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Compensated pathogenic variants 
in coagulation factors VIII and IX 
present complex mapping between 
molecular impact and hemophilia 
severity
Òscar Marín1, Josu Aguirre1 & Xavier de la Cruz   1,2

Compensated pathogenic deviations (CPDs) are sequence variants that are pathogenic in humans 
but neutral in other species. In recent years, our molecular understanding of CPDs has advanced 
substantially. For example, it is known that their impact on human proteins is generally milder than 
that of average pathogenic mutations and that their impact is suppressed in non-human carriers by 
compensatory mutations. However, prior studies have ignored the evolutionarily relevant relationship 
between molecular impact and organismal phenotype. Here, we explore this topic using CPDs from 
FVIII and FIX and data concerning carriers’ hemophilia severity. We find that, regardless of their 
molecular impact, these mutations can be associated with either mild or severe disease phenotypes. 
Only a weak relationship is found between protein stability changes and severity. We also characterize 
the population variability of hemostasis proteins, which constitute the genetic background of FVIII 
and FIX, using data from the 1000 Genome project. We observe that genetic background can vary 
substantially between individuals in terms of both the amount and nature of genetic variants. Finally, 
we discuss how these results highlight the need to include new terms in present models of protein 
evolution to explain the origin of CPDs.

Understanding the phenotypic consequences of genetic variability is still an open challenge relevant to different 
areas of biology, from biomedical research1,2 to protein evolution studies3–6. A case of particular interest is that 
of the human sequence variants known as compensated pathogenic deviations (CPDs)7, which are damaging for 
human carriers but appear as neutral in other species (Fig. 1A). This dual aspect of the amino acid replacement 
reflects the two main characteristics of CPDs. First, in its human protein location, the amino acid replacement 
has an impact on protein structure/function big enough to cause disease. Second, in the non-human protein, 
this impact is modulated by a suppressor mechanism. Kondrashov et al.7 identified compensatory mutations as 
the main suppressor mechanism (the so-called Compensatory Hypothesis8) and postulated that such mutations 
most likely correspond to substitutions at spatial locations near CPDs (Fig. 1B). The compensatory hypothesis is 
strongly supported by a series of studies involving large structural analyses9, stability computations8, and com-
parative genomics10.

Within this stream of research, Ferrer-Costa et al.11 explored whether the molecular nature (e.g., protein loca-
tion, changes in biophysical properties) of pathogenic deviations (PDs) determines the probability of compen-
sation. They found that CPDs are usually less structurally disruptive than the average PDs, as they are associated 
with higher solvent exposure and smaller changes in physico-chemical properties. This result was confirmed by 
Barešić et al.9, who also found that CPDs tend to avoid residues directly involved in protein function (e.g., from 
binding and catalytic sites).

1Research Unit in Clinical and Translational Bioinformatics, Vall d’Hebron Institute of Research (VHIR), Universitat 
Autònoma de Barcelona, P/Vall d’Hebron, 119–129, 08035, Barcelona, Spain. 2ICREA, Barcelona, Spain. Òscar Marín 
and Josu Aguirre contributed equally. Correspondence and requests for materials should be addressed to X.d.I.C. 
(email: xavier.delacruz@vhir.org)

Received: 7 November 2018

Accepted: 18 June 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-45916-3
http://orcid.org/0000-0002-9738-8472
mailto:xavier.delacruz@vhir.org


2Scientific Reports |          (2019) 9:9538  | https://doi.org/10.1038/s41598-019-45916-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Together, these studies provide a good understanding of CPDs at the molecular level. However, the relation-
ship between molecular and organismal phenotypes, which is key to the evolutionary study of these mutations, 
remains largely unexplored. In general, biomedical evidence suggests that there is a monotonic correspondence 
between the molecular impact of PDs and the clinical phenotype. For example, studies examining the develop-
ment of pathogenicity predictors2,12 have consistently observed that small changes in molecular properties typi-
cally correspond to variants that have no impact on the individual’s health. Other studies identified a relationship 
between the range of the mutation effect and clinical severity. For example, Miyata et al.13 represented the impact 
of mutations with a continuous function of distance in the physico-chemical space. They related the values of 
this function to the severity of hemolytic anemia and found correspondence between the two phenotype levels. 
For G6PD deficiencies, Miller and Kumar14 found a similar trend, again using physico-chemical differences to 
measure the impact of a mutation. In addition, a comparable relationship between molecular properties and 
clinical severity was observed when the effects of a mutation were represented by experimental ΔΔG (protein 
stability change upon mutation)15 or conservation-based measures (related to the functional role of the mutated 
residue)16.

