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ABSTRACT

Background and Objectives: Heart failure is characterized by alterations of gene expression 
that provide insight into the underlying pathophysiologic mechanisms. However, obesity-re-
lated high output heart failure (HOHF) is a specific phenotype of heart failure that has not been 
studied using gene expression. Our aim in this study was to examine the variances in leukocyte 
transcriptomes of morbidly obese patients with HOHF.
Methods: In this cross-sectional study, we applied stranded total RNA-sequencing to six pa-
tients with morbid obesity and HOHF and 6 patients with morbid obesity and non-HOHF. Dif-
ferential gene expression was calculated, and Ingenuity Pathway Analysis software was used to 
interpret the canonical pathways, functional changes, upstream regulators, and networks in 
these patients.
Results: We found in patients with HOHF that there were 116 differentially expressed genes 
with upregulation of 114 genes and downregulation of 2 genes. The differentially expressed 
genes were involved with cell proliferation, mitochondrial function, erythropoiesis, erythrocyte 
stability, and apoptosis. The top upregulated canonical pathways associated with differentially 
expressed genes were autophagy, adenosine monophosphate-activated protein kinase signal-
ing, and senescence pathways. We identified GATA binding protein 1 as an upstream regulator 
and nuclear factor kappa-light-chain-enhancer of activated B cells associated network.
Conclusions: We are the first to report the differential gene expression in patients with obesi-
ty-related HOHF and reveal the various pathophysiologic mechanisms underlying the disease. 
Further research is needed to determine the role of cellular function and maintenance, inflam-
mation, and iron homeostasis in obesity-related HOHF.

Keywords: Obesity; Heart failure; Genomics; Cardiac output, high

Int J Heart Fail. 2023 Oct;5(4):201-212
https://doi.org/10.36628/ijhf.2023.0027
pISSN 2636-154X·eISSN 2636-1558

Original Article

Received: May 17, 2023
Revised: Aug 2, 2023
Accepted: Aug 17, 2023
Published online: Sep 5, 2023

Correspondence to
Samantha A. Cintron, PhD, RN
School of Nursing, University of Kansas Medi-
cal Center, Mail Stop 4043, 3901 Rainbow Blvd, 
Kansas City, KS 66160, USA.
Email: sjohnson18@kumc.edu

Copyright © 2023. Korean Society of Heart 
Failure
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0) 
which permits unrestricted noncommercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

Samantha A. Cintron , PhD, RN1, Janet Pierce , PhD, APRN, CCRN, FAAN1, 
Mihaela E. Sardiu , PhD2, Diane Mahoney , PhD, DNP, FNP-BC, WHNP-BC1,  
Jill Peltzer , PhD, APRN-CNS1, Bhanu Gupta , MD, MSc3, and  
Qiuhua Shen , PhD, APRN1

1School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
2Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
3Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, USA

Differences in Leukocyte 
Transcriptomes of Morbidly Obese 
Patients With High Output Heart 
Failure: A Pilot Study

http://crossmark.crossref.org/dialog/?doi=10.36628/ijhf.2023.0027&domain=pdf&date_stamp=2023-09-05
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0002-8120-9687
https://orcid.org/0000-0001-7100-7865
https://orcid.org/0000-0002-3987-7569
https://orcid.org/0000-0002-9346-0828
https://orcid.org/0000-0002-8529-5172
https://orcid.org/0000-0001-5113-6707
https://orcid.org/0000-0002-1236-0244


INTRODUCTION

Heart failure (HF) is a complex pathophysiologic state that pres-
ents with different phenotypes.1) While HF is usually associated 
with a cardiac structural or functional abnormality that results in 
a low cardiac output (CO; <5 L/min), a less common phenotype 
of HF is high output heart failure (HOHF).1,2) In HOHF, patients 
experience symptoms of HF because the metabolic demands of 
the body are not being met despite maintaining high CO (≥8 L/
min) or cardiac index (CI; > 3.9 L/min/m2). Obesity is a common 
cause of HOHF and patients with obesity-related HOHF are often 
undiagnosed or misclassified as heart failure with preserved 
ejection fraction (HFpEF) based on left ventricular ejection frac-
tion (LVEF) >50% because the CO and CI are not always available 
to differentiate HOHF from HFpEF. In clinical practice, LVEF is 
a universally known variable index used to classify patients with 
HF that is easily estimated by imaging techniques, mainly echo-
cardiography. Invasive hemodynamic assessment is required to 
diagnose HOHF which is not routinely performed in the HF pa-
tient population.1,2)

