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INTRODUCTION 

Lysosomes are acidic cellular vacuoles that are heterogeneous in shape and size and 
function in degrading biological constituents derived from the intracellular and ex- 
tracellular space (Lee and Marzella, 1992; Seglen and Bohley, 1992). In this chap- 
ter we will review the mechanisms that regulate the functions of lysosomes and 
discuss how alterations in these functions lead to cell pathology with special refer- 
ence to acute and chronic cell injury. 

For reviews on the physiology and pathology of biosynthesis, sorting, and proc- 
essing of lysosomal enzymes and of transport of ions, amino acids, and other mac- 
r0molecules to lysosomes, readers are referred to the reviews by Kornfeld (1990) 
and Thoene, (1992). 

LYSOSOMAL DEGRADATION PATHWAYS 

Autophagy and Heterophagy 

The lysosomal pathway for degradation of cellular constituents is called auto- 
phagy. Autophagy is subdivided into macroautophagy, microautophagy, and crino- 
phz, gy. Macroautophagy is active in nonselective "bulk" degradation of organelles 
and is activated especially during nutrient deprivation (Mortimore et al., 1989; 
Seglen et al., 1991; Seglen and Bohley, 1992). Microautophagy is an ongoing pro- 
cess for degrading cytosolic constituents in basal conditions (Marzella and Glau- 
mann, 1987; Mortimore et al., 1988). Crinophagy participates in degradation of 
secretory proteins (Marzella and Glaumann, 1987). 

Macroautophagic vacuoles are formed by membranes of the endoplasmic re- 
ticulum (ER)or Golgi apparatus (Marzella and Glaumann, 1987; Dunn, 1990; Ya- 
mamoto et al., 1990a,b; Ueno et al., 1991; Noda and Farquhar, 1992). The earliest 
structure identifiable by electron microscopy, the autophagosome, is typically 
bounded by two membranes which segregate intact organelles and cytosolic com- 
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ponents (Figure 1). The autophagosome fuses with one or several preexisting lyso- 
somes, which contain lysosomal hydrolases. At this stage this structure is called an 
autophagic vacuole and the degradation of the segregated cytoplasm is carried out. 
Undegradable substances are in some cases excreted to the extracellular space or 
more commonly remain stored intracellularly in residual bodies. 

Microautophagic vacuoles are autophagic vacuoles forming within a lysosome. 
They arise by invaginations of surface membranes of lysosomes, leading to the for- 

Figure 1. Ultrastructural appearance of autophagic vacuoles.A. The micrograph shows 
a newly formed autophagic vacuole from a cultured rat hepatocyte. The vacuole 
contains several intact cellular constituents, a mitochondrion (M), rough and smooth 
endoplasmic reticulum cisternae, and cytosol. At this stage, the autophagic vacuole is 
surrounded by two surface membrane (arrowheads). B. The micrograph shows an 
autophagic vacuole from a rat liver in a later stage of development. Only one surface 
membrane surrounds the vacuole (arrowheads) and the sequestered mitochondrion 
(M), and other constituents appear to be undergoing degradation. Magnifications: A, x 
47,000; B, x 58,000. 
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marion of an intralysosomal vesicle. Cytosolic components, such as glycogen, ribo- 
somes, or soluble proteins, seem to be taken up in this fashion (Marzella and 
Glaumann, 1987). 

Crinophagic vacuoles are lysosomes containing secretory proteins undergoing 
intracellular degradation. Newly synthesized secretory proteins are either secreted 
constitutively or are packaged into secretory vacuoles for eventual extracellular dis- 
charge. In some instances, the secretory vacuoles fuse with the lysosomes and the 
secretory proteins they contain are degraded intracellularly. 

The lysosomal pathway for uptake and degradation of materials from the extra- 
cellular space is called heterophagy and is particularly active in macrophages and 
other phagocytes (Figure 2 A,B). This pathway transports materials, such as micro- 
organisms and cell fragments, from the cell surface to the lysosomes via phago- 
somes for degradation. Proteins, solutes, and other nutrients are delivered to 
endosomes via coated pits and vesicles. Internalized constituents, including mem- 

Figure 2. Ultrastructural appearance of heterophagic vacuoles. A. This micrograph 
shows a resting Kupffer cell from rat liver. Note the presence of numerous lysosomes (L). 
B. This micrograph shows a Kupffer cell from a human liver following shock. Note that 
the lysosomes (L) are full of amorphous materials and are markedly enlarged. These 
materials are probably derived from the phagocytosis of cellular debris present in the 
space of Disse or hepatocyte sinusoid. Magnifications: A, x 32,000; B, x 16,000. 
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brane, ligands, and receptors, are either recycled to the cell surface or shuttled to ly- 
sosomes via late endosomes for eventual degradation. 

The lysosomal degradation pathways are shown schematically in Figure 3. This 
figure also illustrates the functional relationships between the endoplasmic reticu- 
lum, Golgi apparatus, and plasma membrane and the lysosomes. 

Nonlysosomal degradation pathways are also present in cells. These pathways 
differ from the lysosomal pathways in subcellular localization, sensitivity to in- 
hibitors, substrate specificity, pH optima, and physiological functions and are 
regulated independently. For a discussion of the regulation of nonlysosomal deg- 
radation pathways and their participation in cell pathology, see Lee and Marzella 
(1994). 

Degradative Capacity of Lysosomal Enzymes 

More than fifty lysosomal enzymes have been identified and have been shown to 
degrade nearly all biological molecules (proteins, lipids, carbohydrates, and nu- 
cleic acids) (de Duve, 1983). Most enzymes are "soluble" or loosely associated 
with the lysosomal membrane. A few enzymes, such as the membrane-associated 
form of acid phosphatase, are tightly bound and are considered integral membrane 
proteins (Himeno et al., 1989). Within the lysosomal matrix, the lysosomal en- 
zymes may exist as aggregates. This property favors the retention of the lysosomal 
enzymes within the lysosomal matrix. It is not known whether individual lyso- 
somes contain the full range of degradative enzymes or if variable numbers and 
types of hydrolases are present in each lysosomal organelle. The turnover rate ofly- 
sosomal enzymes is relatively rapid (approximately one to two days) (Burnside and 
Schneider, 1982). The half-life of individual lysosomal enzymes varies from 15 hrs 
to 3 days (Kominami et al., 1987). 

