished H2S levels have been recapitulated in several pre-
clinical animal models of HFrEF [3]. In a mouse model of HFrEF, whereby mice underwent
a transverse aortic constriction (TAC) procedure and subsequently developed HFrEF, there
was >60% reduction in circulating and cardiac hydrogen sulfide concentrations, highlight-
ing the potential role of H2S as a cardioprotective signaling molecule [4]. Endogenously
produced hydrogen sulfide exerts a myriad of cytoprotective actions in vivo, specifically in
its role as an antioxidant through promoting Nrf2 and NRF-1 signaling [5–7] and augment-
ing nitric oxide-mediated signaling [8]. These signaling mechanisms provide a component
of the antioxidant and anti-apoptotic effects that are observed with the administration of
H2S donors in a broad range of disease models. In a cystathionine γ-lyase (CSE) knockout
mouse model with attenuated circulating plasma H2S, cardiac injury was exacerbated
following myocardial ischemia–reperfusion injury compared to wild-type mice. This dele-
terious phenotype was ameliorated following administration of a hydrogen sulfide donor.
Interestingly, in an endothelial nitric oxide synthase (eNOS) phospho-mutant mouse, ex-
ogenous H2S failed to provide a protective effect in acute myocardial infarction, indicating
the importance of eNOS-NO signaling in H2S-mediated protection [8]. These findings
demonstrate hydrogen sulfide’s ability to activate or rescue eNOS functionality and may
indicate a therapeutic niche for H2S in diseased states with high reactive oxygen species,
such as heart failure, where eNOS is uncoupled into non-functioning monomers [8].

The mechanisms by which H2S activates eNOS involve promoting the recoupling of
eNOS monomers, increasing the phosphorylation of eNOS at ser1177 while reducing the
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phosphorylation at thr495, and inhibiting endogenous eNOS inhibitors such as proline-rich
tyrosine kinase 2 (PYK2) via s-sulfhydration [9]. Not only has H2S been shown to affect
signaling trough sulfhydration, but it has also been investigated as a pan-inhibitor of
phosphodiesterase, leading to a potential added benefit of increasing cGMP signaling in
cardiovascular-diseased states [10]. This H2S mediated inhibition has been shown with
decreases in both homodimers of PDE 5A and 5′-GMP content following incubation of
rat vessels with NaHS or GYY4137 [11]. In addition, when human internal mammary
arteries were exposed to NaHS, there was an observed increase in eNOS phosphorylation
and subsequent decreased PDE5A level compared to that of arteries exposed to a Krebs
control [12].

The tandem effects of H2S and NO, in addition to their metabolites and downstream
signaling modulators, have been implicated in a range of cardioprotective effects [9–13].
Calvert et al. investigated the importance of CSE-mediated H2S generation in the setting
of HFrEF. Myocardial CSE overexpression led to improved systolic function in a mouse
model of ischemia-induced heart failure [6]. What remains unclear is whether the re-
duced H2S bioavailability observed in HFrEF is due to decreased enzymatic production
through endogenous H2S-producing enzymes CSE, Cystathionine β-synthase (CBS) and
3-Mercaptopyruvate sulfurtransferase (3-MST) or due to increased metabolism of H2S, or
both mechanisms.

Both polysulfides and persulfides have been shown to sulfhydrate cysteine residues
of proteins in a much more potent manner compared to H2S [14]. Many novel polysulfide
or persulfide compounds have been studied in the setting of various diseases [15–19].
However, due to the chemical nature of these compounds, they are also the source of
H2S as a separate mechanism of action. Hence, it is very difficult to delineate their effects
directly as a polysulfide or through its donation of H2S through extended chains of sulfur
atoms. It is believed that these molecules themselves are in fact interchangeable in solu-
tion [20]. Nevertheless, several novel H2S-donating therapeutic compounds are known
polysulfides [20–24].

SG-1002 is an alpha-sulfur polysulfide compound that also serves as a pro-H2S donor.
In recent findings, wild-type mice and CSE-KO mice underwent TAC and then received
either SG-1002 (P.O. in chow at 20 mg/kg/day) or vehicle. CSE-KO mice developed
worsened cardiac remodeling and function compared to control mice. Interestingly, CSE-
KO mice that received SG-1002 exhibited improved cardiac remodeling and function [6].
A subsequent phase 1 clinical trial was performed using SG-1002 for a 21-day period in
healthy and heart failure subjects. The drug was well tolerated and SG-1002 effectively
increased circulating H2S and nitrite levels [17]. To date, there are no other heart failure
clinical trials that have been completed utilizing a H2S donor.