Obesity is a significant underlying disease that accounts for 
HOHF. Morbid obesity is used to describe individuals with a 
body mass index (BMI) of 40 kg/m2 or greater or a BMI of 35 kg/
m2 or greater with obesity-related health conditions.3) Obesity 
can be classified as a primary disease because the adipocyte hy-
pertrophy alters the secretion of hormones that can lead to the 
dysregulation of metabolic pathways and results in a pro-inflam-
matory status. The hormones produced by adipocytes are called 
adipokines and dysregulation of adipokines contributes to devel-
opment of cardiovascular disease.4)

Circulating leukocytes have been proposed as a potential source 
of HF biomarkers since they can be obtained in a minimally in-
vasive manner.5,6) In addition, leukocytes contain various cell 
organelles and RNA is synthesized in the leukocyte.6) Sensitive 
to the metabolic and biochemical environment, circulating leu-
kocytes interact with organs and thus, gene expression chang-
es in leukocytes could be reflective of a diseased organ.6,7) Of 
the 12,440 genes expressed in the myocardium, 84.2% of those 
genes are also expressed in the blood.7) Current knowledge of 
the role of leukocytes in systemic inflammation associated with 
comorbidities, inflammation associated with HF initiation and 
progression, and left ventricular remodeling supports the con-
cept that leukocyte transcriptome alterations help inform about 
heart function status and disease progression.6) High-through-
put RNA sequencing (RNA-seq) provides the instrumentation 
for investigators to discover the differential gene expression and 
determine the molecular dysregulation that causes obesity-relat-

ed HOHF. Therefore, we investigated the differences in leukocyte 
transcriptomes of morbidly obese patients with HOHF and those 
with non-HOHF using RNA-seq. We then utilized Ingenuity 
Pathway Analysis (IPA) software to identify the canonical path-
ways, functional changes, upstream regulators, and mechanistic 
and causal networks associated with the significantly different 
leukocyte transcriptomes.

METHODS

For detailed methods, see expanded methods in the Supplemen-
tary Data 1.

Study population
The study was approved by the Institutional Review Board at the 
University of Kansas Medical Center (KUMC). This study was per-
formed in line with the principles of the Declaration of Helsinki. 
Written informed consent was obtained from all participants.

A total of 12 patients with morbid obesity and HF were recruited 
in the study: six patients with HOHF (CO ≥8 L/min or CI >3.9 L/
min/m2) and six patients with non-HOHF (CO <8 L/min and CI 
≤3.9 L/min/m2). Patients over the age of 18 were eligible for inclu-
sion in the study. They had a BMI ≥30 kg/m2, diagnosis or signs 
and symptoms of HF, left ventricular ejection fraction ≥45%, 
scheduled or recent (within the last 12 months) right heart cathe-
terization, and were English speaking. Exclusion criteria included 
severe systemic illness with life expectancy less than 2 years; an 
alternative identifying cause of HOHF other than obesity (e.g., 
pregnancy, severe anemia, thyrotoxicosis, liver failure, chronic 
lung disease, and arteriovenous malformations); atrial fibrilla-
tion (heart rate >90 beats per minute); myocardial infarction, cor-
onary artery bypass graft surgery, or cerebrovascular accident in 
the last 90 days; percutaneous coronary intervention in the past 
30 days; heart transplant; left ventricular assist device; orthostatic 
hypotension; constrictive pericarditis; and cardiomyopathies.

Patients were screened for eligibility prior to a scheduled appoint-
ment. After obtaining written informed consent, a blood sample 
(8 mL) was collected in a heparinized green-top tube from the pa-
tients. Additionally, basic demographic data (age, birth sex, race, 
and ethnicity) and clinical data were collected from the electron-
ic medical record (EMR). Measures of CO and CI using the Fick 
principle were recorded during a right heart catheterization for 
comparison between the groups and to verify high output status. 
A one-time incentive of $25 was provided to the patient in the 
form of ClinCard after completing all study requirements.
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RNA-extraction, library preparation, and sequencing
The blood sample was immediately sent to the KUMC Biomarker 
Core for isolation of leukocytes the same day as the blood draw 
and stored at −80oC until all samples were collected. Invitro-
gen’s TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA, 
USA) was used to isolate total RNA per manufacturer’s protocol. 
Immediately after isolation, all RNA samples were transported 
on dry ice to the KUMC Genomics Core for RNA-sequencing. 
Stranded total RNA-seq was performed.

