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Background Various studies have reported cell-free RNAs (cfRNAs) as noninvasive biomarkers for detecting
hepatocellular carcinoma (HCC). However, they have not been independently validated, and some results are
contradictory. We provided a comprehensive evaluation of various types of cfRNA biomarkers and a full mining
of the biomarker potential of new features of cfRNA.

Methods We first systematically reviewed reported cfRNA biomarkers and calculated dysregulated post-
transcriptional events and cfRNA fragments. In 3 independent multicentre cohorts, we further selected 6 cfRNAs
using RT-qPCR, built a panel called HCCMDP with AFP using machine learning, and internally and externally
validated HCCMDP’s performance.

Findings We identified 23 cfRNA biomarker candidates from a systematic review and analysis of 5 cfRNA-seq
datasets. Notably, we defined the ¢fRNA domain to describe cfRNA fragments systematically. In the verification
cohort (n = 183), cfRNA fragments were more likely to be verified, while circRNA and chimeric RNA candidates
were neither abundant nor stable as qPCR-based biomarkers. In the algorithm development cohort (n = 287), we
build and test the panel HCCMDP with 6 cfRNA markers and AFP. In the independent validation cohort
(n = 171), HCCMDP can distinguish HCC patients from control groups (all: AUC = 0.925; CHB: AUC = 0.909;
LC: AUC = 0.916), and performs well in distinguishing early-stage HCC patients (all: AUC = 0.936; CHB:
AUC = 0.917; LC: AUC = 0.928).

Interpretation This study comprehensively evaluated full-spectrum cfRNA biomarker types for HCC detection,
highlighted the cfRNA fragment as a promising biomarker type in HCC detection, and provided a panel HCCMDP.
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Research in context

Evidence before this study

Globally, liver cancer is the third major cause of cancer-related
deaths. Current noninvasive tools for early-stage HCC
detection like AFP are suboptimal, and new liquid biopsy
markers like cell-free RNA (cfRNA) are emerging. Despite
multiple studies having reported various cfRNA as biomarkers
for HCC detection, the reproducibility and stability of reported
biomarkers need to be proved in a unified way. Furthermore,
adding new cfRNA features may improve the sensitivity of
HCC detection.

Added value of this study

Our comprehensive evaluation of full-spectrum cell-free RNAs
filled the gap created by previous cfRNA biomarker studies,
most of which were biased to miRNAs. Furthermore, we

Introduction

Liver cancer is the third major cause of cancer-related
deaths worldwide.! Hepatocellular Carcinoma (HCC)
is the main category of primary liver cancer (accounts
for 75%—-85%). HCC patients diagnosed at early stages
have significantly prolonged survival time,” making early
detection crucial. Early detection of HCC is exception-
ally urgent for the high-risk population, including
chronic hepatitis B (CHB) and liver cirrhosis (LC) pa-
tients, who have annual HCC incidence rates of
0.3-0.6% and 2.2-3.7%, respectively.’ Nowadays,
noninvasive HCC screening methods mainly include
ultrasound and blood tests.? However, they are subop-
timal, which brings the need for better-performed
biomarkers.

With improvements intechnology, many types of
biomarkers in the bloodstream, including circulating
tumour cells (CTCs), circulating tumour DNAs
(ctDNAs), proteins, metabolites, tumour-educated
platelets, and cell-free RNAs (cfRNAs)* have been
shown to have diagnostic capabilities in HCC. Among
them, cfRNA is perceived as a promising type because
RNA dysregulation, including differential RNA expres-
sion and multiple RNA post-transcriptional events, can
depict the dynamic changes in patients. Moreover,
cfRNA can be detected through cost-effective RT-qPCR,
thus offering an economic advantage in extensive clin-
ical applications.

Multiple cfRNA subtypes in blood have been identi-
fied as HCC biomarkers. Zhou et al. identified a 7-
miRNA panel in plasma’ with an area under the
receiver operating characteristic curve (AUC) of 0.888;
long noncoding RNAs (IncRNAs) like HULC,® stpRNA/’

revealed the cfRNA fragment as a promising biomarker type,
which extended the dimension of cfRNA types for cfRNA
panel development in future clinical trials.

Implications of all the available evidence

The panel HCCMDP, outperformed existing biomarkers like
AFP in our phase Il biomarker study, and has a promising
prospect to be a noninvasive and economic HCC detection
biomarker in future clinical practice. This meets the urgent
demand of identifying early-stage HCC patients who can
receive curative treatments. HCCMDP can fit into broad
clinical application scenarios because of its economic features
and capability to rapidly give results, especially when imaging
infrastructure for HCC diagnosis is unavailable.

and snoRNA,* and circRNA® were also reported to be
biomarkers in HCC. However, the results are some-
times contradictory in different studies due to the vari-
ation in sample sizes, experimental methods, data
analysis, and the risk of overfitting.'** Therefore, the
reproducibility and stability of reported biomarkers need
to be demonstrated in a unified way.

Additionally, adding new RNA biomarker subtypes
to a traditional cfRNA panel may complement and
improve the panel’s performance. Dysregulated RNA
post-transcriptional  events, including alternative
splicing,”* alternative polyadenylation,” and chimeric
RNAs,” contribute to the complexity of the RNA land-
scape. They all play significant roles in cancer and have
been mostly reported to be tissue-based diagnostic bio-
markers in other cancers. c(fRNA fragments have been
identified in blood by different RNA library construction
strategies. These fragments are derived from long RNAs
like tRNA, srpRNA,” mRNA, and IncRNA.'®” The
biomarker potential of cfRNA fragments has just started
to be acknowledged, tRNA-derived small RNA (tsRNA)
being a good example.'* Besides, a recent study reported
that exosomal RNA fragments in unannotated regions
of the genome could well discriminate HCC from con-
trols.” However, most of these new RNA-related fea-
tures mentioned above are based on various NGS library
construction strategies and analysis methods. Their
biomarker potential needs a unified way.

