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Abstract: Recent progress in functionalized lanthanide oxide (Ln2O3) nanoparticles for tumor target-
ing, medical imaging, and therapy is reviewed. Among the medical imaging techniques, magnetic
resonance imaging (MRI) is an important noninvasive imaging tool for tumor diagnosis due to its high
spatial resolution and excellent imaging contrast, especially when contrast agents are used. However,
commercially available low-molecular-weight MRI contrast agents exhibit several shortcomings, such
as nonspecificity for the tissue of interest and rapid excretion in vivo. Recently, nanoparticle-based
MRI contrast agents have become a hot research topic in biomedical imaging due to their high
performance, easy surface functionalization, and low toxicity. Among them, functionalized Ln2O3

nanoparticles are applicable as MRI contrast agents for tumor-targeting and nontumor-targeting
imaging and image-guided tumor therapy. Primarily, Gd2O3 nanoparticles have been intensively
investigated as tumor-targeting T1 MRI contrast agents. T2 MRI is also possible due to the appre-
ciable paramagnetic moments of Ln2O3 nanoparticles (Ln = Dy, Ho, and Tb) at room temperature
arising from the nonzero orbital motion of 4f electrons. In addition, Ln2O3 nanoparticles are eligi-
ble as X-ray computed tomography contrast agents because of their high X-ray attenuation power.
Since nanoparticle toxicity is of great concern, recent toxicity studies on Ln2O3 nanoparticles are
also discussed.

Keywords: imaging agent; lanthanide oxide nanoparticle; tumor targeting; toxicity

1. Introduction

Medical imaging plays an important role in the pre-detection, diagnosis, and treatment
of tumors [1]. Among the currently available medical imaging techniques, magnetic reso-
nance imaging (MRI) allows whole-body imaging and outstanding microsoft tissue contrast
and image resolution to reveal morphological and anatomical details of tissues [2,3]. As
imaging agents, various nanoparticles have been developed due to their remarkable physi-
cal and chemical properties, which are superior to those of small molecules [4–7]. Moreover,
nanoparticles can be easily surface-functionalized for advanced imaging and tumor target-
ing [8,9]. They can also provide longer blood circulation times than small molecules, which
is conducive to tumor targeting and drug delivery to specific tumor cells [10,11].

Lanthanide oxide (Ln2O3) nanoparticles (Ln = Gd, Tb, Dy, and Ho) are of special inter-
est because they have appreciable magnetic moments at room temperature, which is useful
for MRI [12–15], and high X-ray attenuation power, which is useful for X-ray computed
tomography (CT) [16–18]. In addition, surface-modified Ln2O3 nanoparticles exhibit im-
proved properties, such as high-water proton spin relaxivities, high colloidal stabilities, and
low toxicities [12–14]. For in vivo applications, nanoparticles should have an ultrasmall
particle diameter (<3 nm) to allow their excretion from the body via the urinary system after
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intravenous injection [19,20]. Ln2O3 nanoparticles meet such requirements, displaying
excellent MRI and CT imaging properties at ultrasmall particle diameters [12–15].

The development of tumor-targeting Ln2O3 nanoparticles is challenging. Especially
when compared with commercial molecular Gd-chelates [21–23], Gd2O3 nanoparticles are
more efficient longitudinal relaxation promoters [12–15] because their longitudinal relax-
ivity (r1) values are higher than those (i.e., 3–5 s-1mM-1) [21–23] of commercial molecular
MRI contrast agents. Therefore, Gd2O3 nanoparticles can provide very high contrast T1
MR images and thus, are ideal candidates for tumor-targeting T1 MRI contrast agents.
In particular, their r1 value is optimal at ultrasmall nanoparticle size (1.0–2.5 nm) [24,25].
Meanwhile, other Ln2O3 nanoparticles (Ln = Dy, Tb, and Ho) are eligible as T2 MRI
contrast agents [12,13,15].

Nanoparticles alone accumulate nonspecifically in tumors via passive targeting, i.e.,
the enhanced permeability and retention (EPR) effect [26]. The accumulation amount and
specificity to tumors can be enhanced by active targeting, which is commonly achieved
by modifying contrast agents with tumor-targeting ligands that can selectively bind to
receptors overexpressed on tumor-cell membranes. Such tumor-targeting ligands include
small molecules, such as arginylglycylaspartic acids (Arg-Gly-Asp or RGDs) [27–29] and
folic acid [30,31], peptides, such as chlorotoxin (CTX) [32,33], and biological molecules, such
as antibodies [34]. Nanoparticles can provide a flexible platform to attach tumor-targeting
ligands, thereby improving their specificity and effectiveness for tumor treatment. In
addition, anticancer drugs can also be attached to nanoparticle surfaces for chemotherapy.
Generally, in this type of treatment, most anticancer drugs cannot differentiate between
tumor and normal cells, causing toxic side effects [35,36]. However, such side effects can be
minimized or eliminated by delivering drugs via tumor-targeting nanoparticles. However,
the cytotoxicity and biocompatibility of lanthanides during and after endocytosis by cells
are still largely unknown, although numerous reports describe lanthanides as relatively
non-toxic elements [37,38].

The main purpose of this review is to provide an insight into tumor imaging and
image-guided tumor therapy using functionalized (i.e., tumor-targeting ligand-conjugated)
Ln2O3 nanoparticles. First, nanoparticle synthesis methods, surface-modification, tumor-
targeting ligand conjugation, and various experimental analyses for Ln2O3 nanoparticles
are introduced. Second, physicochemical properties, such as particle diameters and mag-
netic properties, and imaging properties, including relaxivities, are discussed. Third,
recent developments of tumor-targeting T1 MRI contrast agents based on Gd2O3 nanopar-
ticles that were applied in tumor imaging and image-guided tumor therapy and Ln2O3
nanoparticle-based T2 MRI and CT contrast agents are discussed. Finally, recent progress
in the knowledge of the toxicity of Ln2O3 nanoparticles is discussed. Overall, this review
provides an overview of the recent progress in functionalized Ln2O3 nanoparticles applied
in tumor imaging and therapy.

