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KEY WORDS Abstract  The N®-methyladenosine (m®A) modification is the most prevalent modification of eukaryotic
mRNAs and plays a crucial role in various physiological processes by regulating the stability or function

N°*-Methyladenosine; of target mRNAs. Accumulating evidence has suggested that m®A methylation may be involved in the

D ion; . . Lo L .

cifglegle pathological process of major depressive disorder (MDD), a common neuropsychiatric disorder with
Astrocyte; ’ an unclear aetiology. Here, we found that the levels of the circular RNA HECW2 (circHECW2) were
WTAP; significantly increased in the plasma of both MDD patients and the chronic unpredictable stress (CUS)
Ubiquitination; mouse model. Notably, the downregulation of circHECW?2 attenuated astrocyte dysfunction and
GNG4; depression-like behaviors induced by CUS. Furthermore, we demonstrated that the downregulation of cir-
Dysfunction cHECW?2 increased the expression of the methylase WTAP, leading to an increase in Gng4 expression via

m®A modifications. Our findings provide functional insight into the correlation between circHECW?2 and
m®A methylation, suggesting that circtHECW2 may represent a potential target for MDD treatment.
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1. Introduction

Major depressive disorder (MDD) is a debilitating psychiatric
disorder characterized by high rate of disability and suicide' . It
is represented by significant psychosocial impairment, cognitive
dysfunction, and impaired affect™°. According to previous studies,
with the complex mechanism, the outcomes of depression were
the combined action of genes and environment’*. Antidepressant
medication, when used appropriately, has the potential to be
helpful, and in some cases, it can even be life-saving. However,
the outcomes are suboptimal given that approximately 50% of
patients do not adequately respond”"'®. Additionally, unpredictable
therapeutic drugs may induce persistent depression and worse
impairments. After remission of MDD patients, drugs for main-
tenance are suggested for 6 months to 1 year. However, after the
withdrawal of drugs, there are no predictors for recurrence of
MDD"'. For these purposes, the exploration of biomarkers could
be particularly informative for the diagnosis and prognosis of
MDD, and deep research of the mechanisms helps investigate
more potential targets. In summary, conducting intensive studies
in this area has the potential to stimulate the development of new
and innovative clinical approaches in the future.
Né—Methyladenosine (mf’A) is a common mRNA modification
and is present in physiological and pathological processes'*'”.
The dynamic regulation of m®A modification is mediated by
specific enzymes, including writers, erasers, and readers. Writers,
also known as methyltransferase, include Wilms tumor 1 associ-
ated protein (WTAP), methyltransferase-like 3 (METTL3), and
methyltransferase-like 14 (METTL14), and are responsible for
installing m°®A modification. While erasers include several
demethylases, such as AlkB homolog 5 (ALKBHS) and fat mass
and obesity-associated protein (FTO)’. Readers, represented by
YTH domain-containing proteins, recognize and bind to m°A-
modified mRNAs, affecting various aspects of RNA metabolism
and function'?. Research has shown that methylation of m°A plays
a broad and key role in biological processes in various organs or
tissues'>'®. Significantly, the previous study indicated that m°A
in the central nervous system (CNS) showed a new perspective on
the regulation of genes and that regulating the levels of m®A may
be helpful for the pathophysiology of CNS disorders'’. In addi-
tion, numerous proofs showed that ALKBH5 and FTO are asso-
ciated with MDD"*"?%, Collectively, these studies point to the
importance of m°A in MDD. However, the detailed mechanisms
of the methyltransferase WTAP predicated in the physiological
and pathological process of MDD remain to be further elucidated.
Circular RNAs (circRNAs), a type of non-coding RNAs, are
produced by noncanonical back-splicing events and are highly
expressed in CNS***, Many studies have indicated that they are
involved in many pathological and physiological processes® >’
Due to their conservation, stability, and specificity of structure,
circRNAs have important clinical potential in many aspects, as
they could serve as potential biomarkers and direct effective
treatment strategies for CNS diseases. Importantly, transcriptome
analyses have shown abnormal expression of circRNAs in animal
models and depressive patients’**’. Our earlier studies showed

that circRNAs may act as potential biomarkers and targets of
therapy for depression”>*?*. Circular RNA HECW2 (circH-
ECW2, mmu_circ_0000041) is a circular RNA with high con-
servation across mice and humans. It is derived from exons 11, 12,
13, and 14 of the HECW?2 gene. Our previous research showed
that circHECW?2 levels were markedly increased in the hippo-
campus of LPS-treated mice™’. However, the function of circH-
ECW?2 in depression remains unclear.

Astrocytes are the most abundant glial cells in the mammalian
brain’', controlling multiple processes in the nervous system in
healthy and diseased states’>*’. They are versatile cells in the
brain and participate in most functions as active players.
Increasing evidence suggests that dysfunction of astrocytes plays a
pivotal role in the development of depression’. For instance,
astrocytes have been reported to mediate depression in the hip-
pocampus through the release of ATP/adenosine™*® and to toxi-
cally depress synaptic transmission’’. Moreover, astrocyte
participation in depression has been found in many brain regions,
suggesting that it is a general phenomenon in the brain®®. More
importantly, there has been a growing focus on an astrocyte-
centric rather than a neuron-centric cause of MDD over the past
two decades™.

In the study, we aimed to investigate the involvement of
circHECW2-m°A methylation regulation in MDD. Specifically,
we sought to elucidate the underlying molecular mechanisms,
with a particular emphasis on the role of WTAP in mediating m°A
modification of Gng4 mRNA. Our findings provided compelling
evidence that the downregulation of circHECW2 improved
astrocyte function in depression by modulating m®A modifications
of Gng4 mRNA through WTAP. In summary, our results shed light
on novel mechanisms that outline the interplay between circRNA
and m®A methylation in MDD, underscoring the potential for
treatments that directly target astrocytes in CNS diseases.

2. Materials and methods

2.1.  Patients for clinical study

The protocol was approved by the Ethics Committee of Zhongda
Hospital (approval ID: 2020ZDSYLL247-P01). Healthy controls
(HCs) were recruited from the local community, and patients with
MDD were recruited from the Department of Psychiatry, Zhongda
Hospital. Written informed consent was obtained from all patients
and HCs. The clinical characteristics of these subjects are listed in
Tables 1-3.

