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Abstract

Big data, coupled with the use of advanced analytical approaches, such as artificial intelligence (AI), have the
potential to improve medical outcomes and population health. Data that are routinely generated from, for example,
electronic medical records and smart devices have become progressively easier and cheaper to collect, process,
and analyze. In recent decades, this has prompted a substantial increase in biomedical research efforts outside
traditional clinical trial settings. Despite the apparent enthusiasm of researchers, funders, and the media, evidence is
scarce for successful implementation of products, algorithms, and services arising that make a real difference to
clinical care. This article collection provides concrete examples of how “big data” can be used to advance
healthcare and discusses some of the limitations and challenges encountered with this type of research. It primarily
focuses on real-world data, such as electronic medical records and genomic medicine, considers new
developments in AI and digital health, and discusses ethical considerations and issues related to data sharing.
Overall, we remain positive that big data studies and associated new technologies will continue to guide novel,
exciting research that will ultimately improve healthcare and medicine—but we are also realistic that concerns
remain about privacy, equity, security, and benefit to all.
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Introduction
More than ever, medicine now aims to tailor, adjust, and
personalize healthcare to individuals’ and populations’ spe-
cific characteristics and needs—predictively, preventively,
participatorily, and dynamically—while continuously im-
proving and learning from data both “big” and “small.”
Today, these data are increasingly captured from data
sources both old (such as electronic medical records,
EMR) and new (including smartphones, sensors, and
smart devices). Combining artificial intelligence (AI) with
augmented human intelligence, these new analytical ap-
proaches enable “deep learning health systems” that reach
far beyond the clinic to forge research, education, and
even care into the built environment and peoples’ homes.

The volume of biomedical research is increasing rap-
idly. Some is being driven by the availability and analysis
of big data—the focus of this collection. Despite this,
only a tiny fraction of research ever translates into rou-
tine clinical care. An analysis by the USA’s Institute of
Medicine (now the National Academy of Medicine)
noted that it takes 17 years for 14% of research findings
to move into clinical practice [1]. As noted by Westfall
et al., many factors can affect implementation—several
of which involve the use of data. More and more data
are generated in medicine, such that big data approaches
previously used in fields such as physics and astronomy
are increasingly relevant in medicine.
Data, while necessary, are insufficient to inform med-

ical practice. Data must be transformed before it can be
useful. A commonly used framework is the “data, infor-
mation, knowledge, and wisdom” (DIKW) hierarchy.
References to this hierarchy date back to the late 1980s
in the works of Zeleny [2] and Ackoff [3]. The first
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reference to this, in the context of medicine, was in the
discipline of nursing informatics [4]. This framework
was recently revisited by Damman [5], who proposed
that the framework be modified to “data, information,
evidence, and knowledge” (DIEK) to reflect the import-
ance of evidence. In this framework, “knowledge” is used
to denote evidence that is relevant, robust, repeatable,
and reproducible. Whichever conceptual framework is
preferred, it is evident that data must be transformed to
be useful. Despite predictions of the value that big data
analytics holds for healthcare [6], medicine has lagged
behind other industries in the application of big data to
realize its value. Lee and Yoon [7] identify several limita-
tions that affect the use of big data in the medical set-
ting. These include the inherent “messiness” of data
collected as a part of clinical care, missing values, high
dimensionality, inability to identify bias or confounding,
and the observational nature of the data decreasing the
ability to infer causality.
The Beyond Big Data to New Biomedical and Health

Data Science article collection published in BMC Medi-
cine focuses on providing examples of how big data-
driven approaches might ultimately improve healthcare
provision and health outcomes. In addition, the collec-
tion’s articles address data complexity, challenges facing
this type of research, and other enablers and barriers.