Proteins are degraded to the level of constituent amino acids through sequential 
attack by a variety oflysosomal proteases (see below). The hydrolysis of lipids also 
takes place in the lysosomal compartment by the action of acid lipases to yield glyc- 
erols and fatty acids. Glycolipids, sphingomyelins, and phospholipids are all de- 
graded in lysosomes. The degradation of glycogen can occur in lysosomes by acid 
a-glucosidases. The degradation of carbohydrate moieties in sugars, proteins, and 
lipids proceeds by the action of exoenzymes (e.g., glycosidases) giving monosac- 
charides. In the case of glycoproteins, the peptide backbone is degraded by various 
lysosomal proteases, followed by the breakdown of glycans. Nucleic acids are first 
hydrolyzed by an endonuclease, either acid deoxyribonuclease or ribonuclease, 
into oligonucleotides. Then the oligonucleotides are cleaved by an acid exonucle- 
ase to release 3'-phosphomononucleotides and subsequently nucleosides and inor- 
ganic phosphates. Breakdown products of lysosomal degradation (amino acids, 
fatty acids, glycerol, monoacylglycerols, cholesterol, and sugars) return to the cyto- 
sol by diffusion/permeation or are transported out of the lysosome by newly dis- 
covered specific carriers systems. At least 14 systems active in the transport of 



Figure 3. Overview of autophagy and heterophagy. Autophagy: cytoplasmic 
organelles are sequestered into macroautophagic vacuoles (AV). Proteins and other 
cytosolic constituents are taken up in microautophagic vacuoles (av). Secretory products 
diverted from the secretory pathway are taken up in crinophagic vacuoles (C). 
Macroautophagic and crinophagic vacuoles acquire digestive enzymes by fusing with 
lysosomes. As the vacuolar contents are degraded, the lysosomes (L) diminish in size, 
become electron-dense and are designated dense bodies (DB). Lysosomes containing 
undegradable residues such as lipofuscin, are designated residual bodies (RB), which 
may in some instances be extruded from cells. Heterophagy: extracellular constituents 
are carried via phagosomes (P) to the lysosomes for degradation. Proteins and solutes are 
transported to "early" endosomes (E 1) via coated pits (CP) and vesicles (CV) or 
pinosomes. Membranes and internalized constituents are recycled to the plasma 
membrane (PM) or are transported to the lysosomes via "late" endosomes (E2). The 
transport of newly synthesized lysosomal enzymes to lysosomes follows the 
cytosol-rough endoplasmic reticulum (RER)-smooth endoplasmic reticulum (SER)-Golgi 
apparatus pathway taken by secretory proteins. In the trans-Golgi network (TGN), the 
lysosomal enzymes are sorted out from proteins destined for secretion and are 
transported to the lysosomes via late endosomes (E2). 
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inorganic ions, amino acids, and other metabolites have been characterized. The 
specific transport proteins have not yet been identified (Thoene, 1992). 

REGULATION OF LYSOSOMAL PROTEIN DEGRADATION 

Enzyme Activity, Acidification 

Several physiological conditions, such as growth or regeneration, can up- 
regulate the activity of lysosomal enzymes by increasing their absolute concen- 
tration or their catalytic activity (de Groen et al., 1989; Rhodes et al., 1989). 
Changes in levels of naturally occurring enzyme inhibitors may also play a role 
(Barrett, 1987). Lysosomal acidification mediated by H§ (pH close to 5) 
is essential to activate lysosomal enzymes. The proton gradient across the lysoso- 
mal membrane may also contribute to the transport of products of lysosomal hy- 
drolysis to the cytosol (Ohkuma, 1987). Vacuolar acidification is critical for 
processing lysosomal proenzymes to mature hydrolases and for sorting them 
(Rothman et al., 1989). 

The generation of a pH gradient in the lysosomes is almost exclusively due to an 
electrogenic proton pump driven by a H§ in the lysosomal membrane 
(Schneider, 1987; Rodman et al., 1991). The H§ is made up of eight or nine 
subunits. A 72-kDa subunit is the catalytic site for ATP hydrolysis, a 57 kDa subunit 
is a regulatory nucleotide-binding protein, and a 17-kDa subunit most likely partici- 
pates in forming the proton channel (Klionsky et al., 1990). 

Amino Acids and Hormones 

Lysosomal protein degradation is regulated by amino acid levels in conjunction 
with the synergistic and additive effects of hormones. At normal plasma levels of 
amino acids, cellular proteolytic responses to hormones are commensurate with 
those caused by amino acid deprivation. The most important hormone to stimulate 
hepatic macroautophagy and lysosomal protein degradation is glucagon (Morti- 
more and Pt~s/3, 1987; Mortimore et al., 1989). In skeletal muscle, increased cate- 
cholamine levels have been linked to stimulation of protein degradation (Nie et al., 
1989). Epinephrine has also been shown to stimulate lysosomal protein degrada- 
tion in the liver (Mortimore and P/Ss/5, 1987). In muscle, workload is an important 
regulator of muscle mass. 

Insulin and other growth-promoting factors inhibit lysosomal proteolysis (Bal- 
lard and Gunn, 1982). It has been found that glucocorticoids stimulate lysosomal 
protein degradation in hepatocytes (Hopgood et al., 1981). Estrogen can inhibit os- 
teoclastic resorption activity by down-regulation of lysosomal gene expression 
(Oursler et al., 1993). The inhibitory influence of serum on protein degradation in 
cultured cells is also presumed to be mediated by growth factors and hormones in 
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the serum. Serum deprivation causes only a transient increase in proteolysis. After 
24 hours, the rates of protein degradation decline to levels equal to or even lower 
than controls. A diet deficient in protein reduces the lysosomal degradation of pro- 
tein in muscle (Tawa et al., 1992). 

Effects of Growth, Age, pH, and Calcium levels of Cells 

The growth state of cells is important in the modulation of intracellular protein 
degradation (Ballard, 1987; Papadopoulos and Pfeifer, 1987). The stimulation of 
cytoplasmic growth seen during cellular proliferation (e.g., adrenocorticotropic 
hormone-stimulated proliferation of adrenal zona fasciculata) or hypertrophy (e.g., 
contralateral compensatory hypertrophy after unilateral nephrectomy) suppresses 
autophagic-lysosomal degradation (Miiller et al., 1987; Jurilj and Pfeifer, 1990). 