Sodium sulfide (Na2S) was one of the first H2S donors studied and has a very rapid
release profile. Mice administered sodium sulfide 100 µg/kg/d through daily venous injec-
tions beginning 4 weeks after ischemia-induced heart failure had increased Nrf2 signaling
along with preserved cardiac structure and function compared to vehicle control mice.
Following the induction of ischemic heart failure in Nfr2-KO mice, sodium sulfide admin-
istration failed to alter cardiac function or structure compared to control. This indicates
that H2S-mediated cardioprotection in ischemic heart failure is Nrf2-dependent [25]. It has
also been reported that sodium sulfide leads to transient arterial pressure decreases when
administered at 15 mg/kg i.v. [26]. The hemodynamic effects of H2S cannot be overlooked
as a possible protective mechanism of action. Sodium sulfide has also been shown to upreg-
ulate Heme-oxygenase-1 in a volume overload mouse model of heart failure [27]. Reactive
oxygen species in conjunction with cellular apoptosis are also decreased in HFrEF mice
following Na2S administration [28]. These H2S-dependent antioxidant and anti-apoptotic
effects have been reported in rodents in models of doxorubicin or anthracycline-induced
heart failure [29].



Antioxidants 2021, 10, 485 3 of 13

Diallyl trisulfide (DATS) is a garlic-derived polysulfide that has a H2S-releasing profile
that is more sustained than traditional H2S donors such as sodium sulfide. In a 12-week
study of TAC-induced heart failure, DATS therapy (200 µg/day) led to improved LV
ejection fraction compared to vehicle. Mice receiving DATS also had increased cardiac
microvessel density, increased VEGF signaling, and attenuated myocardial fibrosis [16]. In
addition, under certain conditions, DATS may react with its existing cysteine sulfhydyl
residues forming trisulfide metabolites and elicit cytoprotective effects independent of H2S
formation [30].

Li et al. studied the cardioprotective effects of a novel H2S donor, JK-1, in a TAC-
induced murine heart failure model. JK-1 releases H2S in a pH-dependent manner via
a hydrolysis reaction and this release profile is ideally suited to pathological CV disease
states such as heart failure. Delayed treatment of JK-1 following the onset of heart failure
led to reduced left ventricular dilation and improved LV ejection fraction compared to a
control group [31]. This study was also the first described evidence that H2S attenuates
the activation of the renin–angiotensin–aldosterone system (RAAS) in the setting of heart
failure. Downregulation of RAAS ultimately led to reduced renal fibrosis and improved
renal function in the JK-1-treated group.

Wu et al. first described the novel compound, ZYZ-803, which activates both CSE and
eNOS, leading to increased H2S and nitric oxide production simultaneously. ZYZ-803 has
been tested in a mouse heart failure model induced by isoprenaline. Following adminis-
tration of ZYZ-803, the mice had improved cardiac structural changes and increased LV
ejection fraction compared to that of the vehicle group [32]. The drug appeared to effec-
tively activate CSE and eNOS as plasma H2S and nitric oxide levels were increased at the
study endpoint. Cardioprotective effects of ZYZ-803 were diminished with simultaneous
administration of the eNOS inhibitor, L-NAME, and the CSE inhibitor, DL-propargylglycine
(PAG). These results reveal that concurrent activation of these enzymes produces a greater
effect than either one alone.

The slow-releasing H2S donor, GYY4137, has been shown to preserve left ventricular
ejection fraction 7-days post-MI compared to that of control. Interestingly, despite improved
cardiac function, these animals also had increased natriuretic peptide levels compared to
control. The mechanism of H2S-mediated augmentation of natriuretic peptides remains
unknown. In this same model, GYY4137 therapy led to increased NO-cGMP signaling
post-MI [33]. In isolated cardiomyocytes infected with coxsackie virus, GYY4137 was
also shown to produce anti-inflammatory actions through decreased NFKB and MAPK
signaling [34].