In this work, we selected and verified 23 candidate
biomarkers covering a full spectrum of fRNA types,
dysregulated RNA post-transcriptional events, and
cfRNA fragments through a comprehensive analysis of
literature and NGS data. Notably, we used a biomarker
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feature named c¢fRNA domain to uniformly identify
cfRNA fragments from traditional small cfRNA-seq
datasets. We then selected, verified and validated these
cfRNA candidates in 3 independent cohorts and
revealed a low-cost and effective panel for the non-
invasive detection of HCC.

Methods

Systematic review for cfRNA biomarkers

First, we searched Pubmed, Scopus, Embase, and the
Cochrane library for articles reporting RNA biomarkers
in plasma or serum or exosomes for HCC diagnosis
according to the search terms listed below. RNA-related
reports were published between August 1992 and March
7, 2023. Search terms are listed in Supplementary File
S1.

Studies were excluded for the reasons listed below: 1)
The study is not focused on identifying RNA as bio-
markers (e.g., The study is about RNA regulation or
RNA-encoded protein’s function, e.g.”’; 2) The samples
used are tissue or PBMC or whole blood, rather than
plasma or exosomes or serum, e.g.”’; 3) The RNA is not
used for diagnosis, but prognosis, e.g.,”> etc. 4) The
study has no control group, or the cohort has less than
10 people; 5) The study provides incomplete informa-
tion about the reported RNA and their exact sequences
cannot be accessed (after request to the authors); 6) The
study type is a review, a comment, a systematic review
or a meta-analysis. The studies’ characteristics were
aggregated by Endnote 20 and compared against the
inclusion and exclusion criteria.

The whole procedure was conducted under PRISMA
2020’s guidelines” and was independently checked by 2
people (K.T., C.N.). Assessment of quality and risk of
bias was done using modified QUADAS2,* and only
reports having both training and validation cohorts were
evaluated as high quality. Basic information about the
biomarkers and statistics that reflect the biomarkers’
ability (i.e., AUC, sensitivity, specificity, expression
trend, number of participants in each cohort and group,
information about the RNA biomarker and specimen)
were collected from all included reports independently
by two people (K.T., C.N.). All results that were
compatible with each outcome domain in each study
were sought. Missing or unclear information was
marked as “NA”. Study investigators were contacted for
confirming obscure information. Statistics such as sum,
median, max and min were used to present the sys-
tematic review results.

Meta-analysis for miRNA biomarkers

First, the meta-analysis only included studies that re-
ported the numbers of true positive, true negative, false
positive and false negative of the biomarker alone, or
other indexes that can be transformed to them rather
than only reporting these indexes of the whole panel.
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We first checked the values of summary statistic (log
(diagnostic odds ratio) and Higgins’ I?) by performing
univariate analysis.” Considering that the data hetero-
geneity in the accuracy of diagnostic tests is more pro-
nounced, bivariate normal random effect model** was
used to plot the summary ROC curve and calculate the
Summary AUC (sAUC) and pooled sensitivity, false
positive rate with their corresponding 95% confidence
intervals (95% CI). The model’s core idea is that it as-
sumes the logit of the observed sensitivity (5;) and false
positive rate (f,) of the i™ report follow a bivariate
normal distribution,

(logit (3:), logit (f ;) ~N(u, £)

in which u denotes the actual value of the biomarker’s
logit sensitivity and false positive rate, and the equation

Osf 6}

covariance between logit sensitivity and false positive
rate. Publication bias was assessed by visual inspection
of the funnel plots. Sensitivity analysis was done by
leaving each research out. Possible causes of heteroge-
neity among study results were analysed through sub-
group analysis. All analyses were done using the R
package “Mada”, “Meta” and “Metafor”.

ol oy
S] . .
=( ° ] describes between-study variance and

Preprocessing of cfRNA-seq data
cfRNA-seq datasets were systematically searched in
GEO wusing search terms, and 5 public datasets
(GSE100207, GSE142987, GSE174302, GSE123972, and
GSE104251) were downloaded. All cfRNA-seq datasets
used are available at Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/). The datasets used are
further summarised in Supplementary Table S1.
Adaptors and low-quality sequences from raw data
were trimmed off by cutadapt” version 2.3. In total
RNA-seq data, reads shorter than 30 nt were excluded,
and GC oligos introduced in reverse transcription were
trimmed off. In small cfRNA-seq data, reads shorter
than 16 nt were excluded. The remaining reads were
sequentially mapped to ERCC’s spike-in sequences,
NCBI's UniVec sequences, and human rRNA se-
quences by bowtie2” (version 2.3.5, for small RNA li-
braries) or STAR” (version 2.5.3a_modified, for total
RNA libraries).

Annotation of cfRNA-seq reads

For total cfRNA-seq data, STAR was used to map clean
reads to the hg38 genome built with the GENCODE v27
annotation. STAR was also used to align reads which
were unaligned to hg38 to circRNA junctions. Picard
Tools MarkDuplicates (version 2.20.0) was used to
remove duplicates in the aligned reads. Each aligned
read pair is assigned to a specific RNA if at least one of
the mates overlapped with the region corresponding to
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this RNA. The aligned reads were sequentially assigned
to spikein_long, univec, rRNA, IncRNA, mRNA,
snoRNA, snRNA, srpRNA, tRNA, TUCP, Y RNA, and
circRNA junctions using bedtools® according to the
GENCODE v27 annotation.