Considering that CPDs are a subset of PDs9,11, we expect to find a similar correspondence between molecular 
impact and clinical phenotype (i.e., “mild-to-mild” for most CPDs and “severe-to-severe” for the small fraction of 
structurally/functionally disruptive CPDs). Confirmation of this relationship would allow us to study CPDs using 
known models of protein evolution, which utilize measures of molecular impact as a proxy for fitness3. However, 
the situation may be more complex, as a growing amount of evidence shows that genetic background may con-
tribute to clinical phenotype4,17, particularly those genes belonging to the functional module (or disease pathway) 
of the mutation carrier protein18. For example, in the case of hemophilia, it is known19 that genetic alterations in 
hemostasis proteins mitigate the clinical symptoms of the disease, and several reports relate disease severity and 
the effects of genetic background20–25.

In this work, we characterize the relationship between molecular impact and organismal phenotype in the 
context of CPDs. As a model system, we use the coagulation factors VIII (FVIII) and IX (FIX), two proteins whose 
mutations cause hemophilia A and B, respectively. Hemophilia is a well-known disease—it was first reported in 
Jewish writings dating to the 2nd century AD26—that primarily affects males. It has a characteristic bleeding 
phenotype27, the severity of which affects organismal fitness to different degrees (i.e., bleeding can be either mild 
or life-threatening). In the context of the present work, it is important to note two interesting aspects of research 

Figure 1.  Compensated pathogenic deviations (CPDs): definition and distribution relative to disease severity. 
(A) Illustration of the concept of CPDs: a mutation that is pathogenic in humans but neutral in other species. 
The mutation shown in the figure, L69V, affects human FVIII and leads to hemophilia A65. The location of this 
mutation in the multiple sequence alignment of the FVIII family (in the red box) shows that valine appears to 
be native in other species, such as chimpanzees, mice, and rats. (B) Spatial neighborhood (dark blue residues) 
of the CPDs (native and mutant residues indicated by light blue and magenta sticks, respectively), where 
compensatory mutations are more likely to happen7. (C) Distribution of mild (blue) and severe (red) cases 
associated with CPDs and noCPDs variants for FVIII and FIX. (D) Distribution of mild and severe CPDs in 
genes for which disease severity annotations are available.
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on hemophilia. First, information about disease severity is available for a large number of variants (see Materials 
and Methods) of FVIII and FIX, which will allow us to analyze the correspondence between different measures of 
molecular impact (at the structure and function levels) and organismal fitness, using severity as a proxy for the 
latter. Second, the functional module of FVIII and FIX, constituted by the proteins from the hemostasis system, 
has been well-described19,28–30. Thus, we can assess its mutational load in the general population (based on the 
1000 Genomes project31), which is relevant for understanding the modulatory potential of genetic background. 
The combined results of these two analyses may help advance the evolutionary understanding of CPDs.

Results
CPDs in FVIII and FIX can be associated with either mild or severe forms of hemophilia.  For the 
two coagulation factors, we found that both their CPDs and non-compensated pathogenic deviations (noCPDs) 
are associated to either mild or severe forms of hemophilia (Fig. 1C). The percentages are specific for each pro-
tein: for CPDs 29% (FVIII) and 47% (FIX) of the cases are associated to severe disease; for noCPDs these figures 
rise to 52% (FVIII) and 73% (FIX). For both coagulation factors, CPDs are less frequently associated with severe 
symptoms than noCPDs (Fisher’s exact test: p-value = 1.0 × 10−6 for FVIII and p-value = 4.0 × 10−4 for FIX).