2. Synthesis and Surface Functionalization of Ln2O3 Nanoparticles

Among the various methods currently available for the synthesis of ultrasmall Ln2O3
nanoparticles, the synthesis in a polyol solvent is preferred for biomedical applications
because ultrasmall nanoparticles are obtained (average particle diameter = 2.0 nm) and
subsequent surface coating of the nanoparticles with hydrophilic and biocompatible ligands
can be performed in one pot [17,31]. A general reaction scheme for the polyol synthesis is
provided in Figure 1.
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Figure 1. Reaction scheme for the one-pot polyol synthesis of hydrophilic and biocompatible polymer-
coated ultrasmall Ln2O3 nanoparticles. TEG = triethylene glycol.

Nanoparticle contrast agents possess an additional advantage over molecular agents
because cancer-targeting ligands and drugs can be easily attached to the nanoparticle
surfaces. Small molecular ligands are less efficient in providing good colloidal stability
to nanoparticles compared with polymer ligands, which is due to the presence of many
hydrophilic binding groups in the polymers for attachment to the nanoparticles [39–43].
In addition, hydrophilic polymers can provide higher r1 values than small molecular
ligands [39–41] because they can attract more water molecules around the nanoparticles.
Examples of these polymers are polyacrylic acid (PAA), polymethyl vinyl ether-alt-maleic
acid (PMVEMA), and polyacrylic acid-co-maleic acid (PAAMA) having numerous COOH
groups (Figure 1) [39–41], which can serve as anchor groups of functional molecules, such
as cancer-targeting ligands and drugs. For example, RGD-conjugated PAA-coated Gd2O3
nanoparticles were reported by Ho et al. [44] (Figure 2).

Ln2O3 nanoparticles can also be synthesized in organic solvents via the thermal decom-
position method. The synthesized nanoparticles can be further coated with hydrophilic lig-
ands and then conjugated with cancer-targeting ligands. For example, CTX-poly(ethylene
glycol)-N-(trimethoxysilylpropyl) ethylenediamine triacetic acid silane-coated Gd2O3
nanoparticles (CTX-PEG-TETT-Gd2O3) were reported by Gu et al. [45] as tumor-targeting
contrast agents (Figure 3). Here, the biocompatible poly(ethylene glycol) (PEG) layer is
known to stabilize the Gd2O3 nanoparticles, enhance blood circulation blood times, and
improve colloidal stability [11].
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Figure 2. Two-step synthesis of RGD-PAA-Gd2O3 nanoparticles. (a) Step 1: PAA-Gd2O3 nanoparticles
and (b) step 2: conjugation of RGD with PAA-Gd2O3 nanoparticles. EDC = N-(3-dimethylaminopropyl)-
N′-ethylcarbodiimide, NHS = N-hydroxysuccinimide, and UGNP = ultrasmall gadolinium oxide
nanoparticle. Adapted with permission from [44], The Royal Society of Chemistry, 2020.
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TETT = N-(trimethoxysilylpropyl) ethylenediamine triacetic acid trisodium salt and OA = oleic acid.
Reproduced from [45], The Royal Society of Chemistry, 2014.

3. Physicochemical Characterization

Various experimental techniques can be used to characterize the synthesized Ln2O3
nanoparticles [17,31], as summarized in Table 1. The particle diameters, the hydrodynamic
diameters of nanoparticles dispersed in water, and the crystal structure of the nanoparticles
can be measured using a high-resolution transmission electron microscope (HRTEM)
operating at high acceleration voltages (>200 kV), a dynamic light scattering (DLS) particle
size analyzer, and a powder X-ray diffraction (XRD) spectrometer, respectively. The
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attachment of ligands on the nanoparticle surfaces can be investigated by recording Fourier
transform-infrared (FT-IR) absorption spectra using powder samples; powder samples
may be pelletized in KBr for easy handling and acquisition of good signal-to-noise ratios
using a small number of powder samples. The amount of surface-coating ligand can be
estimated according to thermogravimetric analysis (TGA) curves. The elemental analysis
(EA) can also be used to investigate the surface-coating amount and ligand composition
(C/H/O/N/S) in metal oxide nanoparticles because metal oxide nanoparticles hardly
decompose during EA. The Ln-concentration in an aqueous nanoparticle suspension can be
determined using an inductively coupled plasma atomic emission spectrometer (ICPAES).
The in vitro cellular cytotoxicity of the ligand-coated Ln2O3 nanoparticles can be measured
using various cell viability assay techniques, such as trypan blue dye exclusion staining,
methylthiazoly tetrazolium (MTT) reduction, and water-soluble tetrazolium salt (WST)
assay [46]. Cell viability measurements are generally performed using more than two cell
lines to obtain consistent and reliable results because the cell viabilities generally depend on
the cell lines. Magnetization (M) values of the nanoparticles can be estimated by recording
M versus applied field (H) (M−H) curves at room temperature using a vibrating sample
magnetometer (VSM). Net M values of the nanoparticles without ligand can be obtained
using the net mass of the nanoparticles determined via TGA. For MRI contrast agents,
r1 and the transverse relaxivity (r2) represent their ability to act as T1 or T2 MRI contrast
agents. To measure the r1 and r2 values, longitudinal (T1) and transverse (T2) relaxation
times are measured using an MRI scanner. The T1 relaxation time measurements can be
conducted using an inversion recovery method. For the T2 relaxation times, the Carr–
Purcell Meiboom–Gill pulse sequence can be used for multiple spin-echo measurements.
The r1 and r2 values are then estimated from the slopes of the plots of 1/T1 and 1/T2 versus
the Ln-concentration, respectively. In vivo T1 or T2 MR images can be obtained using an
MRI scanner after intravenous injection of an aqueous nanoparticle suspension sample.
In addition, the X-ray attenuation power of Ln2O3 nanoparticles, which is higher than
those of commercial iodine CT contrast agents, can be measured by recording phantom
images using a CT scanner, and in vivo CT images can be obtained using a CT scanner
after intravenous injection of an aqueous nanoparticle suspension sample.