For small cfRNA-seq data, bowtie2 was used to
sequentially map clean reads to the longest isoform of
each gene with the following sequence: spikein_small,
univec, rRNA, miRNA, IncRNA, mRNA, piRNA,
snoRNA, snRNA, srpRNA, tRNA, tucpRNA, and
Y_RNA.

Annotation of human transcripts with uncertain
coding potential (TUCP) was extracted from mitran-
scriptome.’’ Enhancers, promoters, and repeat regions
were downloaded from the UCSC Genome Browser.
Circular RNA annotation was downloaded from circ-
Base.’” Junction sequences were prepared by concate-
nating upstream 150 nt and downstream 150 nt
sequences around the back spliced sites of circRNAs.

Differential expression analysis and statistics
calculation in the analyses of cfRNA-seq data
EdgeR* was used to calculate differential expression and
produce statistics, including log fold change (|log,FC|)
and FDR. Other calculated statistics for a specific gene
included AUC, ratio (ratio_HD, ratio_HCC),
TMM_mean, and Gini index* (Gini_HD and
Gini_HCC). Firstly, to calculate AUC, the min-max
method was used to normalise the features to 0-1.
Then, the tendency of features was judged. If the mean
of the feature in the cancer patients was greater than the
mean in the healthy donors, it stayed the same. If it was
the opposite trend, we took 1 to minus the feature.
Finally, we calculated the AUC of the feature. The ratio
is the non-zero proportion of a feature in HCC and
healthy samples. TMM_mean is the average normalised
expression value of each gene (or feature) in HCC and
healthy samples, and the normalised method is TMM.
The Gini index (ranging from zero to one) is a single
value that measures data heterogeneity.** The higher the
Gini index, the more heterogeneous the data is. We
calculated the Gini index of each gene (or feature) for
different cancer and healthy samples.

mRNA candidates were selected using datasets of
GSE100207, GSE142987 and GSE174302. The cut-off
was: (FDR<0.05) & (|log,FC| > 1) & (AUC > 0.8) &
(ratio_HD > 0.9|ratio_HCC > 0.9) & (TMM_mean_
HD > 8TMM_mean_HCC > 8) & (Gini_HD < 0.7
Gini_HCC < 0.7). (FDR < 0.05) & (|log2FC| > 1) means
the RNA is significantly differentially expressed in HCC
and HD. ratio >0.9 and TMM_mean >8 are used to
avoid low abundance of gene expression. Gini <0.7 is
used to avoid heterogeneity in the gene’s expression in a
population. The cut-off was formulated according to the
distribution of these indexes in this RNA subtype
because we want to pick out the best-performing

candidates in this RNA subtype while keeping the
number of candidates in each subtype balanced and the
total number appropriate for qPCR validation. The dis-
tribution of indexes in the selection cutoff of mRNA is
listed in Supplemental Figure S6 as an example. The
cut-offs below were set in the same way.

Identification of cfRNA domains from long
transcripts
We used a local maximum-based peak calling method to
identify cfRNA domains using the small cfRNA-seq data
(GSE123972 and GSE104251). The local maximum-
based peak calling method is divided into three steps:
determining effective bins, searching local maximum
peaks and merging, and filtering confident peaks. In the
first step, we divided a transcript into 20-nt bins. We
then calculated the average read coverage over each bin
and filtered out bins with average read coverage below 5
(minimal read coverage). Bins with average read
coverage above the minimal read coverage were effective
bins. In the second step, we firstly searched for the local
maximum beginning at the start position of the first
effective bin. Once a local maximum was found, peaks
were extended from the position of the local maximum
in both directions until the read coverage of a position
dropped below the minimal read coverage or half the
local maximum. This peak finding procedure was per-
formed from 5 to 3’ of transcripts to identify all peak
candidates. Peaks shorter than 10-nt were removed, and
adjacent peaks were merged. We performed steps 1 and
2 on each sample to find all peak candidates. In the third
step, we filtered and adjusted these local maximum
peaks using the recurrence of peaks among samples.
Peak confidence is the minimum of the peak sub-region
recurrence ratio. The peak sub-region recurrence ratio
refers to the frequency of this region in all sample
peaks. We filtered peaks with peak confidence below
10% and merged the adjacent confidence regions (re-
gion recurrence ratio above 10%) of these peaks to
obtain the confident peaks. Finally, we define these
confident peaks larger than 10-nt as ¢fRNA domains.
Differential expression analysis was done, and the
same statistics were calculated as described in the upper
part “Differential expression analysis and statistics
calculation in the analyses of cfRNA-seq data”. The cut-off
for cfRNA domain candidates was: (FDR < 0.05) &
(log,FC| > 1) & (AUC > 0.8) & (ratio_HD > 0.9|
ratio_HCC > 0.9) & (TMM_mean HD > 10[TMM_
mean_HCC > 10) & (Gini_HD < 0.3|Gini_HCC < 0.3).

The secondary structure and RBP enrichment
analysis of the cfRNA domain

We downloaded icSHAPE data from GSE74353,” and
the in vivo matrix was chosen. Only mRNA-related
transcripts  shorter than 10 kb were used for
simplicity. We averaged trimmed icSHAPE reactivity
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values for each confident fragment along its peak.
Background regions were generated by shuffling confi-
dent fragments within all mRNA transcripts in the
filtered icSHAPE matrix, from which transcripts’
lengths and total number were not changed. RBP
binding sites were downloaded from the POSTAR3
human RBP database,’”® and only those with a length
longer than 20 nt and autosomal location were selected.
Background regions were generated by shuffling confi-
dent cfRNA fragments within the union transcript set
from 8 RNA species in a manner similar to structure
analysis. Known RBP sites in these domains are pre-
dicted using FIMO(v5.4.1),” with P-value <0.01 as the
threshold wusing Ray2013_rbp_Homo_sapiens.meme
RBP database.