Through both the investigation and success of these various H2S donors in relevant
pre-clinical models such as HFrEF, we gain insight into the mechanisms of protective effects
in pathological states seen in Figure 1. H2S therapy might be applied to similar states of
not only pathological cardiac remodeling but a myriad of disease states involving, but not
limited to, systemic inflammation, fibrosis, vascular diseases such as hypertension and
peripheral artery disease [35–38], and overactive RAAS signaling.
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Figure 1. H2S Mediated Protection in Heart Failure.

2. H2S Therapy in the Setting of Metabolic Syndrome

The prevalence of metabolic syndrome has increased at an alarming rate over the past
several decades. It is estimated that approximately 1/3 of US adults, 12–37% of the Asian
population, and 12–26% of the European population have metabolic syndrome [39,40].
These numbers equate to > 1billion people worldwide. Those with metabolic syndrome
have increased risk of cardiovascular morbidity and mortality. In fact, estimates suggest
that 6–7% of all-cause mortality and 12–17% of cardiovascular disease can be attributed to
metabolic syndrome [41]. In a survey of US adults, metabolic syndrome had an increased
hazard ratio for coronary heart disease mortality of 2.02 and all-cause cardiovascular
disease mortality of 1.82 [42]. We will now summarize the studies that have investigated
the direct and indirect actions of H2S in the various components of metabolic syndrome
summarized in Figure 2.

2.1. H2S and Obesity

Obesity is a leading contributor to metabolic disease by numerous mechanisms. Obe-
sity results in the release of increased nonesterified fatty acids (NEFAs), which, when
acting on skeletal muscle, can promote insulin resistance and the development of fatty liver
disease. Adipose tissue also synthesizes and secretes inflammatory cytokines, including
TNF-alpha and IL-6, which are correlated with increased cardiovascular risk. Although
adipose cells produce leptin, which is a hormone that helps to regulate the energy balance
by inhibiting hunger and fat storage metabolism, there is leptin resistance in obese patients.
Conversely, obese persons generally have lower levels of adiponectin, which is a hormone
produced primarily in adipose tissue, with anti-inflammatory and anti-atherogenic properties.
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It is unclear to what degree H2S regulates lipolysis or the development and pathol-
ogy of obesity and metabolic syndrome. Some studies have suggested that H2S inhibits
lipolysis, while others suggest that upregulation of H2S signaling stimulates adipose tis-
sue lipolysis. Geng et al. reported that an H2S synthesis inhibitor, DL-propargylglycine
(PAG), increased isoproterenol-stimulated lipolysis in rat adipocytes, while the H2S donor,
GYY4137, reduced adipose tissue lipolysis [43]. In another study, sodium sulfide (Na2S)
was administered via microdialysis probe into subcutaneous adipose tissue and lipolysis
was estimated by measuring glycerol levels [44]. In a dose-dependent manner, Na2S led to
increased glycerol production, which was accompanied by cAMP release. This release was
abolished by the protein kinase A (PKA) inhibitor, KT5720, indicating that H2S-induced
lipolysis is PKA-dependent. H2S-mediated glycerol release was greater in rats that were
fed a high-fat diet. They also found that an inhibitor of H2S release (PAG) resulted in
decreased glycerol production in obese rats.

The three H2S-generating enzymes, CSE, CBS, and 3-MST, are all produced in the
liver and contribute to hepatic H2S production and hepatic physiology. Malfunction of
hepatic H2S metabolism is involved in the pathogenesis of many liver diseases and H2S
regulates lipid metabolism [45]. Studies have suggested that exogenous H2S improves
fatty liver disease by improving lipid metabolism. In high-fat-diet-induced obese mice,
daily injection of the H2S donor, NaHS, for 4 weeks resulted in improved hepatic cellular
structure, decreased liver weight and Oil-red-O staining, and decreased triglycerides and
total cholesterol [46]. The endogenous role of H2S signaling appears to center around the
interplay of the H2S-producing enzymes. Meng et al. report that hepatic expression of
3-MST is upregulated in patients with non-alcoholic fatty liver disease as well as in mice
fed a high-fat diet [47]. However, this increase in 3-MST led to a paradoxical decrease in
H2S production because 3-MST directly interacted with and negatively regulated CSE in
the liver. Furthermore, inhibition of 3-MST significantly enhanced, rather than decreased,
H2S production and reduced FFA-induced fat accumulation in L02 cells.
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Adipose tissue is also an endocrine organ and the critical signaling hormones pro-
duced by adipose are leptin and adiponectin. Leptin resistance characterized by elevated
circulating leptin levels is a hallmark of obesity. The effects of exogenous H2S in leptin sig-
naling have been previously investigated. Wu et al. reported that pre-treatment of human
umbilical vein endothelial cells with the H2S donor, sodium hydrosulfide, prior to glucose
challenge resulted in decreased leptin as well as decreased leptin receptor expression [48].
Moreover, Zhuang et al. report that exogenous NaHS prevents high-glucose-induced
injury by inhibiting the leptin-p38 MAPK signaling pathway in H9c2 cells. This group
also reports that H2S attenuates leptin and leptin receptor expression [49]. On the other
hand, circulating levels of adiponectin are negatively correlated with obesity and have been
shown to be protective in cardiovascular disease [50]. Interestingly, there appears to be a
positive correlation between circulating H2S and adiponectin levels in humans [24]. High
glucose concentration has also been shown to decrease the expression of the H2S-producing
enzyme, CSE, and lead to the downregulation of adiponectin [51]. Conversely, overex-
pression of CSE or exogenous treatment with NaHS resulted in increased adiponectin in
adipocytes, indicating that H2S and adiponectin are not merely correlating bystanders but
that H2S directly causes increased adiponectin production.