We investigated other diseases in which CPDs spread over the severity scale. To do so, we used severity anno-
tations and variant information retrieved from the UniProt database. The number of cases was small, compris-
ing 42 CPDs (17 associated with mild disease and 25 associated with severe disease) distributed over 14 genes 
(Fig. 1D). For this reason, we could not draw statistically relevant conclusions for each gene. However, we found 
that CPDs may be associated with either mild or severe forms of disease (Fig. 1D). Treating the whole dataset as 
a single sample revealed no detectable differences between CPDs and noCPDs (Fisher’s exact test: p-value = 1). 
This result does not contradict the trends observed for FVIII and FIX since pooling data from different diseases 
may obscure gene-specific trends32.

CPDs in FVIII and FIX tend to be mild at the molecular level.  Next, we characterized the molecular 
impact of FVIII and FIX CPDs to determine whether they tend to be milder than noCPDs, as found in the general 
case9,11. To this end, we compared the distribution of CPDs and noCPDs for a series of properties that reflect com-
plementary aspects of molecular impact: change in free energy upon mutation (∆∆G, used in biophysical models 
of protein evolution and here computed using FoldX33), solvent accessibility at the mutation locus in the experi-
mental structure (a measure of the potential for structure disruption of mutations), elements of the BLOSUM62 
matrix (which capture evolutionary information34 and can be related to the physico-chemical changes associated 
with amino acid replacement35), and conservation pattern (measured using Shannon entropy, which is related to 
the functional and structural role of the native residue16) at the mutation locus in the multiple sequence align-
ments of the FVIII and FIX families.

We observed the same situation for both coagulation factors (Fig. 2): a significant trend for CPDs to be less 
disruptive than noCPDs. The p-values for the Mood’s median tests for FVIII are the same (Table 1), p-value = 0, 
for all the properties (∆∆G, relative solvent accessibility, BLOSUM62 elements, and Shannon entropy). The cor-
responding values for FIX are as follows (Table 1): 0 for ∆∆G, relative solvent accessibility, and for Shannon 
entropy, and 4.1 × 10−14 for BLOSUM62 elements. In spite of the significant differences we observed, there is an 

Figure 2.  Differences between CPDs and noCPDs. For mutations of the two coagulation factors in our dataset, 
FVIII (top) and FIX (bottom), we computed the values of four properties: ∆∆G (change in protein stability 
upon mutation), relative solvent accessibility, BLOSUM62 matrix elements, and Shannon entropy. Using 
boxplots, we then separately represented the value distributions for the CPD (grey) and noCPD (striped) 
variants. There is a statistically significant tendency for noCPDs to adopt slightly more extreme values than 
CPDs, indicating that the latter are molecularly “milder” than the former.
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overlap between the distribution of CPDs and noCPDs in all cases, indicating that some CPDs may be as molecu-
larly disruptive as some noCPDs. For example, if we consider ∆∆G values in the case of FVIII, the median of the 
CPDs distribution is above the ∆∆G value of 63% of noCPDs (Fig. 2). That is, from the perspective of free energy 
change upon mutation, 50% of CPDs are more disruptive than 37% of noCPDs. For FIX, the situation is similar, 
with 50% of CPDs being more disruptive than 29% of noCPDs.

The molecular impact of CPDs in FVIII (and FIX) is not strongly related to disease severity.  The 
overlap between the distributions of CPDs and noCPDs in Fig. 2 suggests that CPDs associated to severe forms 
of disease (Fig. 1C) could correspond to highly disruptive mutations. To determine the extent to which this was 
true, we explored whether our data support a correspondence between molecular impact and disease severity. To 
this end, we split the CPD populations into two groups: those leading to mild and severe forms of hemophilia. We 
then compared these two groups in terms of the molecular-level properties examined before.