Alternative splicing analysis
RMats* was used in identifying RNA alternative
splicing events with the parameter setting of —cstat
0.0001 -libType fr-secondstrand. Reads were aligned to
the “alternative-spliced regions” and the upstream and
downstream “reference regions” generated by rMats,
and normalised to TMM. Ratios of “alternative-spliced
regions” divided by upstream or downstream “reference
regions” were then calculated. Differential expression
was calculated based on the ratio, and the cut-off for this
step was:

(FDR < 0.05) & (|log,FC|>1) & (AUC>0.8) & (ratio_
HD > 0.9|ratio_HCC > 0.9) & (Gini_HD < 0.3|Gini_
HCC < 0.3).

Alternative polyadenylation analysis

DaPars® was used to identify RNA alternative poly-
adenylation events with parameter setting of: FDR_cut-
off = 0.05, PDUI_cut-off = 0.2, Fold_change_cut-
off = 0.59 (PDUI: percentage of distal polyA site usage
statistics). PDUI was used to conduct differential
expression and calculate the statistics described above.
Overall, the differential statistics for alternative poly-
adenylation candidates are lower than in other cate-
gories. To include this type as well, we adopted looser
cut-offs (AUC > 0.65). The cut-off was: (FDR < 0.05) &
(log,FC| > 1) & (AUC > 0.65) & (ratio_HD > 0.3|ratio_
HCC > 0.3).

Chimeric RNA analysis

Reads that did not map to genome sequence and
circRNAs were mapped to chimeric RNAs derived from
ChimerDB 3.0, GTEx," and annotations generated
from GSE142987 and GSE174302. The identified
chimeric RNA’s expression matrix went through dif-
ferential expression analysis. The statistics were calcu-
lated as described in “Differential expression analysis
and statistics calculation in the analyses of cfRNA-seq
data”. The cut-off was: (FDR < 0.05) & (|log,FC| > 1) &
(AUC > 0.8) & (ratio_HD > 0.5|ratio_HCC > 0.5).
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False positives were removed by manual inspection
on IGV, including mitochondrial genes or human HLA
genes as one of the partners, those having incomplete
poly-A trimming, and those having many reads that
were not mapped uniquely across the fusion
breakpoints.

Study cohorts

We retrospectively collected 3 independent cohorts: (1) a
verification cohort containing 183 samples (83HCC,
12LC, 21CHB, and 67 HD; allocated about 30 HCC, 10
CHB, 10 LC, and 30 HD for each candidate) for candi-
date selection; (2) an algorithm development cohort
containing 287 samples (109 HCC, 58 CHB, 54 LC, and
66 HD) for model training and bootstrap validation; (3)
an independent validation cohort containing 171 sam-
ples (66 HCC, 40 CHB, 36 LC, and 29 HD) for external
validation and reproducibility assessment. Samples
were collected from Second Military Medical University,
Tianjin Medical University Cancer Institute and Hos-
pital, and Beijing Ditan Hospital from 2019 to 2023.
Potentially eligible participants were identified by re-
sults from previous tests and medical records. Partici-
pants formed a consecutive series. Samples of HCC
patients were collected before treatments. There are no
adverse events from sampling. Clinical information is in
Supplementary Tables S2, S3 and S4.

The inclusion and exclusion criteria for healthy do-
nors were as follows: (1) No history of hepatitis, liver
cancer, and family history of liver diseases; (2) Blood
tests showed negative HBV DNA and normal levels of
ALT, AST, serum HBV markers, and tumour bio-
markers such as AFP and CEA; (3) B-ultrasound ex-
amination showed no intrahepatic space-occupying
lesions; (4) No other malignant tumours, immune dis-
eases, and other major diseases. HCC was diagnosed by
pathological analysis or o-fetoprotein combined with
computed tomography or magnetic resonance imaging.
LC was diagnosed by liver biopsy or ultrasonography,
supplemented with clinical complications indicating
portal hypertension, and free of HCC according to
medical records in at least the past 6 months. CHB was
diagnosed according to seropositivity for HBsAg >6
months, apparent inflammatory activity, and absence of
cirrhosis or HCC. Different sexes had equal possibility
to be potentially eligible. Sexes were self-reported by
study participants.

Ethics

The study protocol conformed to the 1975 Declaration of
Helsinki and was approved by the ethics committees of
Second Military Medical University, Tianjin Medical
University Cancer Institute and Hospital, and Beijing
Ditan Hospital (approval number: No.20190E-023). All
patients included in this study voluntarily signed
informed consent.
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Plasma preparation

Blood samples were processed within 2 h of collection
and avoided enzyme pollution during processing.
1-5 mL of whole blood were collected through periph-
eral venipuncture in K2EDTA tubes and were gently
reversed 8-10 times. Centrifugation was performed at
800 g at 4 °C for 10 min. The supernatant was trans-
ferred to a new tube and centrifuged again at 4 °C for 10
min at 3,000 g. The plasma was transferred into 0.5 mL/
tube and stored in a —80 °C refrigerator.

RNA isolation and quantitative reverse
transcription PCR for long and short RNAs

RNA was extracted from plasma using QIAzol® Lysis
Reagent (QIAGEN, Cat. No. 79306) and ethanol pre-
cipitation method. Clinical information and the sample
category were unavailable to the performers before fin-
ishing the experiment.