At the heart of precision health
The dynamism of progress enabled by new data sources
is significant. For example, a smartphone microphone
within a bedroom environment can now listen for
unique gasping sounds, called agonal breathing, which
occur when the heart stops beating [8]. These are an
audible biomarker—a sign of cardiac arrest and brain-
stem reflex that arises in the setting of severe hypoxia.
An AI algorithm can differentiate them from other types
of breathing, with a potential for calling for early cardio-
pulmonary resuscitation (CPR).
In this article collection, a Debate by Hekler et al. [9]

helpfully presents a complementary “small data” para-
digm of N-of-1 unit (i.e., a single person, clinic, hospital,
healthcare system, community, and city). The authors
argue that using these “small data” complements use of
big data for advancing personalized medicine, but is also
valuable in its own right.
Next, Mackey et al. [10] explore the role of blockchain

in use cases such as precision health, drug supply chain,
and clinical trials. The authors highlight that beyond the
benefits of a distributed, immutable, transparent, and
higher trust system, the unique benefits of the much-
hyped blockchain for healthcare processes over other
existing technologies must be assessed. It is argued that
the necessity to share data throughout the ecosystem is
what makes blockchain a viable application for healthcare.

Healthcare blockchain is, however, not yet “fit-for-pur-
pose,” because it lacks technical data standards and regu-
latory policies, among other things. The authors have
proposed a design framework and set of principles relating
to blockchain to help advance the field.
Huang et al. [11] provide a timely reminder that cutting-

edge advances in precision health, mHealth, and the use of
apps to empower people with diabetes to self-manage their
health and disease cannot be achieved without building on
sound foundations of evidence-based medicine, following
best practices and guidelines. New advances in digital
health need quality standards, quality and safety as-
surance mechanisms, and—at times—even regulation
to (counterintuitively for some) speed their adoption.

Implementation science and genomic medicine
Implementation science is the scientific study of
methods to promote the systematic uptake of research
findings and other evidence-based practices into routine
practice and, hence, to improve the quality and effective-
ness of health services and care [12]. Implementation of
new findings in genetics and genomics is subject to the
same limitations as noted in the introduction, although
it is magnified because genomic information is used to
define smaller and smaller subgroups of patients—ultim-
ately down to the level of the individual.
Development of the methods of implementation science

and the incorporation of implementation science frame-
works such as RE/AIM (Reach, Effectiveness, Adoption,
Implementation, and Maintenance) [13], the Consolidated
Framework for Implementation Research (CFIR), and
others [14] has led to great progress in understanding
what is needed to implement important research findings
into clinical settings. Increasingly, funding agencies are ex-
plicitly including the requirement to study implementa-
tion, as evidenced by the USA’s National Institutes of
Health’s identification of Dissemination and Implementa-
tion Science as a research priority [15].
Despite the importance of implementing new findings,

the distribution of research funding allocated to data
generation compared to that allocated to translation dis-
proportionately favors discovery. For instance, Khoury et
al., in an analysis of the genomic translation research
continuum from 2007, noted that less than 3% of re-
search publications presented results of T2 research
(assessing the value of a genomic application for health
practice leading to the development of evidence-based
guidelines), with a much smaller proportion devoted to
T3 (research to move evidence-based guidelines into
health practice, through delivery, dissemination, and dif-
fusion research) or T4 (research that seeks to evaluate
the “real-world” health outcomes of a genomic applica-
tion in practice) research [16]. This has been seen in
other areas of biomedical research, and though some
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improvement has been seen, most publications describe
discovery research. To address this issue, one major
funder of genetic and genomic research, the National
Human Genome Research Institute, explicitly includes im-
plementation research as part of their strategic plan [17].
In this collection, the paper by Namjou et al. [18] em-

phasizes discovery and implementation—the Electronic
Medical Records in Genomics (eMERGE) Network.
Namjou and colleagues describe a genome-wide associ-
ation study (GWAS) looking at non-alcoholic fatty liver
disease (NAFLD). What makes this paper exemplary for
implementation is the use of natural language processing
(NLP) of actual EMR clinical notes to develop a much
richer phenotype for discovery than the typical GWAS,
which depends heavily on diagnosis codes, a known limi-
tation of these types of studies [19]. eMERGE has been a
leader in the development of standardized phenotypes
that can be used across EMR systems with high sensitiv-
ity and specificity [20]. These phenotypes are available
for general use at PheKB.org [21]. The study replicated
the known association of NAFLD severity with the
PNPLA3 gene cluster and identified two novel associa-
tions: one associated with NAFLD (near IL17RA) and
another associated with NAFLD progression to fibrosis
(near ZFP90-CDH1). This study also includes a phenome-
wide association study (PheWAS). In contrast to a GWAS,
in which a phenotype is tested in cases and controls to
identify the genetic loci associated with the phenotype, a
PheWAS study tests a known genetic locus in carriers and
non-carriers across all phenotypes contained in a health
record to discover disease associations with the genetic
marker [22]. The PheWAS identified a novel negative asso-
ciation for gout, using the PNPLA3 gene cluster locus. This
study exemplifies how analysis of the big data associated
with EMR systems can facilitate discovery, with relevance
to real-world disease, and provides an avenue for discovery,
dissemination, and implementation.