Splitting the original CPD datasets involves a reduction of the initial sample, making any ensuing comparison 
more sensitive to causality assignment errors (see Materials and Methods)36. To minimize this effect, we worked 

Figure Test p-value

Fig. 1C, FVIII Fisher’s exact 1.0 × 10−6

Fig. 1C, FIX Fisher’s exact 4.0 × 10−4

Fig. 1D Fisher’s exact 1

Fig. 2, FVIII, ∆∆G Mood’s median 0

Fig. 2, FVIII, Acces. Mood’s median 0

Fig. 2, FVIII, Bl62 Mood’s median 0

Fig. 2, FVIII, Shan. Entr. Mood’s median 0

Fig. 2, FIX, ∆∆G Mood’s median 0

Fig. 2, FIX, Acces. Mood’s median 0

Fig. 2, FIX, Bl62 Mood’s median 4.1 × 10−14

Fig. 2, FIX, Shan. Entr. Mood’s median 0

Fig. 3, FVIII, ∆∆G Mood’s median 0

Fig. 3, FVIII, Bl62 Mood’s median 2.8 × 10−4

Fig. 3, FVIII, Shan. Entr. Mood’s median 0.01

Suppl. Figure 1, FIX, 
∆∆G Mood’s median 0.54

Suppl. Figure 1, FIX, 
Bl62 Mood’s median 0.94

Suppl. Figure 1, FIX, 
Shan. Entr. Mood’s median 0.60

Table 1.  Summary of the results of the statistical tests corresponding to the comparisons shown in the different 
figures.

Figure 3.  The molecular impact of CPDs and clinical severity. For FVIII, we plotted the value distribution of 
three properties (BLOSUM62 matrix elements, Shannon entropy, and ∆∆G) for the severe (black) and mild 
(grey) subsets. For ∆∆G, the difference between the distributions is statistically significant.
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with a subset of the original CPD datasets with high-quality causality annotations (see Materials and Methods). 
For FVIII, the CPD sample went from 122 to 91 cases and for FIX it went from 47 to 25 cases. Then, for the com-
parisons in this section, these datasets were partitioned into two groups: that of CPDs associated to mild and 
severe disease. In the case of FVIII, the corresponding groups had 62 and 29 CPDs, respectively, and in the case 
of FIX, they had 12 and 13 CPDs, respectively.

Comparison of FVIII CPDs leading to mild and severe disease (Fig. 3) produces statistically significant results 
for all the properties (Mood’s median test, Table 1): ∆∆G (p-value = 0), Shannon entropy (p-value = 0.01), and 
BLOSUM62 elements (p-value = 2.8 × 10−4). However, visual inspection of the results (Fig. 3) shows different 
degrees of overlap between the mild and severe distributions, consistent with deviations from a milt-to-mild/
severe-to-severe relationship between molecular impact and severity phenotype. The result for ∆∆G, for which 
the distribution overlap is moderate, suggests that the relationship may be valid for extreme values of ∆∆G.

For the Shannon entropy, the difference between medians is surprising from a functional point of view of con-
servation, because the distribution for severe phenotypes is shifted towards non-conserved locations. However, 
the difference is small (<0.25), particularly when we consider the substantial overlap between entropy distribu-
tions (Fig. 3). In our case, the difference between medians may reflect aspects specific to the compensation of 
highly disruptive variants. These variants, frequent among the CPDs associated to severe disease (∆∆G plot in 
Fig. 3), are usually harder to compensate11. For this reason, we expect to find them in 3D environments where 
sequence changes are numerous and provide better chances of compensation9. In these environments, the loci of 
both the CPD and its neighbors will have larger entropies, and this may be reflected in the median shift described.

For FIX (Supplementary Fig. S1) the trends are similar to those of FVIII, with median differences in the same 
directions and large overlaps between distributions. In this case, none of the comparisons were statistically sig-
nificant (Table 1) suggesting, together with the visual analysis, the presence of deviations from the monotonic 
relationship between molecular impact and severity. These results must be considered with care given the small 
sample size for FIX.

Genetic variability in hemostasis proteins.  In parallel with the previous analyses, we characterized the 
inter-individual variability in hemostasis proteins because evidence from biomedical19 studies shows that genetic 
alterations in these proteins can modulate the bleeding phenotype of hemophilia. To this end, we mapped the var-
iants carried by 1233 males (obtained from the 1000 Genomes project31) to a set of known hemostasis proteins30 
(19 cases that include FVIII and FIX, Supplementary Table S3). We then analyzed the resulting data in terms of 
amount and nature (i.e., pathogenic or neutral) of missense variants, two measures of the genetic alterations of 
the disease pathway related to disease severity20–25.