2.2.  Animal information

Adult male mice (C57BL/6J, 6—8 weeks old) were obtained from
GemPharmatech Co., Ltd. Experiments of mice were performed in
accordance with standard guidelines for the use of laboratory
animals. All experiments were approved by the Institutional An-
imal Care and Use Committee of the Medical School, Southeast
University.
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Table 1  Baseline participant characteristics.

Characteristic HC group MDD group P value
n =252 n =174

Age (years) 38.73 £ 1.91 37.05 £ 1.55 0.490
Gender (Male) (%) 26.92% (14) 26.67% (19) 0.875
Education (years) 12.73 + 0.76 11.25 + 0.49 0.088
BMI (kg/m?) 24.09 £ 0.41 21.89 £ 0.36 0.000
Marital status (Single/Married/Divorced) 18/34/0 19/46/9 0.027
Family history (yes/no) 0/52 9/65 0.009
First episode (%) NA 74.32% (55) NA
On-set age (years) NA 35.24 £+ 1.55 NA

HC, healthy control; MDD, major depressive disorder; BMI, body mass index.

NA, not available.
All data are all presented as the mean = SEM.

2.3.  Human plasma collection and treatments

Plasma samples were collected from patients who did not receive
drug therapy. Between 6:00 and 10:00 am, fasting venous blood
(5 mL) was collected. Another 5 mL of blood was collected after
the 2 weeks of MDD therapy. Firstly, the separation of plasma
was collected at a speed of 1000x g for 15 min at 4 °C. The RNA
was extracted from the plasma using Qiagen miRNeasy Serum/
Plasma Kit (217184, Qiagen, USA) and was quantified using a

NanoDrop1000 (Thermo Fisher Scientific, USA). The prepared
supernatant was transferred to RNase/DNase-free tubes and
stored at —80 °C until further processing.

2.4.  Chronic unpredictable stress (CUS) model
Animals were exposed to 1—2 randomly scheduled stressors per

day for 4 weeks. The operations were as follows: (1) 24 h water
deprivation, (2) 24 h food deprivation, (3) 24 h sawdust moistened

Table 2  Depression information.

Characteristic HC group MDD group P
n =52 n =174
HAMD-24 1.48 £ 0.19 28.68 £ 0.80 0.000
HAMD-Anxiety/somatization 0.51 = 0.10 6.55 + 0.25 0.000
HAMD-Weight 0.04 £ 0.03 0.78 £ 0.10 0.000
HAMD-Cognitive impairment 0.11 = 0.04 4.23 £0.28 0.000
HAMD-Diurnal variation 0.00 = 0.00 0.55 = 0.08 0.000
HAMD-Retardation 0.15 £ 0.06 6.89 £ 0.21 0.000
HAMD-Sleep disturbance 0.48 £+ 0.10 4.08 £ 0.21 0.000
HAMD-Feelings of despair 0.08 + 0.04 4.55 £0.23 0.000
PHQ-9 2.19 + 0.32 17.89 £ 0.63 0.000
MADRS 1.10 £ 0.21 27.54 £ 0.96 0.000
TEPS 80.90 + 2.04 57.87 £2.49 0.000
TEPS-Anticipatory pleasure 4392 £ 1.10 27.24 + 1.13 0.000
TEPS-Consummatory pleasure 36.98 £ 1.05 30.64 £ 1.74 0.006
SHAPS 20.58 £ 0.85 36.82 £ 0.93 0.000
HAMA 1.69 + 0.23 19.66 £ 0.96 0.000
HAMA-Physical anxiety 0.58 £+ 0.13 7.49 £ 0.55 0.000
HAMA-Psychological anxiety 1.12 £ 0.18 12.18 £ 0.51 0.000
GAD-7 1.69 £ 0.38 13.64 £ 0.60 0.000

HC, healthy control; MDD, major depressive disorder; HAMD-24, 24-item Hamilton Depression Scale; HAMD-Anxiety/Somatization, Hamilton
Depression Scale-Anxiety/Somatization factor; HAMD-Weight, Hamilton Depression Scale-Loss of weight factor; HAMD-Diurnal variation,
Hamilton Depression Scale-Diurnal variation factor; HAMD-Cognitive impairment, Hamilton Depression Scale-Cognitive impairment factor;
HAMD-Retardation, Hamilton Depression Scale-Retardation factor; HAMD-Sleep disturbance, Hamilton Depression Scale-Sleep disturbance
factor; HAMD-Feelings of despair, Hamilton Depression Scale-Feelings of despair factor; PHQ-9, 9-items Patient Health Questionnaire; MADRS,
Montgomery Asberg Depression Rating Scale; TEPS, Temporal Experience of Pleasure Scale; TEPS-Anticipatory pleasure, Temporal Experience of
Pleasure Scale-Anticipatory pleasure; TEPS-Consummatory pleasure, Temporal Experience of Pleasure Scale-Consummatory pleasure; SHAPS,
Snaith-Hamilton Pleasure Scale; HAMA, Hamilton Anxiety Scale; HAMA-Physical anxiety, Hamilton Anxiety Scale-Physical anxiety factor;

HAMA-Psychological anxiety, Hamilton Anxiety Scale-Psychological anxiety factor; GAD-7, 7-item generalized anxiety disorder.

All data are all presented as the mean == SEM.
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Table 3  Social psychological information.
Characteristic HC Depression P
n =52 n =174
CTQ-T 32.54 + 0.71 4397 + 1.73 0.000
CTQ-EA 5.75 £ 0.13 8.49 + 0.58 0.000
CTQ-PA 5.11 + 0.04 7.23 + 0.45 0.000
CTQ-SA 5.08 + 0.05 577 £ 0.21 0.006
CTQ-EN 9.00 + 0.46 13.68 + 0.61 0.000
CTQ-PN 7.60 £ 0.31 8.81 + 0.37 0.020

HC, healthy control; MDD, major depressive disorder; CTQ,
Childhood Trauma Questionnaire; CTQ-EA, Childhood Trauma
Questionnaire-Emotional Abuse; CTQ-PA, Childhood Trauma
Questionnaire-Physical Abuse; CTQ-SA, Childhood Trauma
Questionnaire-Sexual Abuse; CTQ-EN, Childhood Trauma
Questionnaire-Emotional Neglect; CTQ-PN, Childhood Trauma
Questionnaire-Physical Neglect.

All data are all presented as the mean == SEM.

with water, (4) 24 h absence of sawdust in the cage, (5) overnight
illumination, (6) tail nipping, (7) 5 min forced swimming, (8) 3 h
45° cage-tilt, and (9) 6 h physical restraint.