For long RNAs, RNA extracted was reverse tran-
scribed into ¢cDNA with TIANScript II First-Strand
cDNA Synthesis Kit (TIANGEN, KR107-02) according
to the manufacturer’s instructions. For real-time quan-
titative PCR, the reactions were performed in a 20-pL
final volume system with 2 x FastFire qPCR premix
(SYBR, Lot#U9116) according to the manufacturer’s
instructions. The qPCR reaction procedure was set as
follows: 95 °C for 1 min, then replicate 40 cycles of
95 °C for 5 s and 60 °C for 15 s, and then 65 °C for 5 s,
heat 0.5 °C per cycle to 95 °C. All reactions were repli-
cated two times and yielded the mean Cq value.
Expression levels of GAPDH were detected as endoge-
nous control measurements. Two no-template controls
were set at reverse transcription (RT-NTC) and RT-
qPCR (qPCR-NTC) to monitor these 2 processes. To
control the intra-assay variability and inter-assay vari-
ability, we set quality control standard for the whole
process as: 13 < Cq (GAPDH) < 36 & 13 < Cq (candi-
dates) < 37 & Cq (RT-NTC) > 37 & Cq (QPCR-NTC) > 37
& numerical difference of Cq (candidate) between rep-
licates <1. Raw data that did not meet this standard were
considered to have problems in the experiment and
discarded.

For short RNAs, RNA was reverse transcribed into
cDNA with miRcute Plus miRNA First-Strand cDNA
Synthesis Kit (TTANGEN, KR211). The reverse tran-
scription reaction conditions were as follows: 42 °C for
60 min, followed by 95 °C for 3 min and then 4 °C for
infinite hold. The miRcute Plus miRNA qPCR Detection
Kit (TTANGEN, FP411) was used for real-time quanti-
tative PCR. The qPCR reaction procedure was set as
follows: 95 °C for 15 min, followed by 40 cycles of 94 °C
for 20 s and 60 °C for 34 s, and then 65 °C for 5 s, heat
0.5 °C per cycle to 95 °C. All reactions were replicated
two times and yielded the mean Cq value. The expres-
sion level of miR-16 was detected as endogenous con-
trol. Two no-template controls were set at reverse
transcription (RT-NTC) and RT-qPCR (qPCR-NTC) to

monitor these 2 processes. To control the intra-assay
variability and inter-assay variability, we set quality
control standard for the whole process as: 13 < Cq (miR-
16) < 32 & Cq (RT-NTC) > 37 & Cq (QPCR-NTC) > 37 &
numerical difference of Cq (candidate) between repli-
cates <1.

The expression levels of all candidates were nor-
malised to those of the reference genes using the —ACq
(—(Cqcandidate = COQreference)) method. In the verification
stage, at about 15 HCC vs. 15 HD, RNAs that did not
show significance (Wilcoxon Rank-Sum test, P-value
<0.2) between HCC and HD or whose Cq values fell out
of 37 too often were pre-excluded.

Machine learning method for combining multiple
RNAs and AFP as a panel

Random Forest was applied to the 6 cfRNAs and AFP to
build the panel HCCMDP. 6 HCC samples in the al-
gorithm development cohort were excluded due to
experimental technical failure. The function we used for
the random forest is sklearn.ensemble.RandomFor-
estClassifier (maximum tree depth = 500, tree num-
ber = 1000). Missing data were treated as n.a. The model
built from the algorithm development cohort was tested
by 500-times bootstrap, and the distributions of AUC
are presented. Further, the model was externally vali-
dated by an independent validation cohort. We did not
use the optimism-corrected AUC because our training
and validation data did not overlap. We calculated the
Brier score, Hosmer—Lemeshow test, net reclassification
indexes and the misclassification table to evaluate the
model.

To evaluate cfRNA fragments, we trained another
random forest model, only including three cfRNA
fragments and AFP on the algorithm development
cohort, and tested it on the independent validation
cohort. The model probability cut-offs of HCCMDP
(0.53), AFP (0.51) and 3 cfRNA fragment combination
(0.50) was determined on the algorithm development
cohort requiring the specificity of discriminating HCC
from all controls >95%. 400 ng/mL was used as the cut-
off when deciding AFP-negative patients.

Statistical analysis

Statistical significance for continuous variables was
calculated by the Wilcoxon Rank Sum test except for
differential expression analysis of NGS data, which used
the exact test based on a negative binomial model in
edgeR. Fisher’s exact test was used for categorical vari-
ables. Unless otherwise mentioned, a P-value or false
discovery rate (FDR) < 0.05 were considered statistically
significant. Receiver operating characteristic (ROC)
analysis was done by the python package sklearn.-
metrics. 95% confidence interval (CI) was calculated for
AUC, sensitivity and specificity by bootstrap estimation
in the R package pROC. We used all samples available at
that time in the verification cohort and the algorithm
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development cohort. Based on the results of the algo-
rithm development cohort, the sample size of the in-
dependent validation cohort was estimated by MedCalc
(Type II error = 0.05, Type I error = 0.01, hypothesised
Area under the ROC curve = 0.8, ratio of sample sizes in
negative/positive groups = 0.5). The minimal sample
size is 39 for HCC and 20 for each negative control
group. In boxplots, whiskers extend to the furthest data
point within the range that is 1.5 times of the inter-
quartile range. More extreme points are marked as
outliers.

Other statistical details were described in relevant
sections of Method.

Role of the funding source

The sponsors did not have any role in the study design,
data collection, data analyses, interpretation, or writing
of the manuscript.