As Fig. 4A shows, all individuals in the population present variants in at least three of the proteins, and most 
frequently (in 699 of 1233 cases), individuals had variants in 6–7 proteins. However, not all the proteins are 
equally mutated; the von Willebrand factor (vWF) and coagulation factor FXII (F12) were mutated in almost all 
individuals (Fig. 4B), while variants in Kininogen-1 (KNG1) and Platelet glycoprotein Ib beta chain (GP1BB) 
were seldom observed.

The number of variants changes between individuals (Fig. 4C), mainly ranging from 5–20, and it is affected 
by ethnicity. Plotting the number of variants in hemostasis proteins (excluding those of FVIII and FIX) relative 
to those in FVIII and FIX (Fig. 4D) indicates different possibilities for variability in genetic background. This 
variability, following the notation in Jordan et al.10 (cis: in the same protein, trans: in a different protein), some-
times may be completely trans relative to either FVIII or FIX, and sometimes it may be a mixture of cis and trans 
variants. The latter is relevant because cis locations are believed to host compensatory variants7 more frequently 
than trans locations.

At the compositional level, we distinguished between neutral and pathogenic variants and looked for 
inter-individual differences in the number of each. For all the identified variants, we queried the HGMD37 data-
base to retrieve all available pathogenicity annotations. Figure 5A shows that pathogenic variants are present in 
a majority of the population (98%), although neutral variants predominate. We refine this view in Fig. 5B, which 
shows that both variant types appear in different combinations and that some individuals have a higher number 
of pathogenic variants in hemostasis proteins than others.

Discussion
Biophysical studies of CPDs using structural analyses and stability computations have explained their dual (i.e., 
pathogenic/neutral) behavior3,8,10,11,38. In particular, we know that compensatory mutations are the principal 
mechanism suppressing the harmful effects of CPDs8,10 and that these effects, in terms of molecular properties, 
tend to be milder than those of non-compensated PDs9,11 (Fig. 2). The biophysical approach has been extended 
to explain the appearance of CPDs during evolution using ∆∆G as a proxy for fitness either explicitly or implic-
itly3,9,11,38. More precisely, dePristo et al.3 proposed a formalism in which, upon mutation, fitness variations are 
expressed as an exponential function of the difference in ∆∆G from a reference value. This formalism is easily 
interpretable, and the authors illustrated its potential in the comparison of two competing hypotheses about the 
origin of CPDs. However, the explanatory power of the model is limited to those cases where there is a monotonic 
(mild-to-mild/severe-to-severe) correspondence between molecular impact and organismal fitness, and the effect 
of genetic background is small.

In our work, we explored the extent to which this is the case for CPDs in FVIII and FIX. Specifically, we stud-
ied (i) how measures of molecular impact (structural and functional) relate to the severity phenotype (Figs 2, 3 
and Supplementary Fig. S1) and (ii) the compositional properties of genetic background (Figs 4, 5). For FVIII, 
∆∆G was the molecular property showing the most noticeable difference between the mild and severe distri-
butions (Fig. 3). For FIX, the trend is comparable (Supplementary Fig. S1) but statistically non-significant. This 
result suggests that, at least for FVIII, fitness models based on ∆∆G3,39 may be useful for the evolutionary study 
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of CPDs. However, the applicability range of these models may be restricted when working with ∆∆G estimates 
because of their moderate correlation with observed stability changes. For example, in the case of FoldX40 the 
authors cite a value of 0.8 (r2 = 0.64); for the same program, Tian et al.41 find a correlation of 0.5 and a low accu-
racy (69.5%) for the discrimination between stabilizing and destabilizing variants. On the other hand, results 
from the application of FoldX to the characterization of mutations causing Fabry disease indicate42 that extreme 
∆∆G values may successfully identify pathogenic variants. On this basis, we believe that, when working with 
computational estimates of ∆∆G, it may be preferable to restrict the use of ∆∆G-based fitness models to those 
CPDs with a large effect on stability.