Statistical analysis and bioinformatics
Descriptive statistics for all demographic and clinical variables 
were calculated using IBM SPSS Statistics (version 27.0; IBM 
Corp., Armonk, NY, USA). χ2 tests and Mann Whitney U test were 
used to identify group differences in demographic and clinical 
characteristics. Sequence data generated by the Illumina NovaSeq 
6000 was processed by Real Time Analysis software and deposit-
ed on the iCompute Server. Sequence data were converted from 
the .bcl file format to fastQ files and de-multiplexed into individ-
ual sequences for downstream analysis. The RNA-seq data were 
checked for quality using the FastQC method. All samples passed 
the quality check and were aligned and quantified to human 
genome using bowtie2 and RSEM libraries. Transcript quantifi-
cation data were analyzed to find reads per kilobase per million 
mapped reads values and a gene count matrix was developed.

The gene count matrix was analyzed using empirical analysis of 
digital gene expression data in R (edgeR).8) The data were filtered 
to remove genes which did not occur frequently enough for anal-
ysis. Next the data were normalized by finding a set of scaling 
factors that minimizes the log-fold changes between the samples 
for most genes. Common and tagwise dispersions were estimat-
ed using the quantile-adjusted conditional maximum likelihood 
(qCML) method. Next, the exact test in edgeR was used to deter-
mine differential expression. A Benjamini-Hochberg adjusted p 
value of ≤0.05 and a log2(fold-change) of ±1 were used to deter-
mine if genes were differentially expressed. Lastly, differentially 
expressed genes (DEGs) were visualized in a heatmap.9)

There were four major IPA core analyses that assisted with the 
analysis, integration, and understanding of gene expression 
data: 1) Canonical Pathway Analysis, 2) Disease and Function 
Analysis, 3) Upstream Regulator Analysis, and 4) Networks Anal-
ysis.10) Fisher’s exact test was used in all IPA core analyses and 
determined the p value of overlap. The z-score was used to de-
termine activation or inhibition of a molecule or pathway and a 
z-score of 0 indicated that the two groups had similar levels of 
the molecule or pathway.

RESULTS

Characteristics of the sample
Demographic and clinical data of patients who participated in the 
study are displayed in Table 1. The median age was 61 years old 
(range, 39–79) for subjects in the HOHF group and 73.5 years old 
(range, 58–86) for those with non-HOHF. The HOHF group had 
a higher percentage of males (66%) than the non-HOHF group 
(50%). The subjects in the non-HOHF group identified primar-
ily as White (n=5, 83.33%) while 50% of the HOHF group (n=3) 
selected “Other” for race and identified as Hispanic or Latino for 
ethnicity. All the subjects in the non-HOHF group identified as 
not Hispanic or Latino. The BMIs of the HOHF group and non-
HOHF group were 39.97 kg/m2 (range, 30.10–80.18) and 38.19 
kg/m2 (range, 35.15–43.58), respectively. As expected, subjects in 
the HOHF group had a significantly greater CO (9.45 L/min) and 
CI (4.65 L/min/m2) than subjects in the non-HOHF group (CO, 
6.61 L/min; CI, 2.83 L/min/m2; p<0.05), respectively. The HOHF 
had significantly greater left ventricular end-diastolic diameter 
(LVEDD; 5.49 cm) and left ventricular mass index (LVMI; 122.5 g/
m2) compared to the non-HOHF group (LVEDD, 4.73 cm; LVMI, 
80.59 g/m2).

Differences in leukocyte transcriptomes
A total of 116 DEGs were observed in the HOHF group compared 
to the non-HOHF group of which 114 were upregulated and 2 
were downregulated. The full list of DEGs is provided as supple-
mentary material (Supplementary Table 1). Figure 1 illustrates 
the clustering of DEGs in a heatmap. An empirical percentile 
transformation was used, and the rank values of each gene were 
obtained and then divided by the maximal rank.