2.5.  Quantitative real-time PCR

According to earlier researches”>*’, RNA was obtained by TRIzol
reagent (15596026, Invitrogen, USA) and reversed by a HiScript
Q RT SuperMix for qPCR Kit (R123-01, Vazyme, China). Then, it
was quantified by SYBR Green Real-time PCR Master Mix
(Q141-02, Vazyme, China). Cycle threshold was detected by the
StepOne™ Real-Time PCR instrument (StepOne™ 4376357,
applied biosystems®). All samples were run in duplicate. The
information of primers is listed in Table 4.

2.6.  Microinjection of the sShRNA-circHECW2 lentivirus

All mice were weighed before experiments and randomly assigned
to different groups. C57BL/6J male mice were microinjected
bilaterally with either the shRNA-circControl-GFP lentivirus or
shRNA-circHECW2-GFP lentivirus (Hanbio, Shanghai, China)
into the hippocampus using the following microinjection

Table 4 Information of PCR primers.
Oligonucleotide sequences 5'—3'
circHECW2 (human)-F ~ CCCACCACTTTGAACGCTAC
circHECW2 (human)-R ~ GGCTGTCAATGCGTGCCT
circHECW2 AACAGGGACCTCGTGGGATT
(mouse)-Forward
circHECW2 GGCTGTCAATCCGTGCCTC

(mouse)-Reverse
Wtap (mouse)-Forward
Wtap (mouse)-Reverse
Gng4 (mouse)-Forward

TAGACCCAGCGATCAACTTGT
CCTGTTTGGCTATCAGGCGTA
GGCATGTCTAATAACAGCACCA

Gng4 (mouse)-Reverse CACTGGGATGATGAGGGGG
GNG4 (human)-Forward ACAGCACCACTAGCATCTCC
GNG#4 (human)-Reverse GGCACTGGAATGATGAGAGG

GAPDH (human)-Forward ACCATCTTCCAGGAGCGA
GAPDH (human)-Reverse GGGCAGAGATGATGACCCTTT
Gapdh (mouse)-Forward AGGTCGGTGTGAACGGATTTG
Gapdh (mouse)-Reverse TGTAGACCATGTAGTTGAGGTCA

coordinates: 2.06 mm behind the bregma and £1.5 mm lateral
from the sagittal midline at a depth of 2 mm from the skull
surface.

2.7.  Behavioural tests

Between 9:00 and 17:00, tests were performed in a sound-
attenuated environment and were evaluated by the same
researcher. Before the behavioral tests, animals were adjusted to
the environment for at least 3 h. The results were investigated by
the Plexon research solution system (Plexon Inc., Dallas, USA) by
an experimenter who was blinded to the tested groups. The tests
contained sucrose preference test (SPT), forced swim test (FST),
and tail suspension test (TST).

2.7.1. SPT

According to early methods*', the SPT contains 3 steps. In step 1
(habituation), the sucrose solution (1%) was used to habituate
animals for 3 days. In step 2 (sucrose preference at baseline), the
researcher transferred one mouse to one cage and exposed to both
sucrose solution and water at baseline for 24 h. In step 3 (sucrose
preference at testing), two bottles were used for this step. One was
filled with water, the other was filled with solution of sucrose
(1%). These drinking options were performed for 24 h. The intake
of sucrose solution and water were analyzed by subtracting the
final weight of the bottles after 24 h of exposure from their initial
weight.

2.7.2. FST

Animals were placed into a cylinder filled with water (15 cm)
individually. After vigorous activity (2 min), mice acquired a
posture of immobile. The immobility duration was recorded dur-
ing the last 4 min of the 6 min.

2.7.3. TST

Animals were hung 50 cm above the ground by gummed tape
placed 1 cm from the tip of the tail of mouse in the apparatus case.
The 6-min test was recorded. First 2 min-the habituation period.
Last 4 min-the duration of immobility (hanging passively without
body movement).

2.8.  Flow cytometry and cell sorting

Isolated brain cells were prepared from C57BL/6J mice. Tissue
was digested by papain at 37 °C for 1 h (2 mg/mL, LS003119,
Worthington, USA) in DMEM medium. Dispersed cells were
filtrated with a nylon mesh (70 um). The cells were resuspended in
Percoll density gradient (30%, 17-0891-09, GE Healthcare, USA)
and centrifuged (900x g) at 25 °C for 25 min. Next, the cells in the
bottom were collected. After washing in PBS containing 2% FBS,
the cells were blocked with FcR Blocking Reagent (130-092-575,
Miltenyi Biotec). Astrocytes, microglial cells, neurons, and
endothelial cells were marked by flow cytometry** *°. Cells were
stained with PE anti-mouse ACSA-2 (130-116-244, Miltenyi
Biotec, Germany), FITC anti-mouse/human CDI11b antibody
(101205, BioLegend, USA), PerCp-cy5.5 anti-mouse CD45 anti-
body (561869, BD Pharmingen, USA), APC anti-mouse NCAM-
1/CD56 allophycocyanin MAb (FAB7820A-100, R&D, USA),
and Brilliant Violet 605™ anti-mouse CD31 (102427, BioLegend,
USA). After staining, the samples were sorted by FACSAria II
SORP (BD Biosciences, USA), and the data were analyzed using
FlowJo_V10 (FlowJo). Samples were gated for ACSA-27
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(astrocytes), ACSA-2 CDl1 1bTCD454m (microglial  cells),
NCAM-1/CD56™" (neurons), and CD31" (endothelial cells). The
RNeasy®-Micro Kit (74004, QIAGEN, Germany) was used for
RNA extraction.

2.9.  Western blot (WB)

Proteins were collected by lysate buffer (POO13B, Beyotime,
China). Samples separated on sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Then, proteins
were transferred onto polyvinylidene fluoride (PVDF) mem-
branes*®. The PVDF membranes were blocked with nonfat milk
(5%) and probed with GFAP (60190-1-Ig, Proteintech, China),
GNG4 (13780-1-AP, Proteintech, China), WTAP (60188-1-Ig,
Proteintech, China), and GAPDH (60004-1-Ig, Proteintech,
China) overnight at 4 °C. Then, they were incubated with HRP-
conjugated affinipure goat anti-mouse IgG and anti-rabbit IgG
(SA00001-1, SA00001-2, Proteintech, China). Results were
detected by Tanon 5200.