For CPDs having a small effect on stability, the applicability of ∆∆G-based models is more limited. This 
may occur for two reasons, apart from the previously discussed problems that arise when working with ∆∆G 
estimates. The first reason is a low correlation between ∆∆G and protein function43,44; a CPD may have a small 
impact on ∆∆G but a large impact on protein function, resulting in a noticeable effect on fitness. However, 
models only based on ∆∆G would predict a minor effect on fitness. The second reason may be the modulatory 
effect of genetic background. Evidence from both experimental and theoretical bioinformatics studies shows 
that the phenotypic effect of mutations is modulated by genetic background4,45–48. For example, by performing 
RNAi experiments with two C. elegans isolates, Vu et al.47 found that about 20% of the ~1400 genes they tested 
displayed background-dependent differences in the severity of the loss-of-function phenotype. An array of bio-
medical studies also support the regulatory role of background20–25. For example, To-Figueras et al.49 found that 
in congenital erythropoietic porphyria, a disease caused by mutations in UROS (an enzyme of the erythroid heme 
biosynthesis pathway), severity depends on the variants present in ALAS2, the rate-controlling enzyme of this 
pathway. In the case of hemophilia, we know that genetic background must be considered because specific vari-
ants in hemostasis proteins other than FVIII and FIX can modify the severity phenotype19. Within this context, 

Figure 4.  Variability in the genetic background of FVIII and FIX. This figure shows four concrete aspects 
of how the sequence variants from the 1000 Genomes project are distributed across hemostasis proteins (i.e. 
the genetic background of FVIII and FIX). (A) Frequency histogram of the number of mutated proteins per 
individual. (B) Number of individuals for which each hemostasis protein appears to be mutated. (C) Frequency 
histogram of the number of variants per individual. The results for the whole population are shown in black, 
and separate results for each of the five super-populations in the 1000 Genomes project—African (AFR), 
Admixed American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS)—are shown in color. 
(D) Distribution of the number of variants of background proteins relative to FVIII (orange) and FIX (blue).
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one expects that the cumulative effect of background variants on fitness may sometimes surpass that of CPDs 
with a small effect on stability, thus limiting the applicability of ∆∆G-based models in this case.

In the previously cited biomedical studies, 1–3 (usually pathogenic) variants in the genes of the disease path-
way are enough to modulate the effect of the causal variant. In our case, after characterizing the number and 
kinds of variants in hemostasis proteins, we found that many individuals already carry 5–20 variants (Fig. 4C) 
and, frequently, one or more of these variants are pathogenic (Fig. 5, Materials and Methods). Another interesting 
aspect of our results (Figs 4, 5) is the diversity they reveal; neither background size nor composition are constant 
in the population (due to ethnic diversity and inter-individual variability). Comparable results are observed at the 
variant level; the same variant may appear with different backgrounds in different individuals (Fig. 6). Given their 
impact on protein stability50 and protein–protein interactions51, we expect that the coincidence of several patho-
genic variants in the same individual will have a net lowering effect on the efficacy of the hemostasis mechanism. 
This effect will change between individuals since the number of pathological mutations varies between individ-
uals (Fig. 5) and because the net effect of the variants may not follow a simple additive model52. In summary, the 
genetic background of FVIII and FIX has the potential to modulate the impact of CPDs.

Our results are specific for FVIII and FIX; for these coagulation factors, they suggest that, from an evolution-
ary point of view, we need to expand our models for the appearance of CPDs during evolution. Present models3 
may work only for the most disruptive variants (involving large ∆∆G values or affecting functional sites); includ-
ing the contribution of genetic background (e.g., applying the approach proposed for complex epistatic effects5,53 
under a biophysical framework38) may be relevant when the mutations under study have a mild impact on pro-
tein function. Extension of this conclusion to other proteins will require additional work showing, among other 
things, that molecular factors related to protein function (e.g., protein interactions, complexity of the functional 
module, etc.) support a modulatory role for genetic background. We believe, however, that the modification of 
fitness models to take into account the effect of background must be accompanied by an effort to increase the 
accuracy of ∆∆G computations. Otherwise, increasing the complexity of the models will augment the error of 
fitness estimates.