IPA of DEGs
The DEGs had significant overlap (p<0.05) with thirty canonical 
pathways (Supplementary Table 2). Of the pathways with signif-
icant overlap, only four had a positive z-score when comparing 
the HOHF group to the non-HOHF group (Figure 2). The four ca-
nonical pathways that were predicted to be activated in the HOHF 
group were: 1) sirtuin signaling pathway (z-score=2.000), 2) ade-
nosine monophosphate-activated protein kinase (AMPK) signal-
ing (z-score=1.000), 3) senescence pathway (z-score=0.816), and 
4) autophagy (z-score=0.816). Three additional pathways were 
identified as being activated (Coordinated Lysosomal Expression 
and Regulation [CLEAR] signaling pathway [z-score=1.000]) 
or inhibited (pulmonary fibrosis idiopathic signaling path-
way [z-score=−1.000] and g-protein coupled receptor signaling 
[z-score=−1.000]) but were not statistically significant (Supple-
mentary Table 3). Although, these pathways could have potential 
clinical significance and benefit from additional research using a 
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larger sample size. Figure 3 displays the sirtuin signaling path-
way that had the highest activation. All other canonical pathways 
had a z-score of zero or there are no current data on the activity 
pattern available in the literature.

Functions analysis associates biological functions and diseases 
to the study findings. The top 10 diseases and biological func-
tions are displayed in Figure 4A. Toxicity Lists and Toxicity Func-
tions were used to link study data to clinical pathology endpoints 
to understand the molecules that are known to be involved in a 
particular type of toxicity. Ten significant Toxicity Functions that 
overlap with DEGs are displayed in Figure 4B. A summary of 
functions analysis is presented in the Supplementary Tables 4  
and 5.

Upstream analysis identified molecules that may have caused the 
expression changes between groups through a direct relation-
ship. The top 5 upstream regulators found in this study are listed 
in Table 2 (Supplementary Table 6 for all upstream regulators). 
The activated top molecule was GATA1 which is known as a tran-
scription factor. Figure 5 displays all the molecules that GATA1 
regulates.

The network analysis function identifies how molecules might 
work together by connecting focus molecules. Eight networks 

were identified in the analysis and are listed in the Supplemen-
tary Table 7. Figure 6 displays the molecules with predicted re-
lationships in the highest scoring network with nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) complex 
as the focus molecule. This full network included 25 genes that 
were upregulated and one gene that was downregulated (Supple-
mentary Figure 1).

DISCUSSION

In this study, we assessed the differences in the leukocyte tran-
scriptomes of morbidly obese patients with HOHF and those 
with non-HOHF using RNA-seq. The abundance of leukocytes 
provides the opportunity to investigate the various mechanisms 
involved in obesity-related HOHF. While there were interesting 
differences in the characteristics of the study sample, the sample 
size was too small to make inferences about the two groups. Al-
though, the increased CO, CI, LVEDD, and LVMI in the HOHF 
group were representative of the condition. We found that 116 
genes in the HOHF group were significantly different from those 
in non-HOHF group. There were 114 upregulated DEGs and two 
downregulated DEGs (p<0.05). The disproportionate number 
of upregulated genes compared to downregulated genes in the 
HOHF group was an interesting finding that warrants further in-
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Table 1. Characteristics of the study sample
Characteristics Non-HOHF (n=6) HOHF (n=6) p value All (n=12)
Age (years) Median (range) 73.50 (58–86) 61 (39–79) 0.180† 67.50 (39–86)
Birth sex 0.117‡

Male No. (%) 3 (50.00%) 4 (66.67%) 7 (58.33%)
Female No. (%) 3 (50.00%) 2 (33.33%) 5 (41.67%)

Race 0.117‡

Black or African American No. (%) 1 (16.67%) 1 (16.67%) 2 (16.67%)
White No. (%) 5 (83.33%) 2 (33.33%) 7 (58.33%)
Other No. (%) 0 (0.00%) 3 (50.00%) 3 (25.00%)

Ethnicity 0.046*,‡

Hispanic or Latino No. (%) 0 (0.00%) 3 (50.00%) 3 (25.00%)
Not Hispanic or Latino No. (%) 6 (100.00%) 3 (50.00%) 9 (75.00%)

Height (cm) Median (range) 170.15 (157.5–185.4) 171.45 (152.4–186.7) 0.699† 170.15 (152.4–186.7)
Weight (kg) Median (range) 115.8 (96–166.3) 124.06 (79.38–218.54) 0.818† 115.8 (79.38–218.54)
BMI (kg/m2) Median (range) 38.19 (35.15–43.58) 39.97 (30.10–80.18) 0.818† 39.21 (30.10–80.18)
Cardiac output (L/min) Median (range) 6.61 (2.38–7.06) 9.45 (8.10–13.76) 0.002*,† 7.58 (2.38–13.76)
Cardiac index (L/min/m2) Median (range) 2.83 (1.73–3.54) 4.65 (2.9–5.4) 0.026*,† 3.09 (1.73–5.4)
BNP Median (range) 204.50 (145–247) 262 (138–424) 0.413† 233 (138–424)
Left ventricular