Table 1. Summary of physicochemical characterization.

Properties Technique 1 Properties Technique 1

Particle diameter HRTEM Hydrodynamic diameter DLS
Crystal structure XRD Ligand surface coating FT-IR absorption, EA

Ligand surface-coating amount TGA, EA Metal concentration in water ICPAES
Cellular cytotoxicity MTT, WST Magnetization VSM
Relaxivity (r1 and r2) MRI MR image MRI

X-ray attenuation power CT CT image CT
1 HRTEM = high-resolution transmission electron microscope; DLS = dynamic light scattering; XRD = X-ray
diffraction; FT-IR = Fourier transform-infrared; EA = elemental analysis; TGA = thermogravimetric analy-
sis; ICPAES = inductively coupled plasma atomic emission spectrometry; MTT = methylthiazoly tetrazolium;
WST = water-soluble tetrazolium salt; VSM = vibrating sample magnetometer; MRI = magnetic resonance imaging;
CT = computed tomography.

4. Physicochemical and Imaging Properties
4.1. Particle Diameters and Surface Coatings

The imaging properties of nanoparticles depend on their particle and hydrodynamic
diameters. Ln2O3 nanoparticles synthesized via the polyol method generally have ultra-
small diameters (average particle diameter = 2.0 nm) [39–44]. Figure 4a–c shows various
HRTEM images of Gd2O3 nanoparticles [44,47,48]. Both particle and hydrodynamic di-
ameters follow a log-normal function distribution; therefore, average particle and hydro-
dynamic diameters can be obtained by fitting the log-normal distribution function to the
observed particle and hydrodynamic diameter distributions, respectively. The insets in
Figure 4c show a nanoparticle suspension sample exhibiting laser light scattering (i.e.,
Tyndall effect) due to the collision of the nanoparticle colloids with the passing laser light,
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whereas triple-distilled water shows no light scattering [44]. This experiment shows the
good colloidal dispersion of the nanoparticles in aqueous media.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 4. (a–c) HRTEM images [44,47,48]. Arrows and circles indicate nanoparticles. Insets in (c) 
show a magnified image of a nanoparticle (top right) and laser light scattering (i.e., Tyndall effect) 
due to the collision of the nanoparticle colloids with a passing laser light, whereas triple-distilled 
water shows no light scattering, confirming the good colloidal dispersion of nanoparticles in aque-
ous media (bottom left). Reproduced from [44,47,48]. Copyright 2020 The Royal Society of Chemis-
try [44]; Copyrights 2018 Wiley [47,48]. 

Due to the ultrasmall particle diameters, the XRD patterns of nanoparticle powder 
samples are generally broad and amorphous [49,50]. Nevertheless, upon performing a 
TGA from room temperature to high temperatures (>500 °C), sharp peaks corresponding 
to the (222), (400), (440), and (622) planes of a highly crystallized form of Ln2O3 having 
cubic structure are observed [50]. Examples of XRD patterns of ligand-coated Gd2O3 na-
noparticles recorded before (i.e., as-prepared) and after TGA [44,47] are provided in Fig-
ure 5. The peak positions and the estimated cell constants of the TGA-analyzed samples 
are well consistent with those given in the literature [51]. The sharp peaks observed in the 
XRD patterns after TGA are due to the particle size growth and subsequent crystallization 
of the nanoparticles (Figure 5a,b), which was confirmed by Kattel et al. on the basis of 
HRTEM images [50,52]. 

20 40 60 80 100

(a)

 2θ (degree)

In
te

ns
ity

 (A
rb

. U
ni

ts
)

(222)

(400)

(440) (622)
After TGA

As-prepared

20 40 60 80 100

(b)

2θ (degree)

As-prepared

 

 

In
te

ns
ity

 (A
rb

. U
ni

ts
) (222)

(400) (440)
(622)

After TGA(211)

 
Figure 5. XRD patterns of (a) cRGD-Gd2O3 nanoparticles [47] and (b) RGD-PAA-Gd2O3 nanoparticles [44] before (i.e., as-
prepared; bottom figures) and after TGA (top figures). Adapted from [44,47]. Copyright 2020 The Royal Society of Chem-
istry [44]; Copyright 2018 Wiley [47]. 

Surface coating of Ln2O3 nanoparticles with hydrophilic and biocompatible ligands 
is essential for their biomedical applications. The surface coating can be investigated by 
recording FT-IR absorption spectra. An FT-IR absorption spectrum of PAA-coated Gd2O3 
nanoparticles is provided as an example at the bottom of Figure 6a [39], along with an FT-
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Figure 4. (a–c) HRTEM images [44,47,48]. Arrows and circles indicate nanoparticles. Insets in
(c) show a magnified image of a nanoparticle (top right) and laser light scattering (i.e., Tyndall effect)
due to the collision of the nanoparticle colloids with a passing laser light, whereas triple-distilled
water shows no light scattering, confirming the good colloidal dispersion of nanoparticles in aqueous
media (bottom left). Reproduced from [44,47,48]. Copyright 2020 The Royal Society of Chemistry [44];
Copyrights 2018 Wiley [47,48].