2.2. H2S and Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) carries a significant and increasing disease burden
worldwide. Complications can be broadly categorized into microvascular and macrovas-
cular complications. Microvascular complications, largely due to the accumulation of ad-
vanced glycosylation end-products and vascular injury, include retinopathy, nephropathy,
neuropathy, and poor wound healing. Macrovascular complications of diabetes mellitus in-
clude increased risk of stroke, heart disease, and peripheral vascular disease. Interestingly,
alterations in H2S signaling seem to play a role in glucose handling and the pathogenesis
of T2DM.

Multiple groups have reported that patients with T2DM have lower circulating H2S
levels than their age-matched non-diabetic counterparts [24,52]. Interestingly, H2S appears
to decrease pancreatic beta-cell secretion of insulin but increase peripheral response to
insulin-mediated glucose uptake peripherally [53]. In the liver, H2S likely mobilizes glucose
stores by increasing gluconeogenesis and glycogenolysis. The interplay between H2S
and NO in glucose regulation is somewhat unclear since studies report some discordant
actions of NO compared to H2S. Similarly to H2S, NO promotes peripheral glucose uptake
by skeletal muscle; however, its actions in the pancreas and liver differ. NO increases
pancreatic insulin secretion by beta-cells. In the liver, NO inhibits glucose mobilization
and promotes glucose storage by decreasing gluconeogenesis and glycolysis [54]. As we
discussed earlier, H2S promotes NO signaling; thus, studies identifying which molecule
plays a predominant role in glucose metabolism are warranted.

Several pre−clinical studies provide evidence that H2S attenuates many of the compli-
cations of T2DM. Wound healing is impaired in diabetic patients, largely due to impaired
microvascular function and localized inflammation. Wang et al. found that localized daily
treatment with bisulfide ointment for 21 days improved wound healing in diabetic rats [55].
They found that in these animals, H2S promoted angiogenic signaling while reducing mark-
ers of oxidative stress and inflammation. Diabetic nephropathy, and ultimately chronic
kidney disease, develops because glycosylation of the vascular basement membrane leads
to hyaline arteriolosclerosis. The efferent arteriole is preferentially affected, which leads
to increased glomerular filtration pressure. Hyperfiltration leads to microalbuminuria
and eventual progression to nephrotic syndrome. In a streptozotocin-induced diabetic rat
model, Zhou et al. report that daily injections of NaHS for 12 weeks led to improved renal
function, attenuated glomerular basement membrane thickening, and blunted interstitial
fibrosis and mesangial matrix deposition [56]. Using the same rat model of streptozotocin-
induced diabetes, Sun et al. demonstrated that the sulfhydration of SIRT1 by Na2S4, a
polysulfide compound, leads to ameliorated diabetic nephropathy [19]. As in many of the



Antioxidants 2021, 10, 485 7 of 13

studies examining H2S in various models of metabolic syndrome, there are no identifiable
clinical trials that are examining or have examined the effects of an H2S donor in patients
with T2DM. We believe that hydrogen sulfide, with its diverse mechanisms of action in
rigorously performed in vitro and in vivo animal models, is an ideal candidate for the
treatment of complications from T2DM.