Ejection fraction (%) Median (range) 55 (45–60) 61 (55–65) 0.065† 58.5 (45–65)
End diastolic diameter (cm) Median (range) 4.73 (4.19–5.3) 5.49 (4.6–6.15) 0.041*,† 4.87 (4.19–6.15)
End systolic diameter (cm) Median (range) 3.04 (2.81–3.70) 3.28 (3.04–4.38) 0.310† 3.17 (2.81–4.38)
End systolic volume index (mL/m2) Median (range) 21.5 (15.16–25) 24.5 (19–45) 0.180† 23 (15.16–45)
End diastolic volume index (mL/m2) Median (range) 52.49 (33.79–69.00) 68.5 (41–107) 0.132† 57.44 (33.79–107.00)
Mass index (g/m2) Median (range) 80.59 (78.00–116.17) 122.5 (81–162) 0.041*,† 101 (78–162)

HOHF = high output heart failure; BMI = body mass index; BNP = B-type natriuretic peptide.
*Statistically significant (p<0.05), †Mann-Whitney U test; ‡χ2 test.



vestigation in a larger scale study. Possible explanations for the 
high number of upregulated genes include expression changes 
due to nutrient depletion from fasting11) or sample processing 
delays.12) Additionally using IPA, we identified the canonical 
pathways, functional changes, upstream regulator changes, and 
the mechanistic and causal networks associated with the differ-
ential gene expression.

In our analysis, the most significantly upregulated gene was RAP-
1GAP, a gene that has been found to express in rat cardiomyocyte 
hypertrophy and mediates angiotensin II-induced cardiomyocyte 
hypertrophy through its regulation of autophagy and oxidative 
stress.13) This could be a potential therapeutic target for obesi-

ty-related HOHF in humans as treatment with an autophagy ago-
nist and knockdown of the gene by small interfering RNA.13) The 
second most differentiated gene was CA1, which is a gene that 
codes for a protein important in respiratory function, fluid secre-
tion, and maintenance of cellular acid-base homeostasis.

The third most differentiated gene was ALAS2, an isoenzyme that 
catalyzes the precursor for heme synthesis. Overexpression of 
ALAS2 is associated with muscle atrophy and mitochondrial dys-
function.14) Fourth, AHSP acts as a scavenger protein and binds 
to free alpha hemoglobin and prevents aggregation and precip-
itation that results in the generation of reactive oxygen species. 
The fifth differentiated gene, SLC25A39, has been identified as a 
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Figure 1. Heat map of differentially expressed genes between the HOHF and non-HOHF groups using empirical percentile transformation. 
HOHF = high-output heart failure.



mitochondrial glutathione transporter, significant in the heme 
and iron homeostasis as well as mitochondrial antioxidant re-
sponse and is rapidly upregulated in response to hypoxia.15)

The canonical pathway analysis predicted the pathways that 
changed based on DEGs in the HOHF group compared to the 
non-HOHF group. In this study, the top canonical pathway was 
the autophagy pathway. The autophagy pathway is important for 
cardiac structure and function as it removes toxic proteins and 
damaged organelles.16) Autophagy is an essential step in the re-
verse remodeling found during the regression of hypertrophy 
and increased levels of autophagosomes were positively correlat-
ed with better prognosis in patients with dilated cardiomyopa-
thy.17) Although, multiple studies have posited that overactive or 
dysregulated autophagy may be associated with decompensated 
HF.18,19) The increased activation of the autophagy pathway in the 
HOHF group could either demonstrate the compensatory mech-
anism that may decline as HF progresses or dysregulated auto-
phagy. Autophagy has been shown to be regulated by the AMPK 
signaling pathway,20) the second upregulated canonical pathway.