Due to the ultrasmall particle diameters, the XRD patterns of nanoparticle powder
samples are generally broad and amorphous [49,50]. Nevertheless, upon performing a
TGA from room temperature to high temperatures (>500 ◦C), sharp peaks corresponding
to the (222), (400), (440), and (622) planes of a highly crystallized form of Ln2O3 having
cubic structure are observed [50]. Examples of XRD patterns of ligand-coated Gd2O3
nanoparticles recorded before (i.e., as-prepared) and after TGA [44,47] are provided in
Figure 5. The peak positions and the estimated cell constants of the TGA-analyzed samples
are well consistent with those given in the literature [51]. The sharp peaks observed in the
XRD patterns after TGA are due to the particle size growth and subsequent crystallization
of the nanoparticles (Figure 5a,b), which was confirmed by Kattel et al. on the basis of
HRTEM images [50,52].
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Surface coating of Ln2O3 nanoparticles with hydrophilic and biocompatible ligands
is essential for their biomedical applications. The surface coating can be investigated by
recording FT-IR absorption spectra. An FT-IR absorption spectrum of PAA-coated Gd2O3
nanoparticles is provided as an example at the bottom of Figure 6a [39], along with an
FT-IR absorption spectrum of PAA (Mw = 5100 Da) at the top of the same figure as a
reference. The spectrum of the PAA-coated Gd2O3 nanoparticles exhibited a series of
bands stemming from PAA, such as C−H stretching (2930 cm−1), COO− antisymmetric
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stretching (1550 cm−1), and COO− symmetric stretching vibrations (1400 cm−1). The PAA
and the nanoparticle were bonded through a coordination bonding between Gd3+ on the
nanoparticle surface as a hard acid and the COO− group of PAA as a hard base [53–55]. In
this case, a stable nanoparticle colloid was formed in aqueous media because of the multiple
bonding between many COO− groups of PAA (each PAA has ~54 COO− groups) and a
nanoparticle. On this basis, the bonding between PAA and the Gd2O3 nanoparticle surface
was proposed, as displayed in Figure 6b. Another example of surface coating on Gd2O3
nanoparticles is provided in Figure 6c, which displayed the FT-IR absorption spectra of
RGD, PAA (Mw = 1800 Da), PAA-Gd2O3, and RGD-PAA-Gd2O3 powder samples [44]. The
presence of a C=O stretching band (1553 cm−1) of PAA in the FT-IR absorption spectrum of
PAA-Gd2O3 nanoparticles confirmed the PAA surface coating on the Gd2O3 nanoparticles.
This band was red-shifted by 144 cm−1 compared with free PAA (1697 cm−1), which
can be attributed to the coordination bonding between the COO− groups of PAA and
the Gd3+ of the Gd2O3 nanoparticles. As mentioned above, each PAA can form many
coordination bonds with each Gd2O3 nanoparticle via a hard acid (Gd3+)–hard base (COO−)
interaction [53–55]. The N−H bending vibration at 1544 cm−1 and the C–N stretching
vibration at 1390 cm−1 of RGD [56] appeared in the FT-IR absorption spectrum of the
RGD-PAA-Gd2O3 nanoparticles, confirming the successful conjugation of RGD to PAA in
the PAA-Gd2O3 nanoparticles via amide bond formation.
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Figure 6. (a) FT-IR absorption spectra of PAA-coated Gd2O3 nanoparticles and free PAA sodium
salt (Mw = 5100 Da) and (b) surface-coating structure of PAA on the Gd2O3 nanoparticle sur-
face [39]. (c) FT-IR absorption spectra of PAA (Mw = 1800 Da), PAA-Gd2O3 nanoparticles, RGD, and
RGD-PAA-Gd2O3 nanoparticles [44]. The lowercase letters “s”, “ss”, “as”, and “b” indicate stretch,
symmetric stretch, antisymmetric stretch, and bend, respectively. Adapted from [39,44]. Copyrights
2018 and 2020 The Royal Society of Chemistry, respectively.

The EA can also be used to investigate the surface coating of nanoparticles. For
example, in carbon-coated Gd2O3 nanoparticles (C@Gd2O3), the C/H/O content, in which
H mostly stems from hydrocarbons and -OH groups and O mostly stems from -OH groups
on the carbon-coating layer, was determined to be 28.1/3.2/26.5 in wt% [57]. The sum
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of these wt% is 57.8%, which is fairly consistent with the 56.5% estimated from the TGA
curve (Figure 7). As can be seen in Figure 7, the remaining 37.0% corresponds to the
mass wt% of Gd2O3 in the C@Gd2O3 nanoparticles. By performing a grafting density
analysis [58], the wt% can be converted into the number of ligands grafted onto each
nanoparticle surface [47,48].
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4.2. Magnetic Properties

To obtain high r1 and r2 values for enhanced MR contrast images, the nanoparticles
must exhibit large M values at room temperature [59,60]. Figure 8a,b shows the M–H
curves of Ln2O3 nanoparticles (Ln = Gd, Tb, Ho) [41,43]. Similar to the corresponding
bulk materials [61–63], all of the nanoparticle samples are paramagnetic (i.e., no hysteresis,
zero coercivity, zero remanence, and low M values) and exhibit appreciable unsaturated
M values up to the measured H values at 300 K. From the mass-corrected M–H curve, the
net M value of the Gd2O3 nanoparticles, which corresponds to the nanoparticles without
ligands, at 2.0 T was estimated to be 1.71 emu/g. This appreciable value is due to the high
4f-electron spin magnetic moment (s = 7/2) of Gd3+ having seven unpaired 4f electrons.
Meanwhile, other Ln2O3 nanoparticles (Ln = Tb and Ho) exhibit net M values of 3.8 and
4.1 emu/g at 1.8 T (Figure 8b), respectively, which result from high 4f-electron spin–orbital
magnetic moments, i.e., J = 6 for Tb3+ and J = 8 for Ho3+. The slightly higher M value of the
Ho2O3 nanoparticles compared with that of the Tb2O3 nanoparticles is due to the higher
atomic magnetic moment (µ = 10.60 µB) of Ho3+ compared with that of Tb3+ (= 9.72 µB) [64],
where µB is the Bohr magneton.
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4.3. MR Imaging Properties: r1 and r2 Values