Results

Overview of the analysis and validation of full-
spectrum cell-free RNA biomarkers for HCC
detection

We evaluated and validated full-spectrum cfRNA bio-
markers in 4 stages: discovery, verification, algorithm
development and independent validation stages. In the
discovery stage, we systematically reviewed published
cfRNA biomarkers and further meta-analysed miRNA
candidates with homogeneous reports. We selected 14
published candidates based on reported statistics
reflecting reproducibility (the number of independent
studies), credibility (sample size), and diagnostic accu-
racy (reported AUC and specificity) (Fig. 1a).

Meanwhile, we also analysed small and total cfRNA-
seq datasets from 3 perspectives: mRNA, cfRNA frag-
ments, and dysregulated post-transcriptional events
(alternative splicing (AS), alternative polyadenylation
(APA), and chimeric RNAs). To fill the gaps in those
biomarker types that previous studies have rarely re-
ported, we mainly focused on selecting candidates of
RNA biomarker features that were not picked out in the
systematic review. We finally selected 9 markers based
on calculated statistics reflecting abundance, differential
expression, classification performance, heterogeneity
(Gini-index* and non-zero ratio), and further screen
conditions (Fig. 1b).

Together, the above 23 candidates were further
verified, selected, and validated by RT-qPCR in multi-
centre cohorts during the verification, algorithm devel-
opment and independent validation stages (Fig. 1c).
Detailed results are described in the following sections.

Candidate cfRNA biomarkers selected from the
systematic literature review for HCC detection
In the first part of the discovery stage, we systematically
reviewed the literature on cfRNA biomarkers. A total of
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3008 records were found by applying searching strate-
gies in Pubmed, Embase, and the Cochrane library.
Finally, 130 articles that contain 301 unique biomarkers
on a total of 28,150 samples were included in the review
(Fig. 2a).

To cover all reported cfRNA types in the selection and
consider each type’s research status, we set flexible
standards for their reported statistics (Fig. 1la,
Supplementary Tables S5 and S6). Furthermore, we
meta-analysed six selected miRNAs and further picked
out four based on meta-analysis statistics (Supplementary
Table S7 and Supplementary Figure S1). Meta-analysis
was not done on other types of cfRNAs since the statis-
tics of single marker performance were unreported,
which would bring nonnegligible heterogeneity when
trying to meta-analyse them.

In summary, we selected 14 published candidates
and summarised their reported performances (Fig. 2b).
The 14 biomarkers include traditional biomarker types
like miRNA, which has been researched in multiple
studies with many samples. It also includes new types
reported on small sample sizes, including IncRNA,
circRNA, and cfRNA fragments (1 srpRNA fragment
and 1 tsRNA).

Candidate biomarkers derived from total cfRNA-
seq datasets of HCC
In the second part of the discovery stage, we compre-
hensively analysed total and small cfRNA-seq data
sequenced from 258 samples to study types of cfRNA
that were not picked out in the systematic review. From
total cfRNA-seq data, we selected 3 differentially
expressed mRNAs (Fig. 1b). We also thoroughly
explored the biomarker potential of dysregulated post-
transcriptional events in total cfRNA-seq. For alterna-
tive splicing and alternative polyadenylation, by applying
cut-offs (Fig. 1b), we selected 1 and 2 candidates,
respectively. For chimeric RNA analysis, after applying
cut-offs on 107 differentially expressed chimeric RNAs,
13 chimeric RNAs were selected and went to primer
design. However, no chimeric RNA candidates with
specific primers could be verified by RT-qPCR and
Sanger’s sequencing, and they were aborted.

In total, we selected 3 mRNAs and 3 post-
transcriptional events from the total cfRNA-seq data
(Supplementary Figure S2).

cfRNA domain systematically describes cfRNA
fragments captured in small cfRNA-seq datasets
We used c¢fRNA domain to describe the cfRNA frag-
ments captured by small cfRNA-seq datasets. A cfRNA
domain is identified as a small peak (>10 nt) enriched
with small RNA reads inside a long (>50 nt) RNA
(Fig. 3a-b). cfRNA domains exist in various types of
RNAs and are mainly enriched in mRNAs and IncRNAs
(Supplementary Figure S3). Remarkably, we found that
the identified cfRNA domains enhanced classification
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Fig. 3: The cfRNA domain systematically depicted cfRNA fragments captured by small cfRNA-seq. (a) The cfRNA domain defined by
statistics (i.e., minimal read coverage, peak length, local maximum and its half value, and recurrence among samples). (b) Examples of an exon
of a long cfRNA with no ¢fRNA domain and a ¢fRNA domain within a long cfRNA visualised by IGV. (c) FDR and AUC for the differentially
expressed cfRNA domains and their full-length host transcripts (HCC vs. HD). The expression level was calculated from the small cfRNA-seq data
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semicircles in the “Structure” column mean paired bases, and the y axis of the logos are “bits.”
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ability of their corresponding fullllength transcripts
(Fig. 3c). This improvement highlights the necessity of
analysing cfRNA domains, which digs out the
biomarker potential of those long RNAs insignificantly
expressed when using the traditional full-length analysis
strategy.

We further explored the underlying Dbiological
mechanisms of ¢fRNA domains and found that they
tend to be structured and associated with RNA-binding
proteins (RBPs). cfRNA domains were significantly
more structured than the background (mean estimates
with 95% CI in the domain group: 0.18 (0.17, 0.20); the
background: 0.21 (0.19, 0.23), Fig. 3d), and the propor-
tion of cfRNA domains bound by at least one RBP was
higher than that found in the background for all types of
RNAs (Fig. 3e).