The AMPK signaling helps maintain cellular energy homeostasis 
by restoring energy balance and adjusting cellular metabolism.21) 
In an animal study that induced HF by pressure overload, it was 
found that AMPK activation significantly blocked further devel-
opment of HF and helped restore cardiac function.20) The senes-
cence pathway was the third pathway that was activated in the 
HOHF group compared to the non-HOHF group. The senescence 
pathway results in a permanent cell cycle arrest and can lead to 
increased inflammation.22) The senescence pathway has been im-
plicated in many inflammatory diseases and age-related pathol-
ogies.23) Santos-Otte and colleagues23) posited that improvement 

in cell signaling by G-protein-coupled receptors could be used as 
a potential platform to control cellular senescence. Genetic pro-
files are altered in senescent cells and these cells secrete pro-in-
flammatory molecules inducing HF.24) Studies testing therapies 
targeting suppression or elimination of senescent cells could 
reduce the progression of cardiac disease particularly HF.

In this study, the sirtuin signaling pathway had the highest level 
of activation. Sirtuins are a class of proteins that have been im-
plicated in energy metabolism, stress response, cell survival, and 
malignancy.25) There are seven sirtuins distributed in different 
locations of the cell including the nucleus, cytoplasm, mito-
chondria, and nucleolus.25) Among the sirtuin family proteins, 
sirtuin 1 (SIRT1) regulates mitochondrial function by deacetylat-
ing nuclear proteins, whereas sirtuin 3 does so by deacetylating 
mitochondrial proteins.26) Figure 3 is a partial illustration of the 
molecules in the sirtuin signaling pathway and their predicted 
expression in the cytoplasm, nucleus, and mitochondria based 
on the DEGs from this study. The predicted activation of pro-
tein kinase AMP-activated α catalytic subunit (PRKAA; orange 
inverted triangle in the cytoplasm) triggers numerous pathways 
that are related to cardiac hypertrophy. PRKAA is responsible for 
regulating the recycling of damaged mitochondria through au-
tophagy helping to regulate mitochondrial biogenesis, function, 
and turnover.27) Accumulating evidence suggests that mitochon-
drial dysfunction plays an important role in the development of 
cardiac hypertrophy.28) The inhibition of SIRT1 (blue diamond in 
the nucleus) was worth noting because it led to further activation 
and inhibition of multiple transcription regulators, enzymes, 
transporters, and other molecules, contributing to predicted ac-
tivation of apoptosis and predicted inhibition of oxidative stress. 
Therefore, it appears that the sirtuin pathway is dysregulated. 
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HOHF = high output heart failure; AMPK = adenosine monophosphate-activated protein kinase; CLEAR = Coordinated Lysosomal Expression and Regulation.



The PRKAA is activated and SIRT1 is inhibited in the HOHF 
group and could result in impaired mitochondrial energy me-
tabolism and stress response. This is an interesting area of focus 
as PRKAA helps regulate mitochondrial function and SIRT1 has 
been shown to have protective roles against cardiovascular dis-
ease.29) All molecules involved in the sirtuin signaling pathway 
are included in Supplementary Figure 2.

Three of the canonical pathways that were activated in the HOHF 
group compared to the non-HOHF group suggest an increased 

ability to maintain a cellular homeostasis through removal of 
damaged organelles, adjusting cellular metabolism, promoting 
healthy metabolic function, and improving cell survival. The 
sirtuin signaling pathway and autophagy pathways are good can-
didates for future research to determine if their activation is a 
form of dysregulation that exacerbates disease. The senescence 
pathway should also be further examined to identify the role of 
the senescence-associated secretory phenotype in HOHF.

The functions analysis supported the findings of the DEGs by 
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PRKAA = protein kinase AMP-activated α catalytic subunit; SIRT = sirtuin.



associating the study findings to diseases such as organismal 
injury and abnormalities, cellular function and maintenance, 
cardiovascular disease, and cell death and survival. The toxicity 
functions were related to levels of hematocrit, cardiac necrosis 
and proliferation, renal necrosis, and liver necrosis. As these are 
potential downstream clinical endpoints for the DEGs, they also 
could be diseases to monitor for obesity-related HOHF. To our 
knowledge, only Reddy and colleagues2) have characterized pa-

tients with obesity-related HOHF, and the comorbidities were 
limited to coronary artery disease and hypertension in their 
single center study. Our findings demonstrate a need to assess 
for a variety of comorbidities in this patient population to better 
understand the disease process and presentation.