Cell age also influences intracellular protein degradation (Ballard, 1987; Dice, 
1989). It has been proposed that decreased proteolysis may be responsible for the 
appreciable accumulation of posttranslationally altered proteins in senescent cells. 
The proliferative arrest in senescent cells may be due to a defect in certain prote- 
olytic systems, and deficient degradation of oxidized proteins has been demon- 
strated in aging cells (Oliver et al., 1987). 

A rise in intracellular pH causes a marked decrease in protein degradation and an 
increase in protein synthesis (Fuller et al., 1989). Increases in cytosolic Ca 2§ levels 
also accelerate proteolysis in muscles by lysosomal and nonlysosomal pathways 
(Zeman et al., 1985). It has been proposed that a calcium transport system in the ly- 
sosomal membrane functions in regulating lysosomal protein degradation (Lemons 
and Thoene, 1991). 

FUNCTIONS OF LYSOSOMAL ENZYMES 

Degradation of Proteins 

The degradation of proteins by lysosomes is accomplished by exoenzymes 
(exopeptidases) that cleave bonds only near the ends of molecular chains and by en- 
doenzymes (endopeptidases or proteinases) that hydrolyze peptide bonds in the 
middle of molecular chains. Endopeptidases are subdivided into cysteine prote- 
inases (e.g., cathepsin B, H, and L) and aspartic proteinases (e.g., cathepsin D and 
E) (Kirsche and Barret, 1987) based on the identity of the catalytic group at the ac- 
tive site. The degradation of proteins by lysosomal enzymes is essential for several 
cell function. 

As a rule, lysosomal proteases, completely degrade the intracellular proteins 
segregated in the lysosomes and play an important role in the turnover of cellular 
proteins. The lysosomal proteases are also involved in changing cellular phenotype 
by degrading certain differentiation-related proteins (Teichert et al., 1989), and al- 
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terations in levels and/or activity of lysosomal enzymes occur during cell differen- 
tiation. A number of secretory proteins are degraded by lysosomal proteases 
(Willemer et al., 1990). Examples are hormones, such as insulin (Schnell et al., 
1988), prolactin (Kuriakose, et al., 1989), parathormone (Pillai and Zull, 1986), 
corticotropin, melanotropin (Uchiyama et al., 1990), and catecholamines (Weiler et 
al., 1990). Partial proteolytic processing of certain proteins occurs in prelysosomal 
organelles (for a review, see Lee and Marzella, 1992). Examples of processing of 
secretory proteins by lysosomal proteases are the conversion of thyroglobulin to 
thyroxine (Rousset et al., 1989a,b; Rousset and Momex, 1991), the conversion of 
prorenin to renin (Wang et al., 1991 ), and the conversion ofprocollagen to collagen 
(Helseth and Veis, 1984). In antigen-presenting cells, lysosomal proteases process 
endocytosed protein antigens and generate antigen-MHC II complex which are 
then translocated to the cell surface for presentation to T cells. 

Lysosomal proteases also degrade extracellular proteins intracellularly follow- 
ing endocytic uptake (Del Rosso et al., 1991) or extracellularly following the secre- 
tion of lysosomal enzymes (Ishii et al., 1991). By these mechanisms, lysosomal 
proteases participate in remodeling extracellular matrix and bone and in the degra- 
dation of plasma proteins, lipoproteins, and cells with finite life spans. Cathepsin B 
and L, for example, appear indispensable in bone resorption by degrading collagen 
in the bone matrix (Delaiss6 et al., 1991). Examples of extracellular proteins that 
are substrates for lysosomal enzymes are albumin (Baricos et al., 1987), the uroki- 
nase type ofplasminogen activator (Buktenica et al., 1987; Jensen et al., 1990), low 
density lipoprotein (Brown and Goldstein, 1986), renin (Marks et al., 1991), and 
hemoglobin (Diment and Stahl, 1985). 

In organs, such as the liver and kidney, lysosomal degradation of endocytosed or 
phagocytosed constituents assumes a specific physiological importance. For exam- 
ple, in the liver, the resident macrophages (Kupffer cells) clear from the portal cir- 
culation bacteria and endotoxin derived from the gastrointestinal tract (Ulevitch, 
1991). In the renal tubular epithelial cells, the proteins filtered from glomeruli are 
rapidly reabsorbed via endocytosis. The internalized proteins begin to undergo deg- 
radation in the endosomes and are transported to lysosomes, where protein degra- 
dation is completed (Andersen et al., 1987, Haga, 1989). The endocytosis and 
degradation of filtered protein is greatly augmented when the glomerular filtration 
barrier is damaged (Haga, 1989). In these conditions, the number and volume of ly- 
sosomes increases markedly and acid hydrolases are greatly activated. 

Degradation of Lipoproteins and Membrane Lipids 

The degradation of phospholipids and neutral lipids segregated in lysosomes 
by uptake of cellular membranes and lipoprotein particles is accomplished by 
lysosomal acid lipases (Warner et al., 1981). A lysosomal lipase with broad sub- 
strate specificity is almost exclusively responsible for the lysosomal hydrolysis 
of cholesterol esters, triglycerols, and diacylglycerols. Lysosomes also contain 
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phospholipase A (L6ffler and Kunze, 1987; Bartolf and Franson, 1990). Several 
factors effectively mitigate against cell injury caused by the unregulated hy- 
drolysis of membrane diacylphospholipids by this enzyme and prevent the loss 
of membrane integrity in normal cells. These factors include the lack of optimal 
pH in the cytosol, the presence of cations, such as Mg 2§ Ca 2§ Na § and K § and of 
intracellular and extracellular proteins, such as histone, albumin, fatty acid 
binding proteins, and immunoglobulins, which inhibit enzyme activity (Kunze 
et al., 1988). A lysosomal phospholipase C converts phospholipids into diglyc- 
erides (Matsuzawa and Hostetler, 1980). Lysosomal phospholipase C also plays 
a role in the degradation of membranes subjected to lipid peroxidation in injured 
cells. 