Finally, using small cfRNA-seq data, we selected the
3 best-performing cfRNA domains as candidates for
further verification. All 3 candidates were predicted to
bind proteins, and WDR74 has a predicted secondary
structure (Fig. 3f). These traits may contribute to the
stability of the candidates in blood.

cfRNA biomarkers in the verification stage

In an independent verification cohort, we verified the
above 23 candidate biomarkers selected from the sys-
tematic review and NGS data by RT-qPCR (Fig. 4a). 1
out 4 miRNAs, 3 out of 5 cfRNA fragments, 1 out of 8
IncRNAs, neither the tsSRNA nor mRNAs, and 1 alter-
native splicing event were significantly differentially
expressed in HCC and HD (Wilcoxon rank-sum test, P-
value <0.05. Fig. 4b—c). We also aborted all 2 reported
circRNAs and a IncRNA (XK) selected from the litera-
ture because their Ct values fell out of our quality con-
trol range too often, meaning their amount was low
(Supplementary Figure S4). Therefore, we deduce that
some types of cfRNA biomarkers like circRNA, mRNA,
and IncRNA may not be as robust as believed.

Next, we added ~10 chronic hepatitis B (CHB) pa-
tients and ~10 cirrhosis (LC) patients for the significant
markers. miR-21-5p and SNORD89 could distinguish
HCC from LC; RN7SL1 and WDR74 could distinguish
HCC from CHB (Fig. 4b—c). Finally, 1 IncRNA
(CYTOR), 1 miRNA (miR-21-5p), 3 cfRNA fragments
(WDR74, SNORDS89, RN7SL1), and 1 alternative
splicing candidate (GGA2) were selected into the vali-
dation stage. Half of the final 6 ¢fRNA markers belong
to cfRNA fragments, indicating the importance of this
type. All of these 6 selected markers have been reported
to participate in tumour proliferation and metastasis
(Supplementary Table S8).

Algorithm development and independent
validation revealed HCCMDP as an effective panel
We chose the selected 6 cfRNAs and AFP to train a
panel HCCMDP (HCC molecular detection panel) on
the algorithm development cohort (n = 287) based on

random forest. We used 500-times bootstrap to estimate
AUC in order to assess the panel’s performance. In the
algorithm development, HCCMDP can discriminate all-
stage HCC from all control groups at a mean AUC of
0.860, the CHB group at a mean AUC of 0.832, and LC
group at a mean AUC of 0.819. The mean AUC values
on early-stage HCC are 0.846 for all controls, 0.816 for
CHB, and 0.801 for LC (Fig. 5a). HCCMDP demon-
strated better performances than AFP both in differen-
tiating HCC from all controls and high-risk populations
(Fig. 5a, Supplementary Figure S5a. Brier scores and
model calibration are reported in Supplementary
Figure S5b and ).

We further externally validated the panel in an in-
dependent validation cohort (n = 171). HCCMDP
remained good in distinguishing HCC and early-stage
HCC from high-risk populations (HCC vs. CHB:
AUC = 0.909 (95% CI [0.855, 0.963]); HCC vs. LC
AUC = 0.916 (95% CI [0.863, 0.969]); early-stage HCC
vs. CHB: AUC = 0.917 (95% CI [0.854, 0.980]); early-
stage HCC vs. LC: AUC = 0.928 (95% CI [0.869,
0.987])) (Fig. 5b—c). Compared to AFP’s performance,
HCCMDP has a greatly improved sensitivity when
discriminating high-risk populations, especially in
discriminating early-stage HCC patients from them.
Under the classifier probability cut-off of 0.53 optimised
in the algorithm development cohort, HCCMDP ach-
ieved 84% sensitivity and 86% specificity in dis-
tinguishing LC and CHB from early-stage HCC, while
AFP’s sensitivity was 67%. (Other statistics and com-
parisons between HCCMDP and AFP were summarised
in Table 1 and Supplementary Tables S9 and S10). To
rule out potential confounders such as aetiology, we
conducted a sub-analysis of the panel’s performance in
patients with HCC and hepatitis B cirrhosis, patients
with hepatitis B cirrhosis only and CHB patients. The
panel has good capability in distinguishing them
(Supplementary Table S11).

To evaluate the biomarker value of c(fRNA fragments,
we trained another random forest model for the 3
cfRNA fragment combination. The model was built on
the algorithm development cohort and validated in the
independent validation cohort. The 3 cfRNA fragment
combination alone can predict AFP-positive patients at
100% sensitivity and detect AFP-negative HCC patients
at 58.3% sensitivity (Supplementary Table S10),
demonstrating their complementary role to AFP in
detecting HCC.

Discussion

Our work differs from previous cfRNA biomarker
studies that only focused on 1 or several limited RNA
types like IncRNA or miRNA. Our work combines sys-
tematic review with NGS data analysis, which reduces
the limitation of many previous studies using only one
cfRNA-seq dataset to produce panels. As the sample
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Fig. 4: Performance of selected candidate biomarkers in the verification cohort. (a) The process of candidate selection in the verification
stage. Candidates were allocated to different RT-qPCR strategies according to their lengths. (b) Validation of RNA candidates, each on about 30
HCC, 30 HD, 10 CHB, and 10 LC by short RNA RT-qPCR (normalised by miR-16). Candidates that could not be detected in multiple samples or
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nificant; HCC: liver cancer patients; HD: healthy donors; CHB: chronic hepatitis B patients; LC: liver cirrhosis patients. (c) Validation of long RNA
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detected in multiple samples or had P-values >0.2 under Wilcoxon rank-sum test in distinguishing HCC and HD at about 15 HCC vs. 15 HD were
aborted early. The results of XK (a IncRNA) and 2 circRNAs are shown in Supplementary Figure S4.