The r1 and r2 values are affected by the number of water molecules around the
nanoparticles and the distance between them and, therefore, depend on the water-attracting
ability of the ligands around the nanoparticles [59,60,65]. Accordingly, surface-coating
ligands should be properly selected. Gd2O3 nanoparticles act as positive (T1) MRI contrast
agents due to the high spin magnetic moment of Gd3+ (s = 7/2); they have high r1 values
and r2/r1 ratios close to one [39–41] (T1 MRI contrast agents exhibit low r2/r1 ratios,
whereas T2 MRI contrast agents have high r2/r1 ratios [23]). The r1 and r2 values of
PAAMA-coated Gd2O3 nanoparticles at 3.0 T MR field were determined to be 40.6 and
63.4 s−1 mM−1 (r2/r1 = 1.56), respectively, using the 1/T1 and 1/T2 plots versus Gd-
concentration depicted in Figure 9 [40]. This r1 value is approximately 10 times higher than
those [21–23] of commercial molecular T1 MRI contrast agents, such as Dotarem, ProHance,
Gadovist, Magnevist, and Omniscan [21,22]. The r1 value also depends on the particle
diameter of Gd2O3 nanoparticles, for which the optimal value was suggested to be 1.0 to
2.5 nm [24]. The observed particle diameter of the PAAMA-coated Gd2O3 nanoparticles
is within this size range. As a reference, the r1 and r2 values of Gadovist as a commercial
molecular agent are provided at the bottom of Figure 9, which shows that this nanoparticle
sample is more powerful than Gadovist as a T1 MRI contrast agent. On the other hand,
other Ln2O3 nanoparticles (Ln = Tb, Dy, and Ho) show appreciable to high r2 values
and negligible r1 values with very large r2/r1 ratios [66]. Therefore, these nanoparticles
are suitable as T2 MRI contrast agents. The r2 values of these nanoparticles increased
with increasing the MR field [66] because r2 is proportional M2 [59,60]. Therefore, these
nanoparticles are expected to provide appreciable T2 MR contrast images at high MR fields.
For example, PAA-coated Ln2O3 nanoparticles (Ln = Tb and Ho) exhibit appreciable T2 MR
contrast images at 9.4 T MR Field [43]. For comparison, this T2 contrast is lower than that
of superparamagnetic iron oxide nanoparticles possessing high saturation magnetizations
(50–80 emu/g) and high r2 values [67,68].
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5. In Vivo Imaging
5.1. Tumor-Targeting T1 MRI Contrast Agents

Gd2O3 nanoparticles are the most widely applied Ln2O3 nanoparticles as in vivo
tumor-targeting T1 MRI contrast agents because of the high spin magnetic moment (s = 7/2)
of Gd3+ (8S7/2), which is the largest value among the elements in the periodic table and
thus provides very high T1 MR contrast. Therefore, various studies on the synthesis
and application of tumor-targeting Gd2O3 nanoparticles have been reported, which are
discussed below according to the type of tumor-targeting ligands used.

5.1.1. Chlorotoxin (CTX)

Gu et al. developed a mouse brain tumor-targeting contrast agent using CTX as a
tumor-targeting ligand [45]. CTX is a peptide consisting of a 36-amino acid sequence
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found in the venom of the deathstalker scorpion [69]. CTX preferentially binds to glioma
cells, enabling the development of therapeutic and diagnostic protocols for several types
of tumors [70]. In this study, CTX-PEG-TETT-coated Gd2O3 nanoparticles with a core
diameter of 3.46 nm and r1 value of 8.41 s−1 mM−1 at 7.0 T were applied to tumor-
targeting imaging in vivo. Figure 10 shows a series of in vivo T1 MR images of mice
with brain glioma tumor after mice tail intravenous injection of PEG-TETT-Gd2O3 and
CTX-PEG-TETT-Gd2O3 nanoparticle samples at the same Gd dose (6 mg Gd/kg). The
PEG-TETT-Gd2O3 nanoparticles slightly improved the contrast of glioma sites (labeled
with arrows) compared with the preinjection image. However, the CTX-PEG-TETT-Gd2O3
nanoparticles exhibited highly enhanced T1 MR images in brain tumors (labeled with
arrows) after injection, clearly supporting that the CTX-PEG-TETT-Gd2O3 nanoparticles
act as a tumor-targeting T1 MRI contrast agent.
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intravenous injection of PEG-TETT-Gd2O3 and CTX-PEG-TETT-Gd2O3 nanoparticle samples into
mice tails at 7.0 T. Tumor sites are indicated with arrows. Adapted from [45]. Copyright 2014 The
Royal Society of Chemistry.

5.1.2. Cyclic RGD (cRGD)

Ahmad et al. investigated Gd2O3 nanoparticles that were directly conjugated with
cRGDs [47]. Prior to measuring in vivo T1 MR images to confirm tumor targeting, an
in vitro cellular incubation experiment was conducted with cRGD-Gd2O3 nanoparticles to
confirm the internalization of the nanoparticles in the tumor cells, which is particularly
important in the case of tumor theragnosis. To investigate this, human brain glioma
(U87MG) tumor cells were incubated with cRGD-Gd2O3 nanoparticles (0.01 mM Gd).
Untreated cells as a control group are shown in Figure 11a. The treated cells exhibited
different surface morphologies from that of the control cells due to nanoparticle attachment
on the tumor cell surfaces (Figure 11b). The internalization of cRGD-Gd2O3 nanoparticles
in the tumor cells was confirmed by analyzing the TEM images of the cells, where no cRGD-
Gd2O3 nanoparticles were found in the TEM image of the control cells (Figure 11c), whereas
they were found in the treated tumor cells (Figure 11d). In addition, an energy-dispersive X-
ray (EDX) spectroscopy analysis of the circled region in Figure 11d confirmed the presence
of Gd (Figure 11e), supporting the internalization of cRGD-Gd2O3 nanoparticles in the
U87MG tumor cells.
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Figure 11. Optical microscope images of U87MG tumor cells incubated (a) without and (b) with
cRGD-Gd2O3 nanoparticles. HRTEM images of U87MG tumor cells incubated (c) without and
(d) with cRGD-Gd2O3 nanoparticles. (e) EDX spectrum of the circled region in (d). Adapted
from [47]. Copyright 2018 Wiley.