2.10.  Immunofluorescence (IF)

In our earlier studies®’, tissue sections of 30 pm were prepared
with a cryostat. The sections were incubated with H,O, for
10 min, incubated with 0.3% Triton X-100 in phosphate-buffered
saline (PBS; 137 mmol/L NaCl, 2.7 mmol/L KCl, 10 mmol/L
Na,HPO,, 2 mmol/L KH,PO,) for 15 min, and then blocked with
10% normal goat serum (NGS) in 0.3% Triton X-100 for 1 h at
room temperature. Next, the sections were incubated with the
anti-GFAP antibody (G3893, Sigma—Aldrich, USA) overnight.
On the following day, the sections were washed, and incubated
with Alexa Fluor 594 goat anti-rabbit IgG (A-11037, Thermo
Fisher Scientific, USA) in PBS for 1 h at room temperature.

2.11.  Primary mouse astrocyte cultures

P1 to P2 postnatal C57BL/6J WT mice were used to get the cells.
The mice’s brains were dissociated mechanically and used gauze
to remove large blood vessels and membranes. Next, the dissected
brains were digested with trypsin—EDTA (25200056, Gibco,
USA). After digestion, the cells were plated on cell culture flasks
which were precoated by poly-L-lysine. Then, the cells were
incubated in CO, (5%) at 37 °C.

2.12.  Measurement of total m°A

The modification level of total m®A was detected in picked up
from the hippocampus of mice (200 ng RNA). The m°A levels
were detected by the m®A RNA methylation quantification kit
(P-9005, Epigentek, USA) according to the manufacturer’s in-
structions. In brief, 200 ng of RNA was immobilized on strip wells
employing RNA high-binding solution. The m®A modification
was amplified and identified using specific capture and detection
antibodies. Subsequently, the m°®A signal was intensified and
quantified calorimetrically by measuring absorbance at 450 nm in
a microplate spectrophotometer.

2.13. RNA immunoprecipitation (RIP)
The hippocampus was ground in ice-cold PBS by a glass ho-

mogenizer until a cell suspension was obtained. The suspension
was centrifuged at 1500 rpm, 5 min, 4 °C. The pellet of cells was

resuspended with an equal volume of complete RIP lysis buffer.
RNA immunoprecipitation was performed with a Magna RIPTM
RNA-binding protein immunoprecipitation kit (17—700 for the
Magna RIP kit, 17—701 for the EZ-magna RIP kit, and 17—704
for the Magna RIP quad, Millipore, USA).

2.14.  Luciferase assays

In the 3’ UTR fragment of Gng4, there are five possible m°A
modification sites, predicted by the “RRACH” motif (R = A/G,
H = A/C/T) from the MeRIP-analysis. We generated a mutant
fragment by replacing “A” with “T” in all the five possible m°A
modification sites. Primary mouse astrocytes were transfected
with pMIR-REPRORT luciferase vector with wildtype or mutated
Gng4 (RiboBio, China) for 24 h. According to the manufacturer’s
protocol (E2920, Promega, USA), reporter assays were experi-
mented and analyzed.

(1) Wild-type mPA sites ( Gng4 3’ UTR)

GCTCCCATGTAGAGGCACACCTCCCACAACACCCCAT
CTCTGTCCAACCAATCATGATCTGGGCTCATCTTGTTTTA
TCATATTTCCTTCATAGCACTGTTTCCTCTTCCTTTTTTTT
TTCTTTTTTCTTATTTCCATCCACAGAGAAAACAGACATT
TTTATAGCCAAAAAACAAATGTGCCATATAAAAGTGTAG
ACTTAAAGGTCTACAGTTTTTAAACATTCCCAACCATAA
ATATATCCAGTTAATAAATTTCAGTGGGTAATTCA.

(2) Mutant m°A sites (Gng4 3’ UTR)

GCTCCCATGTAGAGGCACACCTCCCACAACACCCCAT
CTCTGTCCAACCAATCATGATCTGGGCTCATCTTGTTTTAT
CATATTTCCTTCATAGCACTGTTTCCTCTTCCTTTTTTTTTT
CTTTTTTCTTATTTCCATCCACAGAGAAATCAGTCATTTTT
ATAGCCAAAAATCAAATGTGCCATATAAAAGTGTAGTCTT
AAAGGTCTACAGTTTTTAATCATTCCCAACCATAAATATAT
CCAGTTAATAAATTTCAGTGGGTAATTCA.

2.15. MR imaging data acquisition and functional data
processing

MR imaging data were acquired using a 3.0 T MRI (Siemens
MAGENETOM Trio, Erlangen, Germany) with a standard head coil
at the Radiology Department of Zhongda Hospital. Subjects were
instructed to stay still, remain awake, and avoid thinking of anything
during the scan. The whole-brain fMRI dataset was taken based on
BOLD signals. Images were acquired axially using a gradient echo-
planar imaging (EPI) sequence and parameters were as follows: 36
slices, volume = 240, repetition time (TR) = 2000 ms, echo time
(TE) = 25 ms, section thickness = 4 mm, gap = 0 mm, field of
view (FOV) = 240 mm x 240 mm, acquisition matrix = 64 x 64,
flip angle (FA) = 90°, and acquisition time = 8 min and 6 s. We then
used 3D MPRAGE sequence to acquire high-resolution (1 mm?>) T1-
weighted images (sections = 176, TR/TE = 1900/2.48 ms, inver-
sion time = 900 ms, FA = 90, FOV = 256 mm X 256 mm, and
acquisition matrix = 256 x 256). Data analysis was conducted
based on statistical parametric mapping (SPMS; http://www.fil.ion.
ucl.ac.uk/spm). The preprocessing steps were used as previously
described*®*’, and a ROI based analysis of the average grey matter
volume of the thalamus was then performed after extracting the grey
matter volume using the mask of the thalamus in the AAL (Auto-
mated Anatomical Labeling) atlas.
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2.16.  Statistics

Analyses were performed by GraphPad Prism 8.0. The mean of
the groups was compared using a Student z-test (for 2 groups) and
ANOVA, followed by Bonferroni post-tests (for >2 groups). P
values of <0.05 indicate statistical significance.