2.3. H2S and Blood Pressure Regulation

H2S regulates vascular function and hemodynamics, but the precise role of H2S in
vascular function remains unclear. Some studies report vasodilatory actions of H2S while
others report vasoconstriction. It is possible that these discrepancies can be explained by
dose-dependent effects, which vascular beds are under investigation, or the oxygen tension
within that vascular bed. CSE KO mice, which are consequently deficient in H2S, are
significantly hypertensive and have impaired endothelium-mediated vasorelaxation [57].
Exogenous H2S has been shown to act as a vasodilator at lower oxygen pressures (30
mmHg) and as a vasoconstrictor at elevated partial pressure of oxygen (150 mmHg) [58].
This discordance may suggest that H2S would have more dilatory effects on the venous
side of the circulatory system with lower oxygen partial pressures. H2S appears to also
play a role in the pulmonary vasculature, particularly in the setting of hypoxic pulmonary
hypertension. Chunyu et al. reported that CSE expression in the lungs and plasma H2S
levels are both decreased in hypoxia-induced pulmonary hypertension and suggest that
exogenous H2S could oppose this rise in pulmonary arterial pressures [59].

There does not appear to be a single mechanism by which H2S modulates vascular
tone; however, several have been proposed. It is likely that multiple signal transduction
pathways are activated in the endothelium and vascular smooth muscle cells. Studies
by Naik et al. suggest that H2S activates endothelial TRPV4 channels which allow for
Ca2+ influx and subsequent vasodilation. Another mechanism of H2S-regulated blood
pressure reduction may be its interplay with the potent vasodilator, nitric oxide (NO).
Studies have shown that exogenous hydrogen sulfide activates eNOS and increases nitric
oxide signaling [16]. Additionally, suppression of hydrogen sulfide production via CSE
gene suppression leads to inhibited eNOS activity and diminished NO signaling. Others
suggest that H2S-induced vasorelaxation is dependent on the activation of ATP-sensitive
K+ channels in vascular smooth muscle [60,61]. In these studies, concentration-dependent
H2S-induced vasodilation was inhibited by the KATP channel blocker glibenclamide [62].
However, another mechanism of H2S-mediated vascular regulation is its action as a pow-
erful antioxidant. Oxidative stress causes endothelial dysfunction and has detrimental
effects on vascular function and tone. Several models of elevated oxidative stress, in-
cluding neuronal ischemia–reperfusion injury, myocardial ischemia–reperfusion injury,
heart failure, and limb ischemia, report that H2S donors attenuate local and systemic
oxidative stress and improve cellular health [6,14,63]. H2S scavenges O2− and reduces
vascular NADPH oxidase-derived superoxide anion production [64]. H2S also inhibits
H2O2-mediated mitochondrial dysfunction by preserving the activity of superoxide dis-
mutase, catalase, glutathione peroxidase, and glutathione-S-transferase while promoting
mitochondrial biogenesis via sulfhydrating PP2A and activating AMPK [65,66].

An important question is whether chronic H2S therapy could have consistent and
sustained actions on blood pressure control. Many of the studies reported in the literature
describe the acute vasodilatory effects of a H2S donor bolus. Numerous studies also discuss
the development of hypertension in models of H2S deficiency. However, we have yet to
find conclusive studies reporting that H2S can safely and effectively reduce blood pressure
in the setting of chronic systemic hypertension. A likely reason for this is the release
profile of most of the H2S donors. Most of these compounds release H2S in the order of
seconds to minutes, which would unlikely be clinically therapeutic in a chronic disease
state where effective treatment requires blood pressure reduction throughout the entire
day [2]. However, as discussed, a few of the proposed blood-pressure-lowering effects,
specifically the role of H2S as an antioxidant and an eNOS activator, may lead to more
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sustained anti-hypertensive effects than the abrupt H2S release profile of many of the
developed compounds. Further studies in models of chronic hypertension are required to
answer these questions.

3. The Potential of H2S Therapy in HFpEF

Heart failure with preserved ejection fraction (HFpEF) is a complex heterogeneous
multi-organ disease that has been at the forefront of heart failure research over the past
decade. HFpEF is the most common of all heart failure (HF) diagnoses, expected to amass
>60% of all clinical HF cases by 2030 [67]. In contrast to HFrEF, the list of disappointing
HFpEF clinical trials is expanding, with no FDA-approved pharmacotherapies showing
significant decreases in patient hospitalization or mortality rates. These failures contribute
to HFpEF being widely regarded as the largest unmet clinical need in cardiovascular
medicine [1,68].