Increasing the validity of risk progression models
derived from electronic health record-derived data
The drive towards so-called P4 medicine—that is, medicine
that is “predictive, preventive, personalized and participa-
tory” [23]—supported by the accompanying increasing
availability of EMR-derived clinical cohorts, has led to a
proliferation in the development of risk prediction models.
Given the very high global disease burden of ischemic
heart disease and stroke [24, 25], it is unsurprising that de-
velopment of cardiovascular risk prediction models has
been a major research focus of interest. In a related vein,
there has been a policy drive to embed such models into
routine clinical care.
In the UK, the National Institute for Health and Care

Excellence (NICE) currently recommends use of the
QRISK 2 cardiovascular disease algorithm [26]. Using

the internationally respected Clinical Practice Research
Datalink (CPRD), linking primary care, secondary care,
and mortality data, Pate and colleagues [27] constructed a
cohort of 3.79 million patients and then tracked risk
scores over a 10-year period. They compared the QRISK 2
and 3 algorithms with the incorporation of additional data
on secular trends, geographical variation, and approach to
imputing missing data. They found that incorporating
these additional variables resulted in substantial variation
in risk across models. The authors concluded that model-
ing decisions could have a major impact on risk estimates,
particularly secular trends that can relatively easily be
accounted for in the modeling process.

Big data, shared data, good data?
While modern technology allows the collection and ana-
lysis of data at ever greater scales, the potential for benefit
from widespread sharing of data remains hampered by hu-
man conventions such as interdisciplinary politics, funding
mechanisms, institutional policies, and perverse incentives
for career researchers [28], among other research chal-
lenges [29]. From the public perspective, there are also
potential concerns around fairness, ethics, information
governance, and the entry of commercial industries into
some health systems. While patients might reasonably as-
sume that medical research professionals routinely and
freely share data with fellow academic researchers (and
perhaps even industry) on a global scale, they would likely
be surprised to hear that most of us do not [30].
Sharing clinical trial data is becoming increasingly

commonplace—championed by initiatives such as All-
Trials, and demanded by calls from the National Acad-
emy of Medicine, the World Health Organization, and
the Nordic trial alliance [31]—though it is the oft-
criticized commercial sponsors that share more data
than their academic counterparts [32]. The landscape of
data sharing in practice remains fractured, with a recent
review of top biomedical journal practice revealing a
split between journals with no formal policy, those that
require sharing on request, and those that require full
data availability with no restriction [33].
In this collection, Waithira and colleagues [34] argue

for clear institution-level policies around data sharing,
particularly in low- and middle-income countries. For-
mal procedures around issues like cost-recovery are par-
ticularly important given the lower resource availability
in such settings, but also the potential for inequity, given
the authors’ experience that most requests to access data
from low- and middle-income countries comes from
higher-income countries. While the case for data sharing
in support of replication, secondary post hoc analysis,
and meta-analyses is clear, sharing must not further dis-
advantage those in the poorest institutions to further the
careers of their peers in richer countries.
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Ethical considerations around big data sets are also the
focus of this collection’s Opinion from Nebeker and Tor-
ous [35], who outline ways in which the rapidly evolving
landscape of technology presents new and volatile chal-
lenges. Ethical frameworks and procedures developed
half a century ago for controlled experiments in univer-
sities and hospitals struggle when faced with real-time
analysis, productization, and monetization of the incal-
culable “data exhaust” we produce each day with our
digital devices. They highlight a newer framework that
seeks to balance risks and benefits (as is standard), but
also elevates the growing considerations of privacy, data
management, access, and usability. The piece serves as a
call to action to develop a new digitally minded ethical
infrastructure to address these new challenges before the
pace of developments in AI, the scale of the “big tech”
companies, and the influx of new stakeholders from
countries without a robust history of medical ethics,
overwhelm our ability to maintain the key principles of
justice, beneficence, and respect for persons.