To demonstrate the occurrence of in vivo tumor targeting via T1 MRI, a sample so-
lution containing cRGD-Gd2O3 nanoparticles was injected into the tail vein of a U87MG
tumor-bearing mouse inoculated into the liver (injection dose = ~0.1 mmol Gd/kg) [47].
T1 MR images were obtained before and after injection (Figure 12a). As shown in the
figure, tumor targeting was confirmed via positive contrast enhancement in the liver tu-
mor 5 min after injection, indicating the accumulation of the nanoparticles in the tumor.
Figure 12b shows a color map of the middle T1 MR image depicted in Figure 12a, in which
the contrast enhancement in the liver tumor (i.e., the widely spread brighter part) can be
clearly observed. The signal-to-noise ratios (SNRs) of the three regions of interest (ROIs)
in the liver, i.e., the normal region (filled square), the tumor region (filled circle), and the
necrotic region (filled triangle), as labeled in the inserted T1 MR image, are plotted versus
time in Figure 12c. The T1 contrast enhancement in the liver tumor was approximately
three times higher than in the normal region of the liver, as shown in the percentage SNR
plots in Figure 12d. These results suggest that the cRGD-Gd2O3 nanoparticles act as a
tumor-targeting T1 MRI contrast agent.

5.1.3. TAT Peptide

Ahmad et al. explored the tumor-imaging application of transactivator of transcription
(TAT) peptide-conjugated Gd2O3 nanoparticles [48]. The TAT peptide, which contains
48−57 fragments of the basic domain of the human immunodeficiency virus type 1 TAT
protein, exhibits cell-penetrating properties [71]. To date, various nanomaterials grafted
with TAT peptides have been applied in gene delivery, drug delivery, and tumor-cell
imaging [72–74]. Ahmad et al. observed a greater accumulation of TAT peptide-grafted
Gd2O3 nanoparticles in tumor cells than in normal cells in a mouse via T1 MRI in vivo [48].
The TAT peptide allowed cell penetration of the nanoparticles during circulation through
angiogenesis via the EPR effect [26,75].
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5.1.4. Linear RGD

Recently, Ho et al. synthesized highly stable Gd2O3 nanoparticles coated with PAA
and then conjugated with liner RGD (Figure 2) to target tumors by binding to αvβ3 and
αvβ5 integrins, which are overexpressed in tumor angiogenic sites and tumor cells [44].
The RGD-PAA-Gd2O3 nanoparticles accumulated at the tumor sites, showing enhanced T1
contrast at the tumor sites after injection (Figure 13). This result was probably due to the
combination of various outstanding properties of the RGD-PAA-Gd2O3 nanoparticles, such
as the delivery of hundreds of Gd atoms per nanoparticle to the tumor site, tumor-targeting
ability, and ultrasmall size, which provides them with good transport properties during
circulation through blood vessels and tumor-cell penetration. This study indicated that the
RGD-PAA-Gd2O3 nanoparticles are applicable to in vivo tumor diagnosis.

5.2. MRI-Guided Therapy

One of the main advantages of Gd2O3 nanoparticles as T1 MRI contrast agents is
that they can be used for MRI-guided therapy. For example, Le Duc et al. developed
gadolinium-based nanoparticles encapsulated in a polysiloxane shell and then grafted with
diethylenetriaminepentaacetic dianhydride for nanoparticle colloidal stabilization [76].
They used the nanoparticles for tumor therapy using X-ray microbeam radiation [77,78],
which improved the survival of mice against an aggressive brain tumor. The efficacy of
this treatment depended on how accurately MRI contrast agents locate the tumor position
and shape. In the T1 MR images recorded a few minutes after intravenous injection, the
delineation of the tumor was clearly distinguished from normal tissues in a rat brain as
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shown in Figure 14, and X-ray microbeam radiation was then conducted to kill the brain
tumor cells.
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5.3. T2-Weighted MRI

Recently, Ln2O3 (Ln = Tb, Dy, and Ho) nanoparticles with appreciable r2 and negligible
r1 values, suitable for T2 MRI were developed [42,43,50,66,79,80]. For example, PAA-coated
Ln2O3 (Ln = Tb and Ho) nanoparticles exhibited appreciable r2 values at 3.0 T MR field
(3.19 s−1 mM−1 for Ln = Tb and 1.44 s−1 mM−1 for Ln = Ho), enhanced r2 values at 9.4 T
MR field (16.40 s−1 mM−1 for Ln = Tb and 9.20 s−1 mM−1 for Ln = Ho) [43], and negligible
r1 values at all MR fields. With such r1 and r2 values, only the exclusive induction of T2
relaxations by the nanoparticles occurs at all MR fields. The appreciable T2 MR contrast
enhancements at 9.4 T MR field confirmed the effectiveness of the nanoparticles as T2 MRI
contrast agents at high MR fields in vivo [43]. Dy2O3 nanoparticles constitute another
example with application in T2 MRI. Thus, D-glucuronic acid-coated Dy2O3 nanoparticles
exhibited T2 MR contrast enhancements in a mouse liver at 3.0 T MR field in vivo [79]
(Figure 15a), proving the potential of Dy2O3 nanoparticles as T2 MRI contrast agents.
Recently, Yue et al. investigated carbon-coated Dy2O3 nanoparticles as a new class of T2
MRI contrast agent at 3.0 T MR field [80]. The nanoparticles were nearly non-toxic via
an in vitro cellular cytotoxicity assay. The presence of numerous hydroxyl groups on the
carbon-coating layer conferred the colloidal nanoparticles with stability in aqueous media.
The nanoparticles exhibited T2 contrast enhancement in the mice kidneys after intravenous
administration, acting as a T2 MRI contrast agent (Figure 15b).
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Figure 16. (a) In vivo CT images of a mouse bladder (labeled B) and (b) plot of the X-ray absorption 
of the ROI in the bladder (indicated by the small, dotted circle in (a)) before and after intravenous 
injection of an aqueous sample into the mouse tail [81]. Adapted from [81]. Copyright 2015 Springer 
Nature. 