The upstream regulator analysis was used to predict molecules 
that may have caused the expression changes between the HOHF 
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Table 2. Top five upstream regulators of differentially expressed genes in peripheral blood leukocytes of obese patients with HOHF compared to those with non-
HOHF
Upstream 
regulator

Molecule type Activation 
z-score

p value of 
overlap

Target molecules in dataset

KLF1 Transcription 
regulator

6.58E-14 AHSP, ALAS2, BSG, DMTN, E2F2, EPB41, EPB42, MPP1, SLC4A1, SPTB

GATA1 Transcription 
regulator

2.849 3.53E-9 AHSP, ALAS2, ANK1, BCL2L1, BLVRB, CA1, DMTN, EPB42, FECH, JAZF1, SLC4A1, SNCA, 
SPTB

HIPK2 Kinase 2.243 4.86E-9 ALAS2, ANK1, BCL2L1, EPB41, FECH, SLC25A37, SLC4A1, SPTB
EPO Cytokine 2.199 5.28E-8 ALAS2, ANK1, BCL2L1, BLVRB, BNIP3L, CA1, FECH, GSPT1, KAT2B, SLC4A1, STRADB, TOP1
ABCB6 Transporter −2.433 7.83E-8 ALAS2, FECH, HAGH, HK1, SLC25A37, SLC25A39
HOHF = high output heart failure; KLF1 = KLF transcription factor 1; AHSP = alpha hemoglobin stabilizing protein; ALAS2 = 5'-aminolevulinate synthase 2; BSG 
= basigin; DMTN = dematin actin binding protein; E2F2 = E2F transcription factor 2; EPB41 = erythrocyte membrane protein band 4.1; EPB42 = erythrocyte 
membrane protein band 4.2; MPP1 = MAGUK P55 scaffold protein 1; SLC4A1 = solute carrier family 4 member 1; SPTB = spectrin beta; GATA1 = GATA binding 
protein 1; ANK1 = ankyrin 1; BCL2L1 = BCL2 like 1; BLVRB = biliverdin reductase B; CA1 = carbonic anhydrase 1; FECH = ferrochelatase; JAZF1 = JAZF zinc finger 
1; SNCA = synuclein alpha; HIPK2 = homeodomain interacting protein kinase 2; SLC25A37 = solute carrier family 25 member 37; SLC25A39 = solute carrier 
family 25 member 39; EPO = erythropoietin; BNIP3L = BCL2 interacting protein 3 like; GSPT1 = G1 to S phase transition 1; KAT2B = lysine acetyltransferase 2B; 
STRADB = STE20 related adaptor beta; TOP1 = DNA topoisomerase I; ABCB6 = ATP binding cassette subfamily B member 6; HAGH = hydroxyacylglutathione 
hydrolase; HK1 = hexokinase 1.



group and non-HOHF group. The upstream regulator with the 
greatest overlap in the study dataset was Kruppel-like factor 1 
(KLF1), a DNA-binding transcriptional regulator essential for 
erythropoiesis.30) KLF1 had been identified to play a significant 
role in cardiomyocyte proliferation in zebrafish and was found to 
coordinate the networks involved in myocardial differential and 
mitochondrial metabolisms.30) The second upstream regulator is 
GATA1, which encodes a protein for a transcription factor im-
portant to erythroid development. The next upstream regulator 
that we identified was homeodomain-interacting protein kinase 
2 (HIPK2), a kinase involved in transcription regulation, cellular 
apoptosis, and regulation of the cell cycle.31) HIPK2 has been de-
scribed as elevated in the myocardium of humans with HF and 
HIKP2 inhibitors have been shown to prevent cardiomyocyte hy-
pertrophy in a preclinical study but their role in obesity-related 
HOHF had not been studied.31) Another upstream regulator was 
erythropoietin, a cytokine that is significantly involved in eryth-
ropoiesis, but it also has displayed immunomodulatory proper-
ties and cardioprotective functions.32) Lastly, the upstream regu-
lator ATP binding cassette subfamily B member 6 (ABCB6) was 
downregulated when comparing the HOHF group to the non-
HOHF group. ABCB6 is a transporter that regulates heme bio-
synthesis by transporting porphyrins from the cytoplasm to the 
mitochondria and is also protective against oxidative stress. In 
this study, the HOHF group expressed genes that are regulated by 
molecules facilitating red blood cell production and regulation 

of the cell cycle, including apoptosis that has been identified to 
have cardioprotective effects. The difference in these upstream 
regulators may provide insight to the unique mechanisms under-
lying obesity-related HOHF.