Materials and Methods
CPD dataset.  To obtain our sets of CPDs for FVIII and FIX, we followed a three-step protocol. First, for both 
coagulation factors, missense pathogenic mutations were retrieved from the databases CHAMP for Hemophilia 
A (http://www.cdc.gov/ncbddd/hemophilia/champs.html)54 and CHBMP (http://www.cdc.gov/ncbddd/hemo-
philia/chbmps.html)55. The pathogenicity of these variants was validated using ClinVar56. We identified two 
and three cases for FVIII and FIX, respectively, that were considered benign according to Clinvar56. These were 
removed from our dataset. Thus, we obtained a total of 971 mutations for FVIII and 391 for FIX. We annotated 
these mutations with the severity phenotype provided in the “Reported Severity” field in the CHAMP/CHBMP 
databases, which indicates the phenotypic presentation of the disease (e.g., bleeding patterns). Second, we built 
a multiple sequence alignment (MSA) for the two coagulation factors, as described below. Third, for each muta-
tion, we checked if at the MSA location of the wild-type residue we could find the mutant residue in another 
species (Fig. 1A). When this was the case, the mutation was considered a CPD. At the end of this process, we 
had obtained 122 (87 mild, 35 severe) and 47 (25 mild, 22 severe) CPDs for FVIII and FIX, respectively. In 

Figure 5.  Pathogenic load of hemostasis proteins. (A) Distribution of the number of neutral (blue) and 
pathogenic (red) variants per individual in the 1000 Genomes population. (B) Scatterplot showing the different 
combinations of neutral and pathogenic variants found in the population. The size of the circles represents 
the number of individuals in which each combination was observed. In addition, each circle is a pie plot that 
represents the fraction of individuals from the different superpopulations in the 1000 Genomes: African (AFR), 
Admixed American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS).
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some analyses (Fig. 2), we used noCPDs. We obtained 849 (406 mild, 443 severe) and 344 (93 mild, 251 severe) 
noCPDs for FVIII and FIX, respectively. The complete list of mild/severe mutations used in this work is provided 
in Supplementary Table S1.

In the Results section “The molecular impact of CPDs in FVIII …” we compare the molecular properties of 
CPDs (∆∆G, Blosum62 matrix elements and Shannon Entropy) associated to mild and severe versions of the 
disease. For this comparison we had to partition the set of CPDs into two subsets, corresponding to the variants 
associated to mild and severe versions of the disease, respectively. The size of these subsets was relatively small 
(87 mild and 35 severe for FVIII; 25 and 22 mild and severe for FIX) making the comparisons more sensitive to 
experimental error36, which in our case corresponds to the uncertainty level in the causality assignment of the 
variants. To reduce this effect to a minimum, we manually verified the causality annotations of each CPD, using 
the references provided in the CHAMP/CHBMP databases. In particular, we checked to which extent the criteria 
employed to establish causality were comparable to the most recent recommendations in the field57: we looked 
for evidence57,58 such as uniqueness of the variant in the carrier’s sequence, use of healthy individuals as controls, 
and structural/functional analysis of the variant’s impact and conservation at the mutation locus. We discarded 
those CPDs for which the evidence of causality was unclear (that is, it was either not mentioned or appeared to be 
weak). At the end of this process, the final number of CPDs was: 91 (62/29 corresponding to mild/severe disease) 
for FVIII and 25 (12/13 corresponding to mild/severe) for FIX. Given the small sample size of the FIX dataset, we 
decided to limit the comparisons in Fig. 3 to FVIII and present the results for FIX in Supplementary Fig. S1. The 
final sets of manually curated CPDs are provided in Supplementary Table S2.

For the remaining proteins (Fig. 1D), CPDs were obtained as follows. First, we queried the UniProt59 database 
with the keywords “lethal/severe” and “mild”. Of the resulting set of proteins, we kept only those for which there 
were at least five instances of each case. We then followed the second and third steps of the protocol for FVIII 
and FIX (described in the previous paragraph): we constructed an MSA for each protein and examined the MSA 
columns of the human native residues to determine whether there were pathogenic residues in the non-human 
species. At the end of this process, we had retrieved 155 mild and 229 severe mutations that led to 17 mild and 
25 severe CPDs distributed over 14 proteins (Fig. 1D and Supplementary Table S1). In some analyses, we used 
noCPDs, of which there were 138 and 204 mild and severe cases, respectively.