LYSOSOMES IN ACUTE AND CHRONIC CELL INJURY 

lntraceilular Leakage of Lysosomal Enzymes 

The lysosomal membrane provides a physical barrier separating the degradative 
activity of lysosomal hydrolases from cytoplasm. Impairment of lysosomal mem- 
brane integrity and release of hydrolases to the cytosol are severely detrimental to 
cellular physiological functions and integrity. The stability of the lysosomal mem- 
brane can be impaired by free radicals probably through lipid peroxidation reac- 
tions. It has been demonstrated that loss of lysosomal membrane integrity by lipid 
peroxidation occurs in photooxidation-induced cell injury (Olsson et al., 1989). 
Leakage of lysosomal enzymes also occurs after cell death and contributes to 
autolysis and necrosis. 

Several naturally occurring enzyme inhibitors protect living cells against-injury 
caused by the release of lysosomal enzymes (Barr. ett, 1987; Kirschke and Barrett, 
1987). Examples are ct2-macroglobulin, t~-cysteine proteinase inhibitor, and cys- 
tatins. The first two inhibitors are found in plasma whereas the latter is found in 
cells and body fluids (Kirschke and Barrett, 1987; Aoyagi, 1989). The cystatins are 
a group of low molecular weight inhibitors classified on the basis of the type of cell 
in which they are found. Cystatin A is present in epithelial cells and leukocytes. 
Cystatin B is in lymphocytes and monocytes. Cystatin C is in neuroendocrine cells. 
Finally cystatin S is in salivary glands. 

Extracellular Release of Lysosomal Enzymes 

Lysosomal enzymes released from neutrophils, macrophages, and other in- 
flammmatory cells degrade critical extracellular proteins and may induce injury 
and loss of function in various organ systems (Kesava Reddy and Dhar, 1991). For 
example, increased activities of cathepsin B and L play a role in the degradation of 
cartilage collagens in arthritis (Maciewicz and Wotton, 1991). It has been proposed 
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that one of the factors responsible for the development of smoking-related emphy- 
sema is an imbalance between proteases (e.g., elastase) and their inhibitors (tx- 1 an- 
tiprotease), resulting in the destruction of lung parenchyma and interstitium (Snider 
et al., 1991). Cysteine proteinases are the most likely source of the potent contact- 
dependent elastase activity of macrophages (Chapman et al., 1984). Cathepsin L 
has drawn considerable attention in this regard (Reilly et al., 1989). 

Highly purified cysteine proteinases B and L are also able to degrade glomerular 
basement membrane (GBM) and isolated GBM constituents (Thomas and Davies, 
1989; Baricos et al., 1991). In experimental models of glomerular disease, the ad- 
ministration of cysteine proteinase inhibitors decreases proteinuria (Baricos et al., 
1991). Lysosomal aspartic and cysteine proteinases play a role in the degradation of 
filtered protein that is endocytosed by proximal tubular cells (Olbricht et al., 1987; 
Baricos and Shah, 1989). 

Reumatoid arthritis is a systemic inflammatory process of unknown etiology in 
which the destruction of articular connective tissue occurs. Increased levels of 
cathepsin L and ras oncogene transcripts are detectable predominantly in synovial 
cells in the vicinity of sites of active joint destruction (Trabandt et al., 1990). 
Cathepsin L is a major ras-induced proteinase. Ras-induced proteinases have been 
implicated in the degradation of basement membrane that leads to the ingress and 
the pathognomonic accumulation of T cells in synovium in rheumatoid arthritis 
(Gay and Koopman, 1989; Ziff, 1989). 

Free Radical Injury 

Intracellular ferric iron is an essential mediator of membrane damage caused by 
free radicals and other reactive oxygen species. A cell pool of ferric iron is reduced 
by superoxide anions to ferrous iron at first. Ferrous iron in turn reduces H202 to hy- 
droxyl free radicals. The degradation of iron-containing proteins by lysosomal pro- 
teases is an important source of free iron that is available for lipid peroxidation. 
Ferritin is segregated in the lysosomes by autophagy. The protein moiety is de- 
graded, albeit slowly, by lysosomal cathepsins (Glaumann and Marzella, 1981) and 
iron is released due to the acidic pH (Sakaida et al., 1990; Hoffman et al., 1991). 
Modulation of autophagic protein degradation influences the size of the iron pool 
and the susceptibility of deferoxamine-treated hepatocytes to injury by t-butyl hy- 
droperoxide (Sakaida et al., 1990). 

Intraceilular Activation of Zymogen Enzymes by Crinophagy 

Intracellular degradation of secretory proteins by lysosomes can occur by crino- 
phagy (Marzella and Glaumann, 1987). In the pancreatic acinar cell crinophagy 
may lead to intracellular activation of zymogen enzymes and to pancreatic injury 
(Resau et al., 1984). Serine proteases (e.g., trypsinogen) are probably activated in- 
side the pancreatic parenchyma by lysosomal hydrolases (e.g., cathepsins), and 
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autodigestion of pancreatic parenchyma occurs (Steer and Meldolesi, 1987; Wille- 
mer and Alder, 1991). 

Cytotoxic Drugs 

Many cytotoxic drugs induce alterations in lysosomes. It has been proposed that 
these alterations can further increase cell injury, although in many instances direct 
evidence of the mechanisms involved is lacking. 

Aminoglycosides, such as gentamicin, are taken up by receptor-mediated endo- 
cytosis and accumulate in lysosomes of renal proximal tubular cells (Wedeen et al., 
1983). Although the pathogenesis of the nephrotoxicity remains unknown, it has 
been proposed that changes in the physiological functions of lysosomes induced by 
aminoglycosides may alter cellular metabolism and ultimately cause cell death 
(Kaloyanides and Pastoriza, 1980). Gentamicin can reduce cathepsin B and L ac- 
tivities in renal tubular cells within 24h after inoculation by inhibiting enzyme ac- 
tivities and decreasing enzyme biosynthesis. 

Another example of a nephrotoxic drug that induces marked alteration of ly- 
sosomes is the immunosuppressive drug cyclosporine (Palestine et al., 1986). 
This drug may decrease renal blood flow and induce toxic glomerulopathy, tu- 
bular atrophy, interstitial fibrosis, and arteriolopathy (Palestine et al., 1986). 
Kidneys of rats treated with toxic doses of cyclosporine contain numerous lyso- 
somes, autophagic vacuoles, and myeloid bodies (Whiting et al., 1982). It is not 
clear if these alterations are simply the result of, or if they also contribute to cell 
injury. 