Figure 15. (a) A series of 3.0 T in vivo T2 MR images: coronal views of kidneys and liver (labeled
as “K” and “L”, respectively) before and after intravenous injection of an aqueous solution of D-
glucuronic acid-coated Dy2O3 nanoparticles into the mouse tail [79]. (b) In vivo coronal 3.0 T T2 MR
images of the mice kidneys (indicated with arrows) as a function of time before and after intravenous
injection of an aqueous solution of carbon-coated Dy2O3 nanoparticles into the mouse tail [80].
Adapted from [79,80]. Copyrights 2012 Elsevier and 2020 MDPI.

5.4. CT Imaging

Lanthanide elements exhibit higher X-ray attenuation coefficients [16] than iodine,
which is currently used as a CT contrast agent in its organic molecular forms. Consequently,
Ln2O3 nanoparticles can be applied as CT contrast agents [17,18,81,82]. For example,
an aqueous solution of Gd2O3 nanoparticles coated with iodine compounds was used
to investigate CT imaging in vivo [81]. Brighter contrast enhancements were observed
in mouse bladder (labeled B in Figure 16a) after intravenous tail injection. The X-ray
absorption in the ROI of the bladder (indicated by a small, dotted circle in Figure 16a)
indicated that the contrast reached a maximum at ~30 min after injection and then decreased
with time (Figure 16b), suggesting that the sample solution was excreted through the
bladder as urine. This result showed that an aqueous solution of Gd2O3 nanoparticles
might serve as a CT contrast agent.
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Figure 16. (a) In vivo CT images of a mouse bladder (labeled B) and (b) plot of the X-ray absorption 
of the ROI in the bladder (indicated by the small, dotted circle in (a)) before and after intravenous 
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Figure 16. (a) In vivo CT images of a mouse bladder (labeled B) and (b) plot of the X-ray ab-
sorption of the ROI in the bladder (indicated by the small, dotted circle in (a)) before and after
intravenous injection of an aqueous sample into the mouse tail [81]. Adapted from [81]. Copyright
2015 Springer Nature.

6. Ln2O3 Nanoparticle Toxicity

As shown in Figure 17a, bare Gd2O3 nanoparticles exhibit toxicities in both NCTC1469
normal and U87MG tumor-cell lines, whereas PAA-coated Gd2O3 nanoparticles are nearly
non-toxic up to 500 µM Gd with cell viabilities of ∼93% in DU145, ∼99% in NCTC1469,
and ∼80% in U87MG cell lines (Figure 17b) [83]. Other PAA-coated Ln2O3 nanoparticles
(Ln = Dy, Tb, and Ho) also exhibit very low cytotoxicities in both DU145 and NCTC1469 cell
lines (Figure 17c–e) [42,43], showing good biocompatibilities. These examples demonstrate
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that Ln2O3 nanoparticles must be well protected with water-soluble and biocompatible
ligands for biomedical applications.
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Figure 17. In vitro cytotoxicities of (a) uncoated Gd2O3 nanoparticles in NCTC1469 and U87MG cell lines and (b) PAA-
coated Gd2O3 nanoparticles in DU145, NCTC1469, and U87MG cell lines [83]. PAA-coated Ln2O3 nanoparticles (Ln = (c) 
Dy, (d) Tb, and (e) Ho) in DU145 and NCTC1469 cell lines [42,43]. Adapted from [42,43,83]. Copyrights 2018, 2020 and 
2021 The Royal Society of Chemistry, Wiley & MDPI. 
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Figure 17. In vitro cytotoxicities of (a) uncoated Gd2O3 nanoparticles in NCTC1469 and U87MG cell lines and (b) PAA-
coated Gd2O3 nanoparticles in DU145, NCTC1469, and U87MG cell lines [83]. PAA-coated Ln2O3 nanoparticles (Ln = (c) Dy,
(d) Tb, and (e) Ho) in DU145 and NCTC1469 cell lines [42,43]. Adapted from [42,43,83]. Copyrights 2018, 2020 and 2021 The
Royal Society of Chemistry, Wiley & MDPI.

Lanthanides are relatively non-toxic elements [37,38]. For example, for lanthanide
chlorides, the lethal dose causing the death of 50% of a group of 10 animals (LD50) is higher
than 10 and 450 mg per kg bodyweight for intravenous and intraperitoneal injections,
respectively [84]. In the case of Ln2O3 nanoparticles, other properties, either alone or
in concert, must be considered to evaluate the possible toxic effects of the nanoparticles.
These properties include chemical composition, doping, hydrodynamic size, shape, redox
properties, tendency for aggregation, composition of the shell or coating material, surface
modifications, colloidal stability, solubility, biodegradability, concentration, and duration of
exposure [85]. Although several studies have investigated the toxicity of lanthanide-based
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nanoparticles having different properties, such as chemical composition, size, surface
ligands, and lanthanide concentration [86–88], the lack of literature data has prevented
drawing firm conclusions for the assessment of the potential toxicity of Ln2O3 nanoparticles.
Furthermore, several aspects of the biological interaction of Ln2O3 nanoparticles in living
systems still need to be unveiled. For example, despite in vitro cytotoxicity studies being
conducted using various cell cultures, these studies did not provide information about
long-term safety and cytotoxicity [89,90], for which in vivo cytotoxicity studies would
be needed.