Ingenuity pathway analysis identifies how molecules work to-
gether at the molecular level using network algorithms. The 
highest scoring network is associated with post-translational 
modification, cell morphology, and cellular function and main-
tenance. The activation of NF-κB complexes at the center of this 
network leads to upregulation of genes encoding for immune 
responses, apoptosis, proliferation, and differentiation.33) NF-κB 
has previously been identified in peripheral leukocytes and car-
diomyocytes in individuals with HF.34) NF-κB signaling is a com-
plex that responds to a large variety of immune receptors and is 
involved in various inflammatory diseases.33) Thus, our findings 
support inflammation in cardiac disease and this is the first study 
to identify genomic markers that differentiate obesity-related 
HOHF from non-HOHF.

There are several limitations to this study. First, the observation-
al nature of this study limited our data collection to a single time 
point that does not allow for comparison and understanding 
of disease progression. The second limitation of the study was 
the small sample size. The sample recruited for this study was 
not representative of all obese individuals with HOHF and non-
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Effect not predicted

Findings inconsistent
with state of downstream
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Figure 5. Upstream regulator, GATA1 and relationships with regulated molecules. Solid lines represent a direct interaction. Dashed lines represent indirect 
interactions. Arrowed lines represent activation, causation, expression, localization, membership, modification, molecular cleavage, phosphorylation, protein-
DNA interactions, protein-TNA interaction, regulation of binding, transcription. Lines ended with “┤” represent inhibition or ubiquitination. Shapes represent 
molecule type (diamond = enzyme; oval = transcription regulator; trapezoid = transporter; circle = other). 
GATA1 = GATA binding protein 1; ALAS2 = 5'-aminolevulinate synthase 2; AHSP = alpha hemoglobin stabilizing protein; ANK1 = ankyrin 1; BCL2L1 = BCL2 like 1; 
BLVRB = biliverdin reductase B; CA1 = carbonic anhydrase 1; DMTN = dematin actin binding protein; EPB42 = erythrocyte membrane protein band 4.2; FECH 
= ferrochelatase; GATA1 = GATA binding protein 1; JAZF1 = JAZF zinc finger 1; SLC25A37 = solute carrier family 25 member 37; SLC4A1 = solute carrier family 4 
member 1; TOP1 = DNA topoisomerase I.



HOHF. Additionally, confounding factors such as social determi-
nants of health should also be further evaluated as contributing 
to this disease. A third limitation was only utilizing leukocytes to 
analyze differential gene expression. While leukocytes have been 
identified as a potential biomarker in HF6) with easy access, uti-
lizing and corroborating the genetic markers in multiple types of 
cells may have been beneficial for analysis and would help identi-
fy cell-specific biomarkers. A fourth limitation of this study was 
only utilizing obese patients with non-HOHF as the compari-
son group. While this was helpful in identifying the differenc-
es between these types of HF, there may be a difference in gene 
expression in obese patients that do not have heart disease or 

non-obese patients with heart disease. A fifth limitation was the 
infrequent occurrence of patients with obesity-related HOHF re-
ceiving planned right heart catheterization. The increased length 
of time for recruitment resulted in samples being stored in the 
freezer for over 6 months, possibly resulting in RNA degradation. 
Due to these limitations, we recommend additional studies be 
conducted to validate DEGs, evaluate our findings in a more di-
verse sample, and assess additional confounding factors.

In conclusion, this study identified key differences in gene ex-
pression in the leukocyte transcriptomes between the obese in-
dividuals with HOHF and non-HOHF. Our findings suggest the 
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Figure 6. Network 1 post-translational modification, cell morphology, cellular function and maintenance. 
ANKRD9 = ankyrin repeat domain 9; ATG9A = autophagy related 9A; EGLN = Egl-9 family hypoxia inducible factor; ERP2 = endoplasmic reticulum aminopeptidase 
2; FKBP8 = FKBP prolyl isomerase 8; FOXO3 = forkhead box O3; Hsp70 = heat shock protein 70; IKKA/B = inhibitor of nuclear factor κB kinase A/B; IFN-β = interferon 
beta; NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells; OPTN = optineurin; PP2A = protein phosphatase 2; RIOK3 = RIO kinase 3; SELENBP1 = 
selenium binding protein 1; SNCA = synuclein alpha; TERF2IP = TERF2 interacting protein; UBB = ubiquitin B; YPEL3 = Yippee like 3; YOD1 = YOD1 deubiquitinase.



use of leukocytes with RNA-seq provides novel insights into the 
pathophysiology of obesity-related HOHF. These preliminary 
findings could be used to discover the underlying mechanisms 
of obesity-related HOHF and explore new treatments to mitigate 
progression of disease in the future.
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