Acidotropic Agents 

The so-called acidotropic or lysosomotropic agents cause swelling oflysosomes 
by dissipating the H § gradient and inhibiting lysosomal protein degradation. These 
agents are weak bases, such as products of cellular metabolism (ammonia, NH4C1), 
or drugs such as chloroquine. They freely permeate into cells and subcellular organ- 
elles. Within acidic compartments, such as lysosomes, the bases are protonated and 
become trapped. The consumption of protons by the weak bases elevates the intra- 
lysosomal pH and decreases the catalytic activities of lysosomal enzymes (Krog- 
stad and Schlesinger, 1987). The accumulation of protonated weak bases in the 
lysosomes is accompanied by an influx of water, leading to marked enlargement of 
lysosomes and cellular vacuolation (Kalina and Socher, 1991). In the case ofinhibi- 
tors, such as the weak base chloroquine, lysosomal degradation is also impaired by 
direct inhibition of cathepsins and by inhibition of mannose-6-phosphate receptor 
(MPR) recycling, which causes enhanced secretion of lysosomal enzymes (Geuze 
et al., 1985; Brown et al., 1986). Quaternary ammonium compounds may also in- 
hibit the activities of lysosomal enzymes by direct interaction with lysosomal pro- 
teases (Matsumoto et al., 1989). 
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Infections, Sepsis 

Protein degradation in skeletal muscle is commonly augmented by fever and 
sepsis (see a review by Palmer, 1990). Sepsis markedly enhances (up to 50%) the 
degradation of muscle protein (Hasselgren et al., 1986) and alters the response of 
muscle protein turnover to the regulatory amino acid leucine. 

The lysosomes of phagocytes are important in infections because they func- 
tion as an antimicrobial defense system. The oxidative burst and oxygen- 
independent mechanisms, such as cationic and other nonenzymatic proteins, con- 
stitute the first line of defense against microorganisms. The acid proteases are a 
secondary defense mechanism and are responsible for degrading endocytosed 
pathogens (Yu and Marzella, 1990). The ability of some microbial pathogens to 
escape degradation by the lysosomes leads to disease. The mechanisms responsi- 
ble for the failure oflysosomes to kill pathogens are (1) escape of microorganisms 
from endocytic compartments; (2) failure of fusion between phagosomes and ly- 
sosomes; (3) loss of capacity to degrade microorganisms; and (4) deficient lyso- 
somal acidification. 

Endocytosis of Microorganisms 

Viruses use two routes to gain entry into cells. The first route of entry is nonspe- 
cific. Viruses penetrate the cell by direct fusion of the viral envelope with the cell 
surface membrane (Payne et al., 1990; Wittels and Spear, 1990). The second 
routeof entry is via receptor-mediated endocytosis (RME) (Pauza and Price, 1988). 
The acidification machinery is triggered immediately after the formation of early 
endosomes, and the H§ is activated. At an acidic pH, the internalized viral 
envelope fuses with the endosomal membrane and releases the nucleocapsid into 
the cytoplasm before the endosome merges with a lysosome. Viruses thereby evade 
degradation by lysosomes (Pauza and Price, 1988). This event is observable in 
many viruses, such as orthomyxorabdoviruses, togavimses, Semliki forest, vesicu- 
lar stomatitis, influenza, and retroviruses (Yu and Marzella, 1990). The fusion be- 
tween viral and endosomal membranes is pH-dependent and can be inhibited by 
weak bases. 

Phagocytosis is a major route for the uptake of microorganisms (e.g., bacte- 
ria, fungi, or protozoans) in lysosomes. Some microorganisms, such as Rick- 
ettsia and Trypanosomes, can escape from phagosomes and survive within the 
cytoplasm (Weiss, 1982). In Trypanosoma cruzi infection, a protozoan- 
derived neuraminidase plays an important role in enhancing parasite access to 
the cytoplasm of host cells by removing terminal sialyl moeities on carbohy- 
drate chains oflysosomal membrane glycoproteins (Fenton-Hall et al., 1992). 
In addition, the fusion of lysosomes with the parasitophorous vacuole seems 
to be required to facilitate the entry of T. cruzi into host cytoplasm (Tardieux et 
al., 1992). 
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Fusion between Phagosomes and Lysosomes 

In cultured macrophages or monocytes lysosomes are unable to fuse with phago- 
somes containing certain types of pathogenetic microorganisms. These microorgan- 
isms include Legionella pneumophila, Mycobacterium tuberculosis, and Leishmania 
braziliensis (Lee and Marzella, 1994). Polyanions, such as those present in some mi- 
croorganisms and the endogenously produced weak base ammonia, can bl.ock 
phagosome-lysosome fusion. Of interest, only viable microorganisms can suppress 
fusion between lysosomes and phagosomes. Microorganisms that are nonviable or 
inactivated intracellularly lose this ability (Krogstad and Schlesinger, 1987). 

Activity of Lysosomal Enzymes 

Several microorganisms remain viable after reaching the lysosomes and a few 
even continue to replicate. Examples of these resistant pathogens are Histoplasma 
capsulatum, Salmonella typhimurium, and Leishmania spp. (Lee and Marzella, 
1994). Mechanisms for the resistance to degradation of some of these microorgan- 
isms are inhibition of biosynthesis of lysosomal hydrolases (Chakraborty and Das, 
1989), protection by carbohydrate moieties of surface glycoproteins, and release of 
excretory factors that inhibit lysosomal enzyme activity. It is noteworthy that the 
expression and secretion of cysteine proteinase aids some protozoa in degrading 
and invading host tissue. This mechanism accounts for the cytopathic effect of viru- 
lent trophozoites of Entamoeba histolytica (Keene et al., 1990). 

Acidification of Phagosomes 

Another mechanism that accounts for the survival of some microorganisms in 
lysosomal compartments of host cells is inhibition of lysosomal or phagosomal 
acidification (Sibley et al., 1985; Black et al., 1986). Microorganisms able to inhibit 
acidification include Toxoplasma gondii, Legionella pneumophila, Nocardia aster- 
oides, and Mycobacterium tuberculosis. 

Elevation of intralysosomal pH can arrest growth and proliferation of microor- 
ganisms (Krogstad and Schlesinger, 1987). A classic case is seen after the applica- 
tion of the antimalarial drug chloroquine or the weak base NH4C1 to Plasmodium 
falciparum. These compounds raise the pH of the food vacuoles (lysosomes) of 
Plasmodiumfalciparum and suppress the degradation of hemoglobin that is indis- 
pensable for normal development and replication of the parasite (Krogstad and 
Schlesinger, 1987; Rosenthal et al., 1988). 