Conclusions
The United Nations recently reported that, for the first
time, half of humanity is now connected to the Internet
[36], with major growth in Africa and economically de-
veloping countries. Such vast growth in data and con-
nectivity holds great opportunities to gather data, test
interventions, and hone care pathways in timescales
once thought impossible. Yet, in moving towards an
always-online and all-digital culture, we risk forgoing the
hard-fought lessons of traditional research. All too often,
human bias, generalizability, conflicts of interest, polit-
ics, and prejudice still lurk behind the 1s and 0s and the
deus ex machina of artificial intelligences that could ren-
der simple our complex challenges. While there remains
much work to be done, we are cautiously optimistic that
we might soon be past the “peak of inflated expecta-
tions”, and the “trough of disillusionment” in the so-
called “hype cycle” for big data [37]. As this pervasive
mega-trend touches off a variety of new technologies
and approaches, the foundational work on validity, data
sharing, generalizability, and ethical principles described
in this special issue will continue to resonate for decades
to come.

Abbreviations
AI: Artificial intelligence; eMERGE: Electronic medical records in genomics;
EMR: Electronic medical records; GWAS: Genome-wide association studies;
NAFLD: Non-alcoholic fatty liver disease; PheWAS: Phenome-wide association
study

Acknowledgements
Not applicable.

Authors’ contributions
All authors contributed equally to this work. All authors read and approved
the final version of the manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
AS was a co-author of the QRISK 2 algorithm. MSW is a co-author of
one of the manuscripts discussed [18] and a site principal investigator
for eMERGE. PW is an employee of PatientsLikeMe. JC is a co-author of
one of the manuscripts discussed [11].

Author details
1Centre for Population Health Sciences (CePHaS), Lee Kong Chian School of
Medicine, Nanyang Technological University Singapore, Clinical Sciences
Building, 11 Mandalay Road, Singapore 308232, Singapore. 2The Usher
Institute, The University of Edinburgh, Edinburgh EH8 9DX, Scotland, UK.
3PatientsLikeMe, 160 Second Street, Cambridge, MA 02142, USA. 4Genomic
Medicine Institute, Geisinger, 100 North Academy Avenue, Danville, PA
17822, USA.

Received: 2 July 2019 Accepted: 2 July 2019

References
1. Westfall JM, Mold J, Fagnan L. Practice-based research: ‘blue highways’ on

the NIH roadmap. JAMA. 2007;297(4):403–6.
2. Zeleny M. Management support systems: towards integrated knowledge

management. Hum Syst Manage. 1987;7(1):59–70.
3. Ackoff RL. From data to wisdom. J Appl Syst Anal. 1989;16(1989):3–9.
4. Matney S, Brewster PJ, Sward KA, Cloyes KG, Staggers N. Philosophical

approaches to the nursing informatics data-information-knowledge-wisdom
framework. ANS Adv Nurs Sci. 2011;34(1):6–18.

5. Dammann O. Data, information, evidence, and knowledge: a proposal for
health informatics and data science. Online J Public Health Inform. 2019;
10(3):e224.

6. Murdoch TB, Detsky AS. The inevitable application of big data to health
care. JAMA. 2013;309(13):1351–2.

7. Lee CH, Yoon HJ. Medical big data: promise and challenges. Kidney Res Clin
Pract. 2017;36(1):3–11.

8. Chan J, Rea T, Gollakota S, Sunshine JE. Contactless cardiac arrest detection
using smart devices. NPJ Digit Med. 2019;2:52.

9. Hekler EB, Klasnja P, Chevance G, Golaszewski NM, Lewis D, Sim I. Why we
need a small data paradigm. BMC Med. 2019. https://doi.org/10.1186/s12
916-019-1366-x.