3. Results

3.1.  CircHECW?2 is upregulated in CUS mice and MDD patients

CircHECW2 was highly expressed in the brain compared with
other tissues (Fig. 1A and B). Our previous study first demonstrated
that circHECW?2 levels were increased in the hippocampus of LPS-
treated mice’®. It is noteworthy that LPS- and CUS-induced
models of depression are well-documented in studies relevant to
depression’® . Thus, to investigate the potential involvement of
circHECW2 in depression, we isolated the hippocampus and
collected plasma from CUS mice. We observed elevated levels of
circHECW?2 in both the hippocampus and plasma of these mice
(Fig. 1C and D). Next, we examined the levels of circHECW2 in
the plasma of MDD patients and healthy control individuals (HCs),
found that circHECW?2 levels were markedly increased in MDD
patients (Fig. 1E). Notably, our analysis revealed a positive cor-
relation between circHECW?2 levels and the scores of the Hamilton
Rating Scale for depression 24 items (HAMD-24) (Fig. 1F), the
scores of the Montgomery-Asberg Depression Rating Scale
(MADRS) (Fig. 1G), the scores of the Hamilton Anxiety Scale
(HAMA) (Fig. 1H), and other scores (Supporting Information Fig.
STA—S1X). Moreover, the receiver operating characteristic (ROC)
curve analysis revealed that the area under the curve (AUC) for
circHECW?2 was significant at 0.815, with a sensitivity of 0.743
and a specificity of 0.731 (Fig. 1I). Additionally, through linear
regression analysis, we uncovered that MDD patients with elevated
circHECW?2 expression levels and high scores on the childhood
trauma questionnaire (CTQ) displayed more severe depression
symptoms (Fig. 1J). To assess the predictive capacity of circH-
ECW?2 levels for MDD outcomes, we examined the changes in
circHECW?2 level two weeks after treatment in MDD patient
plasma and found that the level of circHECW2 was decreased 2
weeks after treatment in MDD patient plasma (Fig. 1K). The ROC
curve analysis was performed between admission and the
2 nd week after admission to calculate the predictive power of
baseline circSCMHI levels for outcome as the AUC was 0.782
(Fig. 1L).

3.2.  The downregulation of circHECW?2 ameliorates the
behaviors induced by CUS

To validate the function of circHECW2 in depression, the
shRNA-circCon or shRNA-circHECW2 lentivirus was micro-
injected into the mice hippocampus, and subsequently, behavioral
experiments were carried out following the induction of CUS
(Fig. 2A and B). After microinjection for 2 weeks, we examined
the efficacy of the lentiviral transduction and found that the
expression of circHECW?2 was decreased in shRNA-circHECW2-
injected mice (Fig. 2C). Behavioural tests including sucrose
preference test (SPT), forced swim test (FST), and tail suspension
test (TST) were employed to evaluate the effect of circHECW2.
The sucrose preference of the CUS-treated mice was decreased,
indicative of anhedonia. Encouragingly, this deficit was

significantly alleviated by the downregulation of circHECW2
expression (Fig. 2D). In both the FST and TST, the time of
immobility was notably prolonged in the CUS mice, and these
effects were markedly ameliorated in shRNA-circHECW2-
injected mice (Fig. 2E and F).

3.3.  Role of circHECW?2 on astrocyte dysfunction in CUS mice
hippocampus

Subsequently, we investigated the cellular mechanism through which
circHECW?2 affects functional recovery after CUS. To further assess
the cell types in which circHECW?2 expression is upregulated, we
detected the expression of circHECW2 in astrocytes, microglia,
neurons, and endothelial cells from the CUS mice brain (Fig. 3A).
The results revealed a significant upregulation of astrocyte-derived
circHECW2 in CUS compared to microglia-, neuronal-, or endo-
thelial cell-derived circHECW?2 (Fig. 3B). Additionally, the fluo-
rescence in situ hybridization staining indicated that circHECW2
was abundant in astrocytes (Fig. 3C). Furthermore, shRNA-
circHECW2 treatment significantly mitigated the decrease in
GFAP expression observed in CUS mice (Fig. 3D and E). Then, we
detected the function of shRNA-circHECW2 on the astrocyte’s
morphology using GFAP and 3D reconstruction (Fig. 3F). Sholl
analysis indicated that astrocyte dysfunction was induced by CUS, as
evidenced by a reduction in branch numbers, length, and volume of
astrocytes. Importantly, these deficits were markedly improved by
shRNA-circHECW2 treatment (Fig. 3G—I). Taken together, these
results suggest that the abnormal upregulation of circHECW?2 in
astrocytes may represent a critical molecular event in the progression
of depression.

34.  circHECW2 inhibits m°A methylation by downregulating
WTAP

Given the potential role of m°A methylation in MDD and the
mutual regulation between circRNAs and m®A methylation”"'?, we
embarked on an investigation to determine whether circRNA’s
regulatory role in the pathological processes of depression,
particularly in astrocyte-mediated mechanisms, involves m°A
modifications. CUS led to a decrease in m°A levels in the hip-
pocampus, an effect that was significantly mitigated by shRNA-
circHECW2, indicating a regulation of circHECW2 on m°A
methylation (Fig. 4A). We next measured the expression of m°A-
modifying enzymes above in CUS mouse models both in mRNA
and protein levels, found that only the protein level of WTAP was
reduced in the hippocampus of CUS mice (Fig. 4B, Supporting
Information Figs. S2 and S3A—S3D). Subsequently, we used
mouse primary astrocytes transduced with shRNA-circHECW2
lentivirus or circHECW2-overexpressed plasmid for further in-
vestigations (Fig. 4C and D). The expression of WTAP was
significantly increased in shRNA-circHECW2-treated cells
(Fig. 4E), whereas the Western blot analysis indicated that
circHECW?2 did not alter the levels of METTL3, METTL14, FTO,
and ALKBHS5 (Supporting Information Fig. S4A—S4D), sug-
gesting a specific association between circHECW?2 and WTAP. To
confirm these findings, primary astrocytes were transduced with
the circHECW?2 circHECW2-overexpressed plasmid and WTAP
was significantly decreased in astrocytes (Fig. 4F). Next, pull-
down assay was used to explore the interaction between circH-
ECW2 and WTAP, and circHECW2 showed a stronger affinity to
WTAP (Fig. 4G). Furthermore, in vivo experiments demonstrated
that shRNA-circHECW?2 significantly improved the decrease in