The final list of mutations is provided in Supplementary Table S1.

Characterization of mutations in terms of molecular properties.  In this study, the molecular impact 
of mutations is described using four parameters: protein stability change upon mutation (∆∆G), solvent acces-
sibility, elements of the BLOSUM62 matrix, and Shannon entropy at the mutation locus. These parameters, or 
related ones, are routinely used to characterize pathogenic mutations and reflect different aspects of their impact 
on protein structure and function2. In particular, ∆∆G is a central parameter in the biophysical theory of protein 
evolution3,38, and it was recently used by Xu and Zhang8 to test the compensation hypothesis. We estimated ∆∆G 

Figure 6.  Differences in the background of specific variants between FVIII and FIX. The genetic background 
of a given variant can vary between individuals. Here, we focus on variants of FVIII and FIX and define 
background as the number of accompanying mutations in the hemostasis proteins using population data from 
the 1000 Genomes project. Each line represents a variant in these coagulation factors (continuous and broken 
lines for FVIII and FIX, respectively) that is present in more than one individual. The line unites the minimum 
(left axis) and maximum (right axis) number of background mutations observed for that variant. Blue indicates 
that all the background mutations were counted, regardless of their nature, and red indicates that only 
pathogenic background variants were counted. For the latter investigation, we found only examples relating to 
FVIII.
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using the FoldX suite33. Relative solvent accessibility (obtained from the experimental structures of FVIII—PDB 
code 2R7E—and FIX—PDB codes 1CFH, 1IXA, and 3LC5), which indicates whether a mutation may be structur-
ally disruptive or affect protein–protein interactions12, was computed with the NACCESS program60. BLOSUM62 
matrix elements, obtained by Henikoff and Henikoff61 from the frequency of amino acid exchanges in blocks of 
aligned sequences from conserved protein regions, capture some aspects of molecular evolution34. It has been 
shown35 that BLOSUM matrices summarize the changes in physico-chemical properties (hydrophobicity, size, 
charge) associated with amino acid substitutions and related to changes in protein function and structure. This 
parameter was employed, among others, by Ferrer-Costa et al.11 to show that CPDs are milder than PDs. Finally, 
Shannon entropy at the mutation locus in the MSA is a measure of the conservation pattern at this position in the 
MSA of the protein family62, which is related to functional/structural restraints. It is equal to −Σipi.log(pi), where 
i runs over all the amino acids at the mutation’s MSA column. Shannon entropy varies between 0 and 4.322, with 
low and high values indicating highly and poorly conserved locations, respectively.

Multiple sequence alignments.  For each protein in our dataset, we built a corresponding MSA by (i) 
retrieving from Ensembl63 the mammalian orthologs of the human protein and (ii) aligning them with the pro-
gram Muscle64.

Hemostasis proteins.  The primary biological roles of FVIII and FIX are to contribute to hemostasis29. This 
defensive mechanism is responsible for minimizing the blood loss resulting from vascular injury through the 
coordinated action of several proteins29. Both biomedical/clinical19 and evolutionary30 studies have shown that 
variants in these proteins can modify the bleeding patterns of carriers, a key phenotype of hemophilia. On this 
basis, for the genetic background of FVIII and FIX, we used a list of 19 proteins (17 cases plus FVIII and FIX; 
Supplementary Table S3) that was recently compiled30 to study the genomic basis of phenotypic variation in 
hemostasis.

Variants in the 1000 Genomes project.  In the last section of this study, we examined the amount and 
composition of the sequence variants present in hemostasis proteins in a population of healthy individuals. We 
obtained the relevant data from the 1000 Genomes project31. Specifically, we retrieved all the missense variants in 
the 19 hemostasis proteins listed in Supplementary Table S3 carried by each male in the 1000 Genomes database.

Data Availability
All data generated or analyzed during this study are included in this article (and its Supplementary Information).
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