Burn Injury 

Burn injury increases protein degradation in skeletal muscle up to twofold by the 
second day after injury (Odessey, 1987). The induction of lysosomal enzyme syn- 
thesis may enhance proteolysis in burn injury (Odessey, 1987). 
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Myopathies and Denervation Injuries 

In several pathological conditions, protein degradation is enhanced in skeletal 
muscle. Myofibrillar components are particularly affected, and pronounced muscle 
atrophy results. Several proteolytic systems appear to participate in the develop- 
ment of muscular atrophy (Fagan et al., 1987; Katunuma and Kominami, 1987; 
Driscoll and Goldberg, 1989). It has been proposed that both lysosomal cathepsins 
and Ca2§ proteases play a role in the enhanced protein degradation found 
in dystrophic (Turner et al., 1988) or injured (Furuno and Goldberg, 1986) muscle. 

In the case of muscle atrophy induced by denervation, an increase in autophagic 
lysosomal proteolysis may be partially responsible for the atrophy because the ac- 
tivity of lysosomal proteases is augmented (Bird and Roisen, 1986). It is also pro- 
posed that Ca2§ neutral proteases (CANPs) mediate muscle atrophy in 
denervation and other conditions (Bond and Bulter, 1987; Hussain et al., 1987; Ba- 
dalamente et al., 1989). At least three degradative pathways are active in denervated 
muscle. These are a non lysosomal pathway in basal conditions, a Ca2§ 
pathway activated during increased muscle tension (Baracos and Goldberg, 1986), 
and an autophagic-lysosomal pathway active during metabolic stress (Furuno et al., 
1990). 

Starvation and Stress 

In the postabsorptive state, lysosomal protein degradation in the liver is essential 
to maintain amino acids and glucose levels in the bloodstream (Mortimore and 
Khurana, 1990). In stress responses, increased amounts of amino acids are made 
available through protein degradation to sustain metabolism and the synthesis of 
new proteins involved in cellular adaptive responses. During short-term starvation, 
hepatocytes are the most important endogenous source of amino acids. Beyond 48h 
of starvation, the degradation of nonrespiratory skeletal muscle is accelerated, and 
the amount of protein in muscle decreases (Mortimore and Prsr, 1987). Most if not 
all accelerated protein degradation occurs in the lysosomes. 

Exercise of high intensity and long duration markedly intensifies protein degra- 
dation in the liver (Dohm et al., 1987) and in skeletal muscle (Parkhouse, 1988). 
Myofibrillary proteins are not affected. The degradation of these contractile pro- 
teins is actually diminished during exercise (Dohm et al., 1987; Kasperek and 
Snider, 1989). This has been explained by an elevation of intralysosomal pH 
through accumulation of ammonia after exercise and an increase in the permeabil- 
ity of lysosomal membranes (Tsuboi et al., 1993). 

Accumulation of iron and Other Metals in Lysosomes 

Idiopathic hemochromatosis is a hereditary metabolic disease in which exces- 
sive iron accumulates within the parenchyma of many organs, particularly the 
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liver. The intracellular iron is bound to apoferritin to form ferritin molecules, 
which are located in the cytosol. Ferritin also accumulates in lysosomes because 
of its relative resistance to degradation (Glaumann and Marzella, 1981). Al- 
though the pathogenesis of cell injury in idiopathic hemochromatosis has not 
been completely elucidated, it is postulated that the generation of free radicals 
and peroxidation of membrane lipid play an important role (Myers et al., 1991). 
Ultrastructural alterations of lysosomes occur in iron-overloaded cells in parallel 
with biochemical evidence of increased lysosomal fragility and leakage of acid 
hydrolases (LeSage et al., 1986). Lysosomes isolated from iron-overloaded livers 
appear enlarged and deformed and show an increase in membrane fragility, a de- 
crease in membrane fluidity, and an rise in pH (Myers et al., 1991). Increased ly- 
sosomal membrane fragility is also observed in iron-loaded, cultured, cardiac 
myocytes (Link et al., 1993). 

Untreated patients with hemochromatosis usually develop liver cirrhosis (Bas- 
set et al., 1986). StA1 et al. (1990) found that in biopsies from livers with precirrhotic 
hemochromatosis, the volume density (V d) of lysosomes increased in hepatocytes 
and Kupffer cells in parallel with increases in iron. The number of iron-laden lyso- 
somes dramatically decreases and hepatic ultrastructure reverts to normal after 
therapeutic phlebotomies (Cleton et al., 1988; StA1 et al., 1990). 

The accumulation of other mineral elements in the lysosomes may also damage 
the lysosomal membrane and lead to cell injury. For example, lysosomal damage is 
closely correlated with the amount and duration of aluminum loading (Stein et al., 
1987; Berry et al., 1988). 

Mineral elements, such as aluminum, chromium, uranium, and cerium are re- 
absorbed by renal epithelial cells in the proximal convoluted tubules and are pre- 
cipitated in lysosomes as insoluble phosphate salts by the action of acid 
phosphatase. Eventually, these phosphate salts are excreted in the urine. Pulmo- 
nary cells dispose of metal particles inhaled into the respiratory passages by pre- 
cipitation within lysosomes. The accumulation of phosphate particles in the 
lysosomes of pneumocytes prevents the diffusion of these toxins into the intersti- 
tial capillaries. These metal salts and other inert inhaled particles are finally 
slowly cleared by pulmonary macrophages. Some metals can inhibit the activity 
of lysosomal enzymes. For example, Cu 2§ inhibits lysosomal acid cholesterol es- 
ter hydrolase in the presence of hydroxylamine and ascorbic acid (Tanaka et al., 
1988). Moreover, the breakdown of metalloprotein may be markedly decreased 
through inhibition of cathepsin B and/or L activity by protein-associated metal 
elements (Choudhuri et al., 1992). 

Accumulation of Pigments in Lysosomes 

Tissue necrosis, vitamin E deficiency, certain lysosomal storage diseases in the 
central nervous system, and ageing are associated with the accumulation of lipopig- 
ments, called ceroid and lipofuscin, in the lysosomes (Goebel and Busch, 1990; 



Lysosomes and Cell Injury 183 

Palmer et al., 1990). Ceroid is considered to be the undegraded remnant of material 
derived from heterophagocytosis and is characteristically seen in macrophages 
(Gedigk and Totovic, 1983). Lipofuscin, on the other hand, is thought to be made up 
of residues derived from autophagy. These polymerized lipid-protein complexes 
are resistant to hydrolysis and accumulate in the lysosomes. 