Nevertheless, several important conclusions can be extracted from the currently
available literature data. In the case of biomedical applications, Ln2O3 nanoparticles
are usually introduced into the body by intravenous injections and circulated by the
bloodstream primarily to organs, such as the liver and spleen, kidneys, heart, lungs, and
brain [91]. The possible retention or uptake in blood and organs strongly depends on
the surface properties of the nanoparticles. Ligand coating can promote the interaction
of the Ln2O3 nanoparticles with the cell membranes, favoring the internalization of the
nanoparticles by various types of cells. However, biologically inert coating ligands, such
as PEG, may prolong the circulation in the bloodstream of nanoparticles [11]. In addition,
nanoparticle size is an important factor for the excretion route [92,93]. Thus, nanoparticles
smaller than 3 nm can be excreted by renal filtration [19,20], whereas those larger than
3 nm are enclosed by a phagocyte system. As a part of the immune system, the phagocyte
system is composed of several types of phagocytic cells in the reticular tissue within the
body, whose main function is to remove undesired species, such as bacteria, viruses, and
foreign materials, including nanoparticles.

The toxicity of Ln2O3 nanoparticles differs depending on the lanthanide ions. For ex-
ample, Er2O3 shows higher toxicity than Gd2O3 and La2O3 and is highly toxic to zebrafish
embryos at a concentration of 50 ppm Er, causing significant mortality and morphological
malformations [93]. Meanwhile, the toxicity of Gd2O3 nanoparticles is primarily attributed
to the release of Gd3+ ions [94–96]. The toxicity of Gd3+ ions has been addressed not
only for Gd2O3 nanoparticles but also for a variety of molecular Gd3+-chelates. In the
case of Gd2O3 nanomaterials, Eu3+-doped Gd2O3 (Gd2O3:Eu3+) nanotubes can adversely
affect bone marrow stromal cells (BMSCs) [97]. Yang et al. reported the application of
153Sm-doped Gd(OH)3 nanorods as a potential MRI contrast agent [98]. In vitro cell toxicity
tests revealed that Gd(OH)3 nanorods have no toxic effect on cellular proliferation and
viability. Furthermore, an in vivo toxicity test using Kunming mice showed that injection
up to 100 mg/kg of Gd(OH)3 nanorods had no toxic effect up to 150 days after exposure.
However, this in vivo test investigated the short-term toxic effect of Gd(OH)3 nanorods.
In contrast, the long-term toxicity of clinically used Gd3+-chelates was reported. When
used in patients with severely compromised kidney function, Gd3+-chelates promoted
the development of nephrogenic systemic fibrosis (NSF), which is a rare disease affecting
different parts of the body that can lead to thickening or hardening of the skin and de-
posits [99] (Figure 18). Moreover, NSF is a progressive condition that can be fatal because
it may cause multiple organ failure [99–102]. Gd3+ retention in the body, which is greater
with linear structured Gd3+-chelates than with macrocyclic structured Gd3+-chelates, was
demonstrated to be associated with NSF.

Compared with clinically used Gd3+-chelates, the toxicity of Ln2O3 nanoparticles, in-
cluding Gd2O3 nanoparticles, has been less explored. For instance, the extent, mechanism,
chemical form, and clinical implications of chronic lanthanide retention for Ln2O3 nanopar-
ticles remain unknown. Therefore, more comprehensive investigations are required to
improve our understanding of Ln2O3 nanoparticle toxicity and its clinical importance. In
this context, the development of new experimental techniques may play a significant role
in unveiling lanthanide nanotoxicity. For example, nanotoxicogenomics [103], which uses
DNA microarray technologies to investigate the impact of nanoparticles on global gene
expression profiles of cells and tissues, has emerged as a new field of toxicology to provide
new and important insights into the toxicity of Ln2O3 nanoparticles.
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7. Conclusions and Perspectives

Recent studies on the synthesis, surface modification, tumor-targeting ligand conju-
gation, toxicity, and novel biomedical applications to tumor-targeting T1 MRI and image-
guided tumor therapy of Ln2O3 nanoparticles were reviewed here. In addition, T2 MRI
and CT imaging applications were also discussed. High-quality Ln2O3 nanoparticles can
be synthesized via the polyol method and organic-phase thermal decomposition method
and then surface-coated with hydrophilic and biocompatible ligands for colloidal stability
and biocompatibility. Polymers are more efficient than small molecules as surface-coating
ligands because of their many –COOH, –NH2, –OH groups, which can be attached to
nanoparticles and conjugated with tumor-targeting ligands and drugs.

The interest in Ln2O3 nanoparticles in the field of medical imaging lies principally in
the excellent imaging properties of lanthanides, which arises from their appreciable para-
magnetic moments at room temperature; Gd3+ has the highest 4f-electron spin magnetic
moment (s = 7/2) among the elements in the periodic table, which is extremely useful for
T1 MRI, and other Ln3+ ions (Ln = Tb, Dy, and Ho) have a very high 4f-electron spin–orbital
magnetic moment, which is suitable for T2 MRI. In addition, lanthanide elements possess
higher X-ray attenuation coefficients than iodine, which is currently used as a CT contrast
agent in its organic compound forms. The potential of Ln2O3 nanoparticles as CT contrast
agents has been confirmed by recording in vivo CT images. In the case of tumor targeting,
Gd2O3 nanoparticles are the most widely investigated Ln2O3 nanoparticles due to their
very high T1 MRI sensitivity. Various tumor-targeting ligands have been conjugated to
Gd2O3 nanoparticles for tumor imaging and T1 MRI-guided tumor therapy. Especially, the
enhanced accumulation of tumor-targeting ligand-coated Gd2O3 nanoparticles at tumor
cells compared with that at normal cells allowed the development of precise image-guided
tumor therapies via clear distinction and delineation of tumors from normal tissues.

As reviewed here, further intensive research is essential to achieve the ultimate goal
of using Ln2O3 nanoparticles for tumor-targeting diagnosis and therapy and nontumor-
targeting medical imaging. In addition, sophisticated toxicological and pharmacological
improvements are required to demonstrate the safety of nanoparticle formulations prior to
clinical trials. We hope that this review will guide the future development of biomedical
applications of Ln2O3 nanoparticles.
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