sizes of cfRNA-seq datasets are usually not large enough
to represent the population, this practice would cause
poor generalization ability. This problem has been

reflected in those candidates that are reported to have
good performances but failed to be validated in our
verification stage.
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Fig. 5: Performances of the HCCMDP in algorithm development and independent validation cohorts. (a) AUC distributions (displayed in
boxplots) of HCCMDP in detecting HCC or early-stage HCC from all controls, CHB and LC from 500-times bootstrap in the algorithm devel-
opment cohort. HCCMDP: Hepatocellular Carcinoma Molecular Detection Panel. (b) Comparisons of the receiver-operating characteristic curves
between HCCMDP and AFP in discriminating HCC from all controls, CHB, and LC in the independent validation cohort. (c) Comparisons of the
receiver-operating characteristic curves between HCCMDP and AFP in discriminating early-stage (Barcelona Clinic Liver Cancer (BCLC) stages 0/
A) HCC from all controls, CHB, and LC in the independent validation cohort.
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HCCMDP AFP
CHB + LC CHB LC CHB + LC CHB LC
HCC vs
Sensitivity, % (95% Cl) 82 (73-91) 82 (73-91) 83 (74-91) 65 (52-75) 65 (52-74) 65 (54-75)
Specificity, % (95% Cl) 86 (76-93) 85 (75-95) 86 (72-97) 80 (70-89) 73 (58-85) 92 (79-100)
Early-stage HCC vs
Sensitivity, % (95% Cl) 84 (71-97) 84 (71-97) 87 (74-97) 67 (50-83) 67 (50-83) 67 (50-83)
Specificity, % (95% Cl) 86 (78-92) 85 (73-95) 86 (75-97) 80 (69-89) 73 (60-85) 92 (79-100)
AFP, a-fetoprotein; Early stages, Barcelona Clinic Liver Cancer stage 0/A; Cl, Confidence interval.
Table 1: HCCMDP’s performances in distinguishing HCC from high-risk groups in the independent validation cohort.

Here, we proposed the cfRNA domain to systemati-
cally describe cfRNA fragments captured in small
cfRNA datasets. Together with previous findings,'”"
our work shows the prevalence and abundance of this
fragmented pattern of long RNAs in a cell-free envi-
ronment. RNA fragments have been reported to have an
important role in regulating cell viability, differentiation,
and homeostasis through multiple mechanisms in
cancer.”” For example, exosomal RN7SL1’'s RBP-
shielded region was reported to participate in
enhancing tumour growth, metastasis, and therapy
resistance.” In the extracellular space, EV was reported
to selectively carry RNA fragments to regulate immune
activation.* Therefore, the significant difference in the
abundance of RNA fragments between HCC and HD
patients may reflect their possible biological functions in
tumours. Also, according to our analysis, cfRNA do-
mains tend to have RNA binding proteins and second-
ary structures, which may enhance their stability in the
blood. These factors above may be related to the finding
that cfRNA fragments perform better in distinguishing
HCC from non-HCC as compared to their parent
cfRNAs. Furthermore, the cfRNA domain is constructed
on small RNA seq data, the most prevalent library type
in public RNA-seq datasets. Therefore, the cfRNA
domain can be applied to other small RNA seq data to
study cfRNA fragments in other diseases.

Compared with other biomarker-based tests like
AFP,” AFP-L3, and GALAD score,’ our panel demon-
strated good sensitivity (82%) and specificity (86%) in
HCC detection from high-risk populations, especially
superior in early-stage HCC detection (sensi-
tivity = 84%, specificity = 86%). Our panel combined the
traditional protein marker with cfRNA markers,
including an RNA alternative splicing event, which may
enhance the robustness of the panel when facing the
heterogeneity of patients in large cohorts. Another
advantage of our panel is gaining accuracy while keep-
ing low cost. Compared to other high-profile
methods,** the cost of the RT-qPCR-based HCCMDP
($30-$50) is significantly cheaper and faster in giving
results. This may help our panel fit into broader clinical
application scenarios.

We used 400 ng/mL as the cutoff for AFP in our
study mainly because the study cohorts are all Chinese
and we used the cutoff recommended in the HCC
guidelines in China.” Compared to the AASLD recom-
mendation of 20 ng/mL,” the 400 ng/mL threshold has
a higher specificity and AUC,® which is critical
considering the large base of Chinese people at risk of
liver cancer.

Several limitations exist in our study. We used all
existing public cfRNA-seq datasets of HCC in GEO, but
the total number of samples is still insufficient for
calculating robust markers. The systematic review can
compensate for this shortage to a certain degree.
However, some eligible studies might have been
missed despite the fact that we did thorough searches in
the databases. Due to the low-throughput nature of RT-
qPCR and insufficient number and blood sample vol-
ume from patients, especially in the verification cohort,
the number of candidates we can validate by RT-qPCR
is limited. Some candidates with good classification
ability who do not fit our selection criteria may be
missed. The SYBR Green approach is less expensive;
however, some specific RNAs may be missed because of
limitations in its sensitivity and specificity. Also, the
samples in the independent validation cohort, especially
the early-stage HCC patients, are limited, which causes
relatively wide confidence intervals and may deviate our
estimation of the performance of the panel. Limitations
exist in our choice of control cohorts, in which we
included the most prevalent etiologies that progress into
HCC in China but did not include other liver diseases
that can also move into HCC. As our study is retro-
spective, further large cohort validation in a prospective
setting is required.

In conclusion, combining the systematic review and
comprehensive analysis of cfRNA-seq, we identified
cfRNA Dbiomarkers of full-spectrum, revealed the
biomarker potential of cfRNA fragments, and validated
them on multicentre cohorts to develop and validate
HCCMDP for HCC detection. Our work highlights the
biomarker value of cfRNA fragments in plasma, delivers
a promising panel, and offers guidance for biomarker
selection in larger prospective cohorts.
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