Proteolytic decline and peroxidative stress may also contribute to the genesis of 
lipofuscin (Porta, 1991). In human senescent brains and in brains of patients with 
Alzheimer's disease, a defective or deficient degradation of a variety of proteins, 
such as amyloid precursor protein, by lysosomal enzymes plays an important role 
in the generation of 13-amyloid deposits found, for example, within neuritic (senile) 
plaques (Cras et al., 1991; Tagawa et al., 1992). 

Storage Diseases 

Lysosomal storage diseases share the following characteristics: a complete or 
partial deficiency of lysosomal enzymes, an accumulation of undegraded materials 
within the lysosomes, and inheritance. Several genetic or induced abnormalities 
and deficiencies of lysosomal hydrolases or cofactors result in the accumulation of 
undegraded substrate in the lysosomes. The number and size of the lysosomes 
gradually increases in the affected cells, and the cells and organs become enlarged 
and dysfunctional (Patel, 1989). 

Inherited 

Several pathophysiological mechanisms induce these genetic storage disor- 
ders. The first mechanism is a lack of a protective glycoprotein that normally links 
certain lysosomal enzymes. This linkage reduces the susceptibility of the en- 
zymes to proteolysis and is necessary for their activities (d'Azzo et al., 1989; Gal- 
jart et al., 1990). The second mechanism that induces storage disorders is a 
deficiency of nonspecific activator proteins (saponins A, B, C, or D) required for 
the lysosomal enzymatic hydrolysis of glycolipids (sphingolipids) (Li et al., 
1988; O'Brien et al., 1988; Sandhoff et al., 1989). In their absence, despite normal 
lysosomal hydrolase activity, activator-deficient metachromatic leukodystrophy 
develops. 

The third mechanism that induces inherited storage disorders is decreased levels 
or total deficiency of specific hydrolases caused by (i) decreased or defective bio- 
synthesis due to genetic mutations resulting in amino acid substitution and/or dele- 
tion (e.g., Gaucher disease) (Galjaard and Reuser, 1984); (ii) incorrect sorting and 
targeting of hydrolases (e.g., I-cell disease) (Kornfeld and Mellman, 1989; Korn- 
feld, 1990); and (iii) defective synthesis of subunits which prevents the normal as- 
sembly or translocation of the enzymes (Lau and Neufeld, 1989; Paw et al., 1990). 
Finally, the fourth mechanism that induces inherited storage disorders is impaired 
career-mediated transport of degradation products from lysosomes (e.g., cystino- 
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sis; infantile free sialic acid storage disease, and vitamin B12 storage disorder) (Shih 
et al., 1989; Tietze et al., 1989; Mancini et al., 1991). 

Acquired 

Lysosomal storage diseases are inducible by cationic amphiphilic drugs. These 
compounds cause the formation of lamellar structures containing polar lipids in ly- 
sosomes. The mechanisms for the accumulation of lamellar structures include for- 
marion of undegradable drug-lipid complexes, raised lysosomal pH induced by the 
segregated drugs, and reversible inhibition of the activities of lysosomal phospholi- 
pases A and C (Reasor, 1989). Numerous reports have indicated that cell injury in- 
duced by these cationic drugs parallels the appearance of lamellar structures in 
.cells. 

Atherosclerosis 

Lysosome participate in both physiological and pathological lipid metabolism. 
The stepwise buildup of free cholesterol in lysosomes of vascular smooth muscle 
cells and macrophages (Tangirala et al., 1993) has been proposed as one of the 
mechanisms responsible for atherosclerotic plaques. 

The biosynthesis of cholesterol is modulated by receptor-mediated endocytosis 
and lysosomal degradation of low density lipoproteins (LDL) (Brown and Gold- 
stein, 1986). In lysosomes, the protein/phospholipid coat of LDL is degraded and 
cholesteryl esters are hydrolyzed by lysosomal lipases freeing cholesterol (Brown 
and Goldstein, 1986). A rise in unesterified cholesterol derived from LDL or from 
endogenously synthesized cholesterol results in inhibiting cholesterol biosynthesis 
and activation of a cholesterol-esterification-catalyzing enzyme. 

Perturbations in the endocytosis or degradation of LDL derived from the blood- 
stream or in the esterification of cellular cholesterol by microsomal ACAT can lead 
to the accumulation oflipids in cells (Tabas et al., 1987). In atherosclerosis, the arte- 
rial intima is infiltrated with pathognomonic, lipid-laden cells (so-called foam 
cells), derived from circulating monocytes or smooth muscle cells of the arterial 
media. In the early stages, a lipid of foam cells is predominantly localized in intra- 
cellular cytosolic inclusions. With the progression of the disease, intracellular lipid 
deposits become massive and the site of accumulation shifts to the lysosomes (Jer- 
ome and Lewis, 1985; Jerome et al., 1991). 

LDLs modified by acetylation, oxidation, or conjugation with malondialdehyde 
are more effective in inducing the formation of lipid-laden (foam) cells. Unlike ace- 
tylated LDL, roughly only 50% of internalized oxidized LDL is ultimately de- 
graded. This phenomenon has been ascribed to resistance of oxidized LDL to 
degradation by tysosomal cathepsins (Loughheed et al., 1991). 

Reverse transport of cholesterol from lysosomes to plasma membrane is known 
to take place. This efflux is constitutive. High density lipoprotein particles (HDL) 
remove the free cholesterol from the plasma membrane of cells. A negative correla- 
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tion exists between plasma HDL levels and atherosclerosis indicating the crucial 
role of cholesterol effiux from lysosomes in the pathogenesis of this disease. 

LYSOSOMAL DEGRADATION IN TUMORIGENESIS AND 
TUMOR METASTASIS 

Lysosomal Protein Degradation and Acidification in Cancer Cells 

Normal cells respond to a variety of stressful stimuli, such as nutritional depriva- 
tion by increasing protein degradation. It has been hypothesized that cancer cells 
may be resistant to stimuli that accelerate protein degradation and may also down- 
regulate basal proteolysis. These changes could enhance the survival and growth of 
the cancer cells particularly in conditions of nutrient stress (Lee et al., 1989 and 
1992). It is generally accepted that cancer cells manifest lower basal protein degra- 
dation and decreased lysosomal enzyme activities, compared with normal cells 
(Schwarze and Seglen, 1985). 