HFpEF therapy development is further complicated by its heterogeneous phenotype
and non-unified diagnostic criteria [1,69]. Until recently, HFpEF was broadly defined as
a patient experiencing symptoms of HF while sustaining normal left ventricular ejection
fraction (>50%) [70]. Given the generality of the HFpEF diagnosis, the current treatment
regimen lacks precision and is largely limited to symptom management targeting the
accompanying comorbidities.

In-depth investigation into HFpEF clinical presentations has led to the identification
and stratification in three distinct phenogroups that include: (1) elderly patients with mod-
erate diastolic dysfunction, hypertension, and relatively preserved brain natriuretic peptide
(BNP), (2) obese, diabetic patients with significantly impaired left ventricular relaxation,
and (3) older patients with chronic kidney disease, pulmonary hypertension, and right ven-
tricular dysfunction. Stratification into these phenotypes revealed correlative comorbidities
and mortality rate among groups [71,72]. The identification of multiple phenogroups
within the HFpEF population has raised the possibility that a single mechanistic treatment
approach likely will not yield optimal outcomes in this heterogeneous syndrome.

Phenogroup 2 HFpEF patients suffer from severe cardiometabolic disease and have
the highest incidence of obesity, diabetes mellitus, and obstructive sleep apnea. Moreover,
>50% of this HFpEF subgroup contains patients with dyslipidemia, type 2 diabetes mel-
litus, hypertension, and/or obesity [71]. The combination of these comorbidities leads
to metabolic syndrome, an energetically dysregulated state known to cause deleterious
cardiometabolic effects [41,73]. As described previously, H2S has been shown to posi-
tively modulate obesity, dyslipidemia, glucose control, and insulin resistance. Therefore,
H2S therapy may improve outcomes in phenogroup 2 HFpEF patients by addressing the
deleterious accompanying comorbidities. It is also possible that H2S may have direct
myocardial cardioprotective actions on the heart, as it does in HFrEF. Specifically, H2S has
been shown to decrease cardiac fibrosis, which is critically important in treating a disease
state whose hallmark is a non-compliant ventricle [3]. Given that H2S has been previously
researched as a treatment strategy for these specific HFpEF-inducing comorbidities, as well
as its involvement in HFrEF progression, we identify this specific phenotype as the most
interesting candidate to investigate the use of H2S as an effective therapeutic approach [74].

Cardiometabolic HFpEF poses an interesting challenge in HFpEF research in that
systemic metabolic dysregulation, vascular dysfunction, inflammation, and oxidative stress
predominate this disease. The accumulation of these systemic insults, though initially
compensated by increasing the work of the heart, eventually results in overwhelming sys-
temic stress, leading to significant left ventricular diastolic dysfunction. The predominance
of metabolic and inflammatory disturbances in cardiometabolic-HFpEF makes it a most
interesting target for H2S therapy, especially regarding the potential effect that H2S will
have on attenuating the pro-inflammatory metabolic state.

Small animal modeling of cardiometabolic-HFpEF has been thoroughly described
with the ZSF1 obese rat [75,76]. The ZSF1 obese rat presents with severe HFpEF signs and
symptoms as early as 20 weeks of age [76]. The rapid development of the disease also
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makes the ZSF1 obese rats ideal for assessing the progression of HFpEF from asymptomatic
to severe presentations. Plasma sulfane sulfur is a metabolic breakdown product of H2S
that is a direct indication of H2S levels, allowing for a less volatile marker of H2S in the
plasma [8]. Sulfane sulfur levels both prior to onset of HFpEF symptoms and in late-stage
HFpEF are shown in Figure 3. With the presence of the metabolic disturbances at the
14-week timepoint, there are extremely low levels of plasma sulfane sulfur present. Of
significant importance, however, is that the progression of HFpEF symptoms depleted the
remaining sulfane sulfur levels. These observations highlight a novel finding in the setting
of cardiometabolic-HFpEF, suggesting that therapeutic supplementation with H2S donors
could potentially benefit both metabolic and cardiovascular components of this disease.