1650 Ying Bai et al.

A B c Hippocampus D Plasma
) _ © 25¢
HECW2 50 JioA___ s s S 15¢ g 25 ** g ¥
\E\mn"""’sé"°"1i Exon 13 .~ Exon ‘}” [ % * 6 2.0 : -g:) 20r L
) . Rl . = . :o
i 5205} S 107 ol s or @
< °E = @ os} |® 2 osf
circHECW2 o) o e i T
0.0 = = 0.0! BN e oob——
N f‘sf\' (\Q QA . & é\ ° : ‘© .
Qa& S \b(\ \/\4 Q\@ Con CUS Con CUS
+ S
E F S
g 4000 circHECW2 & HAMD-24 score circHECW?2 & MADRS score
@ *kk 60 - 50 -
S 3000 | 2 o
£ o 5 40 1
= » 8
é’ 2000 | S 401 @ 30
) ]
2 sl = r=0392 3220 r=0.320
o —a = P=0.001 =10 P =0.005
g. 2 gedlantes 201
S 0 T T 1 0 y T 1
HC MDD 0 1000 2000 3000 0 1000 2000 3000
circHECW2 circHECW?2
I ROC Curve J
circHECW2 & HAMA score (MDD Diagnosis) Interaction of
50 1.0 cricHECW2 and CTQ -T on HAMD-24
o 401 0.81 CTQ-T
S > 30 circHECW2 1200 °
» 301 E 0.61 . g
< = [ I
<§( 20 é ol E 30 1000 m
T, r=0.379 ” S g0 ®
P =0.001 0.21 AUC=0.815
0 T T 1 95% Cl, 0.742-0.887
0 1000 2000 3000 0.0 : : . . 2 . T 600
circHECW?2 00 02 04 06 08 1.0 HAMD-24_Low HAMD-24_High
1-Specificity
K L ROC Curve
% 3000 (Outcome prognosis)
E 1.0
AL
= 0.8
= 2000 [
= 0.6
2 Fkk £
€ 2 04
s 1000 B
c @ 0.2 AUC=0.782
b 95% Cl, 0.664-0.901
o 0.0 T T T T
O 0 T T 00 02 04 06 08 1.0
MDD Treatment (2 weeks) 1-Specificity

Figure1 CircHECW2 was upregulated in CUS mice and patients with MDD. (A) The exon composition of circHECW?2. (B) The expression of
circHECW?2 in different organs of mice. (C) The levels of circHECW2 were increased in the hippocampal tissues of CUS mice compared with
controls (n = 6 mice/group). (D) The levels of circHECW?2 were decreased in the plasma of CUS mice compared with controls (n = 6 mice/
group). (E) The expression of cirtcHECW2 was increased in the plasma of MDD patients (n = 50) compared with normal control individuals
(n = 74). (F—H) Correlations between circHECW2 expression and HAMD-24 (F), MADRS (G), and HAMA (H) scores using Pearson’s cor-
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Figure 2  Downregulation of circHECW?2 ameliorated depressive-like behaviors induced by CUS. (A) Schematic of the lentivirus encoding

circHECW2. (B) Timeline of the experimental procedure in the CUS-induced mouse model of depression. (C) CircHECW2 expression was
measured by real-time PCR in the mouse hippocampus. (D—F) Effect of shRNA-circHECW?2 lentivirus microinjection on depressive-like be-
haviors in CUS mice. Two weeks after the shRNA-circControl/shRNA-circHECW?2 lentivirus microinjection, mice were exposed to a CUS or
control (n = 8 mice/group). SPT (D), FST (E), and TST (F) were measured after 4 weeks of CUS exposure. All data are presented as the
mean £ SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus shRNA-circControl, *P < 0.05, P < 0.01, P < 0.001 versus shRNA-circControl

CUS.

WTAP expression induced by the CUS model (Fig. 4H). To
explore why WTAP decreased after CUS, we employed immu-
noprecipitation to detect ubiquitination. The lysine 48-linked
ubiquitination (Ub-K48) level of WTAP was significantly
decreased by circHECW?2 knockdown in the CUS model (Fig. 4I).

Next, we investigated the effect of circHECW2 and WTAP on
the survival of astrocytes. Corticosterone was used to mimic the
depression in vitro’. Astrocytes transduced with shRNA-
circHECW2 showed an amelioration of the decreased viability
induced by corticosterone (Fig. 4]). In contrast, knockdown the
expression of WTAP significantly aggravated the decreased
viability of astrocytes treated with corticosterone (Fig. 4K).
Furthermore, WTAP siRNA decreased viability of astrocytes was
ameliorated by shRNA-circHECW?2, further indicating a
close relationship between circHECW2 and WTAP (Fig. 4L).

Additionally, we constructed a brain astrocyte-specific AAV-
GFAP-WATP knockdown (KD) virus. Three weeks after
the microinjection of AAV-GFAP-WATP KD and shRNA-
circHECW?2 lentivirus in the hippocampus, the mice were sub-
jected to CUS or control. Behavioral experiments including SPT,
FST, and TST were examined after 4 weeks of CUS exposure. As
shown in new Supporting Information Fig. SS5A, the increased
sucrose preference in sShRNA-circHECW?2 lentivirus-microinjected
mice was abolished after astrocyte-specific WTAP knockdown. In
both FST and TST, the immobility time was significantly reduced in
shRNA-circHECW?2 lentivirus-microinjected CUS mice compared
with vector-control-microinjected CUS mice, and astrocyte-
specific WTAP knockdown reversed these effects (Fig. S5B and
S5C). These results demonstrated the causal role of WTAP in the
downstream of circHECW?2 in astrocytes of CUS mice.

scores on HAMD-24 scores in MDD patients using multivariate linear regression. MDD patients with high circHECW?2 levels and CTQ scores
showed more severe depression symptoms. (K) The temporal expression profiles of circHECW?2 were detected by real-time PCR (n = 29). (L)
ROC curves were calculated based on the A value (copy number/uL on the 2 nd week minus copy number/pL on the first day) of circHECW2. All
data are presented as the mean = SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus control.
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Figure 3  Downregulation of circHECW?2 attenuated astrocyte dysfunction in the CUS mouse hippocampus. (A) Schematic of astrocyte,

microglia, neuron, and endothelial cell isolation from CUS and control groups. (B) Relative expression of circHECW?2 in the sorted cells as
determined by real-time PCR. n = 3 samples for each group. (C) CircHECW?2 accumulated in astrocytes of the hippocampus, which was detected
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expression in CUS mice model. Three representative immunoblots from 6 mice/group are presented. (F—I) Effect of circHECW?2 on the astrocyte
activation induced by CUS. Representative images of astrocyte immunostaining for GFAP in the mouse hippocampus, followed by 3D recon-
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3.5.  WTAP regulates m°A modification of Gng4 mRNA in
depression