The viability of normal hepatocytes incubated in nutrient-free media increases 
to the same level as that of transformed hepatocytes when an autophagic inhibitor, 
3-methyladenine, is added to culture media (Schwarze and Seglen, 1985). These 
observations support the postulation that the capacity to down-regulate autophagic 
protein degradation increases the resistance to injury and enhances the growth of 
cancer cells. 

Role of Lysosomal Proteases in Tumor Invasion and Metastasis 

Unlike normal parenchymal cells (Hohman and Bowers, 1984), cancer cells se- 
crete a variety of proteases that degrade extracellular matrix and facilitate local in- 
vasion and metastasis of tumors (Boyer and Tannock, 1993). These proteases 
include urokinase and tissue type plasminogen activators (Rifkin et al., 1989; Hol- 
las et al., 1991; Oka et al., 1991), collagenases (Nakajima et al., 1987), trypsin (Koi- 
vunen et al., 1991), metalloprotease (gelatinase) (Matrisian, 1990; Chen et al., 
1991), glycosidase (Nakajima et al., 1984), stromelysin (Matrisian, 1990), and the 
lysosomal cysteine or aspartate proteases (Nathalie et al., 1990), B (Watanabe et al., 
1987), D (Capony et al., 1989; Rochefort et al., 1990), H (Tsushima et al., 1991), 
and L (Dong et al., 1989). 

The balance between the levels of lysosomal and nonlysosomal proteases 
and levels of their inhibitors, altered synthesis and translocation of cathepsin B, 
and in particular an enhanced secretion of enzyme are critical determinants of 
tumor growth and invasion. Sloane et al. (1990) have proposed that malignant 
tumor cells are capable of establishing an acidic extracellular microenviron- 
ment, in which a variety of lysosomal proteases (e.g., cathepsin B) and glycosi- 
dases (e.g., 13-hexosaminidase) function optimally. By this mechanism, the 
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destruction of basement membrane and connective tissues matrices may thus be 
intensified. 

Cathepsin B 

Secretion of the cysteine proteinase cathepsin B by malignant and benign 
tumors has drawn a great deal of attention because secretion of cathepsin cor- 
relates with the metastatic potential of tumors (Keren and LeGrue, 1988). 
Cathepsin B activity is regulated by an intracellular cysteine proteinase in- 
hibitor (CPI), also known as cystatin. In many tumors the regulation of prote- 
ase activity by cysteine proteinase inhibitors is lessened because of decreases 
in the levels of CPI or in the affinity of CPI for cysteine proteases (Lah et al., 
1989). 

Cathepsin t 

Secretion of procathepsin L, a lysosomal cysteine protease precursor, is 
markedly up-regulated by tumor promotors (Gal et al., 1985), growth factors 
(e.g., epidermal growth factor [EGF]; fibroblast growth factor [FGF]; platelet- 
derived growth factor [PDGF]) (Frick et al., 1985; Chiang and Nilsen- 
Hamilton, 1986; Dong et al., 1989), and viral transformation (Hiwasa et al., 
1991). The level of expression of cathepsin L in H-ras-transformed murine fi- 
broblasts is closely associated with their metastatic potential of the cells (Den- 
hardt et al., 1987). 

Cathepsin D 

Several lines of evidence have indicated the importance of up-regulated biosyn- 
thesis and increased secretion of cathepsin D in enhanceing tumor proliferation, in- 
vasion, and metastasis (Rochefort et al., 1990). For example, the forms of cathepsin 
D secreted by cancer cells may have autocrine mitogenic potential (Vignon et al., 
1986; Garcia et al., 1990). Also critical in tumorigenesis is the role of procathepsin 
D in degrading or activating specific substrates. Indeed, this secreted enzyme has 
been shown to be able to degrade basement membranes, impair growth factor re- 
ceptors, modulate antigen processing, activate cathepsin B and other proteases, and 
activate transforming growth factor-13 (TGF 13) (Briozzo et al., 1988; Pagano et al., 
1989; Rochefort et al., 1990). 

Direct evidence of the association between intensified metastatic compe- 
tency and overexpression of cathepsin D gene has been provided. Clinical inves- 
tigations have indicated that the level of cathepsin D in primary breast cancer is 
correlated with recurrence and metastases and may be the best indicator of prog- 
nosis, independent of other parameters (Thorpe et al., 1989; Tandon et al., 
1990). 
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SUMMARY 

Lysosomes are acidic intracellular vacuoles of heterogeneous shape, size, and 
content. Lysosomes contain hydrolytic enzymes that degrade proteins, lipids, car- 
bohydrates, and nucleic acids derived from intracellular (through autophagy) and 
extracellular (through heterophagy) sources. Lysosomal degradation regulates sev- 
eral physiological cell functions. These include turnover of cellular organelles and 
extracellular constituents; amino acid and glucose homeostasis; processing of pro- 
teins; lipid metabolism; cell growth, differentiation, and involution; host defenses 
against microorganisms and other pathogens; and removal of necrotic and foreign 
material from the circulation and from tissues. 

Lysosomal degradation also plays an important role in the pathophysiology of 
acute and chronic cell injury, inflammation and repair, and tumor growth and me- 
tastasis. The participation of the lysosomes in the specific types of cell injury we 
have discussed is due to altered regulation of one or more of the following pro- 
cesses: turnover of cellular organelles by autophagic degradation; levels and activi- 
ties of lysosomal hydrolases; levels of intracellular and extracellular lysosomal 
hydrolase inhibitors; transport of degradation products from the lysosomal matrix 
to the cytosol; permeability of the lysosomal membrane to hydrolases; lysosomal 
vacuolar acidification; transport of degradable substrates and of pathogens to the 
lysosomes; transport and processing of secretory proteins and lysosomal hydro- 
lases during biogenesis; traffic and fusion of lysosomal vacuoles and vesicles; se- 
cretion of lysosomal hydrolases; and accumulation of metals, particularly iron, 
acidotropic agents, and undegraded and/or undegradable materials in lysosomes. 
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