Antioxidants 2021, 10, x FOR PEER REVIEW 10 of 14 
 

 
Figure 3. Plasma free H2S and sulfane sulfure levels in ZSF1 obese rats prior at multiple time 
points in disease progression. A. Plasma H2S levels at 14 weeks of age (prior to HFpEF onset) and 
at 26 weeks of age (late-stage HFpEF). B. Plasma sulfane sulfur levels at 14 and 26 weeks of age. 
NS: Not Significant, * : p<0.05. 

4. Conclusion 
Attempts to treat the systemic pathology associated with HFpEF using therapeutics 

previously approved for HFrEF have failed to provide positive results despite their clear-
cut benefits in HFrEF. This is likely due to the heterogeneity of the HFpEF patient popu-
lation and the highly complex and diverse pathology of this disease. Stratification of 
HFpEF patient populations and the use of combination therapies in future clinical studies 
may reveal a viable therapeutic solution. We propose that the previously described ac-
tions of H2S, including its global involvement with metabolic syndrome, RAAS, sympa-
thetic output, blood pressure, and cytoprotectant effects, make it a worthy candidate for 
future investigation as a treatment for cardiometabolic-HFpEF and perhaps additional 
HFpEF phenotypes. 

Through previous animal modeling in HFrEF, H2S has been shown to provide cyto-
protective effects through NRF2- and eNOS-dependent pathways, alleviating systemic 
oxidative stress and improving vascular function found in pathological inflammatory 
states. In investigating models of obesity and metabolic syndrome, hydrogen sulfide has 
been shown to not only beneficially impact circulating lipids but improve glucose signal-
ing in a diabetic state. With regard to hypertension, H2S has been shown to improve en-
dothelial function and nitric oxide signaling, with mixed reports regarding overall blood 

Figure 3. Plasma free H2S and sulfane sulfure levels in ZSF1 obese rats prior at multiple time points in disease progression.
(A) Plasma H2S levels at 14 weeks of age (prior to HFpEF onset) and at 26 weeks of age (late-stage HFpEF). (B) Plasma
sulfane sulfur levels at 14 and 26 weeks of age. NS: Not Significant, * p < 0.05.

4. Conclusions

Attempts to treat the systemic pathology associated with HFpEF using therapeu-
tics previously approved for HFrEF have failed to provide positive results despite their
clear-cut benefits in HFrEF. This is likely due to the heterogeneity of the HFpEF patient
population and the highly complex and diverse pathology of this disease. Stratification of
HFpEF patient populations and the use of combination therapies in future clinical stud-
ies may reveal a viable therapeutic solution. We propose that the previously described
actions of H2S, including its global involvement with metabolic syndrome, RAAS, sym-
pathetic output, blood pressure, and cytoprotectant effects, make it a worthy candidate
for future investigation as a treatment for cardiometabolic-HFpEF and perhaps additional
HFpEF phenotypes.

Through previous animal modeling in HFrEF, H2S has been shown to provide cyto-
protective effects through NRF2- and eNOS-dependent pathways, alleviating systemic
oxidative stress and improving vascular function found in pathological inflammatory states.
In investigating models of obesity and metabolic syndrome, hydrogen sulfide has been
shown to not only beneficially impact circulating lipids but improve glucose signaling in a
diabetic state. With regard to hypertension, H2S has been shown to improve endothelial
function and nitric oxide signaling, with mixed reports regarding overall blood pressure
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regulation. In the HFpEF ZSF1 rat model (Figure 3), we have now shown that circulating
plasma sulfane sulfur levels are severely diminished during the progression of this disease,
providing some new evidence that loss of H2S may be involved in the pathogenesis of
HFpEF. Additional studies are required to determine if reductions in H2S in fact contribute
to HFpEF pathology.

While this review emphasizes the therapeutic role of H2S supplementation in heart
failure and metabolic syndrome, it must also be mentioned the potentially toxic role of
H2S in excess. H2S, along with other signaling molecules, must remain in a homeostatic
concentration in the body, stressing the importance and potential danger of supplementing
H2S with supraphysiologic levels. It is also worth noting that the potential role of contami-
nation of NaHS in solutions, although not investigated thoroughly, is an ongoing issue in
the H2S field [77].

Although H2S has been shown to be beneficial in these models of HFrEF and metabolic
syndrome, further studies are required to investigate its true role in the setting of HFpEF
pathology. It may be that several therapeutics are necessary to combat the heterogeneity of
this disease, where H2S may contribute in a supportive role.
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