To seek the potential downstream molecule that participated in the
CUS mouse, we posted a transcriptome-wide detection of m°A
modification in the hippocampus of the CUS mouse in previous
study’. As shown in Fig. 5A, the gene ontology biological pro-
cesses (GO-BP) analysis showed that the downregulated genes
were enriched in gene terms associated with the cellular process.
The region of mRNA with altered m®A modification (down-
regulated genes) (Fig. 5B). Next, RNA-seq analysis was per-
formed in the hippocampus of the CUS mouse model. We
identified 288 genes that were differentially expressed in RNA-seq
analysis (Cuffdiff adjusted P-value<0.05) (Fig. 5C, Supporting
Information Table S1). Of particular interest, there were 19
overlapping transcripts between the two comparisons (Fig. 5D),
suggesting that these genes may be the target genes involved in
astrocyte dysfunction after CUS. Notably, these 19 overlapping
transcripts were verified at the mRNA level. In the 4 upregulated
transcripts, no gene was validated (Supporting Information
Fig. S6A). Nevertheless, among the 15 downregulated transcripts,
Mfrp, Eng, Gng4, Slc22a8, and Fxydl levels were in accordance
with transcriptome sequencing (Fig. S6B). Additionally, GNG4
was significantly decreased in the plasma of MDD patients
(Supporting Information Fig. STA—S7E). Additionally, there was
a negative correlation between GNG4 and the scores of the
HAMD-Cognitive impairment (Supporting Information Fig.
S8A—S8H). Based on these findings, GNG4 emerged as a cen-
tral focus in our study of MDD. Furthermore, we analyzed the
pathway involving GNG4 and its association with decreased m°A
modification by Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Fig. 5E). Next, further results indicated that mlA
modification was decreased in the peak region (chrl3:
13825437—13825707) in the 3'-UTR of Gng4 mRNA (Fig. 5F and
G). We employed luciferase assays to compare the wild-type (WT)
and mutant m®A sites with and without WTAP siRNA treatment.
These assays demonstrated that the mutation prevented methyl-
ation and increased the stability of Gng4 mRNA (Fig. SH). As
expected, overexpression of Gng4 markedly ameliorated the
declined viability of astrocytes treated with corticosterone
(Fig. 5I).

3.6.  CircHECW2 regulates m°A methylation of Gng4 mRNA via
WTAP

Furthermore, we examined the expression and function of GNG4
in the CUS mouse model. The mRNA and protein levels of Gng4
were significantly decreased in the hippocampus of CUS mice,
which was consistent with the decreased m®A modification of
Gng4 (Fig. 6A and B). In addition, to understand the relationship
between Gng4 levels and the WTAP, WTAP siRNA was trans-
fected in mouse primary astrocytes. The expression of GNG4 and
Gng4 mRNA are all decreased (Fig. 6C). Moreover, the upregu-
lation of circHECW?2 led to reduced mRNA and protein levels of
Gng4 (Fig. 6D). Conversely, the downregulation of circHECW?2 in
astrocytes increased the mRNA and protein levels of Gng4
(Fig. 6E). Co-transfection of WTAP siRNA and shRNA-
circHECW?2 indicated that WTAP siRNA decreased the GNG4
level, which was markedly ameliorated by shRNA-circHECW2
(Fig. 6F). To validate these in vitro findings, Western blot
analysis was performed to assess the levels of GNG4 in
shRNA-circHECW2-treated CUS mice. The results showed that

shRNA-circHECW?2 treatment significantly mitigated the decrease
in GNG4 expression observed in CUS mice (Fig. 6G and H). We
also constructed a brain astrocyte-specific AAV-GFAP-Gng4 KD
virus. Three weeks after the microinjection of AAV-GFAP-Gng4
KD and shRNA-circHECW?2 lentivirus into the hippocampus, the
mice were exposed to CUS or kept in a control condition. The
results of SPT, FSF, and TST revealed that astrocytic Gng4 is
involved in the regulation of circHECW2 in depression
(Fig. 61—K).

3.7.  Hippocampus functional connectivity to the prefrontal
cortex was positively correlated with GNG4 in MDD patients

Finally, the seed-to-voxel analysis (hippocampal functional con-
nectivity) was performed and showed hippocampus functional
connectivity (FC) with prefrontal cortex (PFC) in MDD patients.
As shown in Fig. 7A—C, the FC between the hippocampus and the
prefrontal cortex was significantly reduced in MDD patients when
compared to HCs. We next identified a noteworthy decrease in the
resting-state functional connectivity (rsFC) between the hippo-
campus and the dorsolateral prefrontal cortex (Fig. 7D), whereas
other brain regions, such as the visual cortex and inferior temporal
lobe, exhibited no significant difference (Supporting Information
Fig. S9). Moreover, we found a positive correlation between
GNGH4 levels and rsFC, suggesting that GNG4 may play a role in
the cognitive brain function of individuals with MDD (Fig. 7E).

4. Discussion

Our study demonstrated that upregulation of circHECW?2 led to
the decrease in Gng4 mRNA via WTAP-mediated m°®A modifi-
cation, and caused subsequent astrocyte dysfunction. Specifically,
circHECW2 promoted the ubiquitin-mediated degradation of
WTAP in the CUS mouse model, and the effect of GNG4 on
maintaining normal astrocyte functions is abolished when WTAP
is downregulated in astrocytes. Therefore, the circHECW2/
WTAP/GNG4 axis regulates astrocyte dysfunction by decreasing
GNG4 stability via WTAP-mediated m®A modification, as
depicted in Fig. 8. In conclusion, our findings indicate that
circHECW2 holds promise as a therapeutic target for the treat-
ment of depression. In addition, our study sheds light on the
functional link between circHECW?2 and m°A methylation, of-
fering novel insights for the development of preventive strategies
and effective treatments for MDD.

Our study represents an advance in the field, as it demonstrated
that circHECW2 holds potential as a biomarker for both the
diagnosis and prognosis of MDD. While the precise mechanisms
governing the interaction between circHECW?2 levels in the pe-
riphery and the brain during MDD are yet to be fully elucidated,
the consistent dysregulation of circHECW?2 levels in both the
plasma and hippocampus suggests the intriguing possibility that
circRNAs may actively cross the blood—brain barrier’®. In pa-
tients with MDD, the expression of circHECW?2 in plasma was
found to be positively correlated with HAMD-24, which is a
commonly used clinical tool for assessing depression severity.
Additionally, circHECW?2 exhibited positive correlations with
MADRS and HAMA scores, further underscoring its potential as a
diagnostic marker for MDD. Moreover, our study also revealed
that there was an interactive effect between circHECW2 and
childhood trauma events on the severity of anhedonic symptoms in
MDD patients, emphasizing that the development of MDD is
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#P < 0.05 versus the corticosterone group.
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6/group. (B) Real-time PCR showed that GNG4 was decreased in the
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influenced by a complex interplay of both biological and envi-
ronmental factors. Furthermore, the observation that circHECW?2
expression decreased after a two-week treatment suggests its po-
tential as a biomarker for predicting the functional outcome of
MDD. However, it is essential to validate these findings in larger
sample sizes or postmortem cohorts to establish the specific cor-

relation between circHECW?2 and MDD definitively.

To date, there have been no reports about the functional link
between circHECW?2 and m®A methylation in MDD. However,
accumulating evidence suggests that the dysregulation of RNA
mPA methylation may play a role in the pathogenesis of
MDD?'*** Notably, several studies have provided valuable in-
sights into the potential involvement of m®A-related genes in
MDD. Samaan et al.”” provided compelling evidence indicating
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that the FTO rs9939609 A variant may be associated with a
decreased risk of depression, independent of its influence on BMI.
Du et al.>! suggested that m®A genes may play a role in conferring
the risk of MDD. Engel et al.'” demonstrated that deletion of
Mettl3 or FTO in adult neurons alters the m°®A epi transcriptome,
resulting in increased fear memory and changes in the tran-
scriptome response to fear and synaptic plasticity. This suggests
that the dysregulation of the m®A/m modification in the brain may
represent a novel and intricate layer of gene expression regulation
following stress, potentially contributing to the pathophysiology
of stress-related psychiatric disorders. Given the observed increase
in circHECW?2 levels in CUS mice, it is hypothesized that certain
methylases interact with circHECW2 and downregulate m°A
levels. One potential candidate is WTAP, which has been sug-
gested to play a role in the development of various clinical
symptoms of MDD in the Chinese Han population’'. WTAP is an
essential player in the methyltransferase complex and is involved
in many cellular processes™. In our studies, we found that
circHECW?2 can regulate the expression of WTAP but does not
alter the levels of other methylases and demethylases in astro-
cytes. Importantly, Liu et al.”*> demonstrated that WTAP was
significantly downregulated in the peripheral blood of MDD pa-
tients using microarray analysis and real-time quantitative PCR.
This observation aligns to some extent with the results of our
study, further supporting the potential involvement of WTAP and
m®A methylation in MDD.

Data from various sources, including life events, personality
disorders, biology, comorbidity, and pharmacology, indicate that
depression and anxiety not only share similarities but also exhibit
many differences. For example, benzodiazepines are effective for
treating anxiety symptoms and most anxiety disorders but do not
show significant efficacy in MDD?7. This suggests that there are
differences in the pathological mechanisms of depression and
anxiety disorders. Therefore, given the resource limitations and
study scope, our research was originally designed to investigate
the role of circHECW?2 in depression. Additionally, we used the
SPT, FST, and TST to assess the anhedonic behavior and feelings
of despair in mice. These tests are primarily indicators for eval-
uvating depressive-like behaviors®. On the other hand, the open
field test (OFT) and elevated plus maze (EPM) are primarily
employed to evaluate anxiety-like behaviors by measuring the
exploratory tendencies of the animals®™’. Given the behavioral
tests we used (SPT, FST, and TST), we are currently unable to
assess the role of circHECW?2 in anxiety. However, antidepres-
sant medications, including selective serotonin reuptake in-
hibitors, tricyclic antidepressants, and monoamine oxidase
inhibitors, are highly effective in the management of comorbid
depression and anxiety'’. Therefore, we hypothesize that circH-
ECW2 may also potentially have a regulatory role in anxiety.
However, whether this regulatory effect and mechanism are
consistent with its regulation in depression requires further
experimental validation.

In the study reported here, we observed that the decreased m°A
methylation levels of Gng4 mRNA resulted in the degradation of
GNG#4 and subsequent astrocyte dysfunction. GNG4 belongs to the
G-protein vy subunit family, and it is known to form heterotrimers
with the «- and $-subunits of G proteins. These heterotrimers are
involved in transducing signals from upstream G-protein-coupled
receptors (GPCRs) to intracellular effectors®® °’. GNG4 has been
reported as a tumor suppressor gene in renal cell carcinoma and
glioblastoma®'. Interestingly, GNG4 exhibits significant expression
in key brain regions such as the hippocampus, putamen, and frontal

cortex, and its expression is observed to be decreased in neurode-
generative diseases’. Therefore, it is reasonable to speculate that
pharmacological interventions aimed at increasing GNG4 levels
have the potential to alter the cognitive trajectory in individuals with
neurodegenerative diseases. In our study, we found that GNG4
levels were negatively correlated with the scores of the HAMD-
cognitive impairment in MDD patients, and further analysis using
real resting-state fMRI data supported the association between
GNG#4 and cognitive function in MDD.

In conclusion, we illustrated for the first time that circHECW2
expression level is increased in MDD and positively correlated with
HAMD-24, MADRS, and HAMA scores. CircHECW?2 may serve
as a biomarker for diagnosing and predicting MDD outcomes.
Moreover, we found that circHECW?2 promotes the ubiquitin-
mediated degradation of WTAP, leading to decreased m°A
methylation levels of Gng4 mRNA and subsequent degradation of
GNGH4 in astrocytes, resulting in the attenuation of depressive-like
behaviors. Our findings suggest that circHECW2 may be an
important and promising target for therapeutic interventions in
MDD, providing a new direction for future research in this area.

5. Conclusions

We investigated the mechanisms by which these effects are achieved
and showed that a central signaling axis, cicHECW2/WTAP/
GNG4, regulates astrocyte dysfunction in depression. These find-
ings provide new insights into the close relationship between
circHECW2 and m°A methylation in MDD and demonstrate that
circHECW2 may be a potential target for MDD therapy.
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