10. Mackey TK, Kuo T-T, Gummadi B, Clauson KA, Church G, Grishin D, et al. ‘Fit-
for-purpose?’ – challenges and opportunities for applications of blockchain
technology in the future of healthcare. BMC Med. 2019;17:68.

11. Huang Z, Lum E, Jimenez G, Semwal M, Sloot P, Car J. Medication management
support in diabetes: a systematic assessment of diabetes self-management apps.
BMC Med. 2019. https://doi.org/10.1186/s12916-019-1362-1.

12. Eccles MP, Mittman BS. Welcome to Implementation Science. Implement
Sci. 2006;1:1.

13. Glasgow RE, Harden SM, Gaglio B, Rabin B, Smith ML, Porter GC, et al. RE-
AIM planning and evaluation framework: adapting to new science and
practice with a 20-year review. Front Public Health. 2019;29(7):64.

14. Birken SA, Powell BJ, Presseau J, Kirk MA, Lorencatto F, Gould NJ, et al.
Combined use of the Consolidated Framework for Implementation
Research (CFIR) and the Theoretical Domains Framework (TDF): a systematic
review. Implement Sci. 2017;12(1):2.

15. National Institutes of Health Office of Disease Prevention. Dissemination &
implementation (D&I) research. https://prevention.nih.gov/research-
priorities/dissemination-implementation. Accessed 1 July 2019.

16. Khoury MJ, Gwinn M, Yoon PW, Dowling N, Moore CA, Bradley L. The
continuum of translation research in genomic medicine: how can we

Car et al. BMC Medicine          (2019) 17:143 Page 4 of 5

https://doi.org/10.1186/s12916-019-1366-x
https://doi.org/10.1186/s12916-019-1366-x
https://doi.org/10.1186/s12916-019-1362-1
https://prevention.nih.gov/research-priorities/dissemination-implementation
https://prevention.nih.gov/research-priorities/dissemination-implementation


accelerate the appropriate integration of human genome discoveries into
health care and disease prevention? Genet Med. 2007;9(10):665–74.

17. Green ED, Guyer MS, National Human Genome Research Institute. Charting
a course for genomic medicine from base pairs to bedside. Nature. 2011;
470(7333):204–13.

18. Namjou B, Lingren T, Huang Y, Parameswaran S, Cobb BL, Stanaway IB, et al.
GWAS and enrichment analyses of non-alcoholic fatty liver disease identify
new trait-associated genes and pathways across eMERGE network. BMC
Med. 2019. https://doi.org/10.1186/s12916-019-1364-z.

19. Robinson JR, Wei W, Roden DM, Denny JC. Defining phenotypes from clinical
data to drive genomic research. Annu Rev Biomed Data Sci. 2018;1:69–92.

20. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, et al.
Validation of electronic medical record-based phenotyping algorithms:
results and lessons learned from the eMERGE network. J Am Med Inform
Assoc. 2013;20(e1):e147–54.

21. PheKB. https://www.phekb.org/. Accessed 29 June 2019.
22. Denny JC, Bastarache L, Roden DM. Phenome-wide association studies as a

tool to advance precision medicine. Annu Rev Genomics Hum Genet. 2016;
17:353–73.

23. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4)
cancer medicine. Nat Rev Clin Oncol. 2011;8(3):184–7.

24. GBD 2017 DALYs and HALE Collaborators. Global, regional, and national
disability-adjusted life-years (DALYs) for 359 diseases and injuries and
healthy life expectancy (HALE) for 195 countries and territories, 1990–2017:
a systematic analysis for the Global Burden of Disease Study 2017. Lancet.
2018;392(10159):1859–922.

25. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-
sex-specific mortality for 282 causes of death in 195 countries and
territories, 1980–2017: a systematic analysis for the Global Burden of Disease
Study 2017. Lancet. 2018;392(10159):1736–88.

26. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A,
et al. Predicting cardiovascular risk in England and Wales: prospective
derivation and validation of QRISK2. BMJ. 2008;336(7659):1475–82.

27. Pate A, Ernsley R, Ashcroft DM, Brown B, van Staa T. The uncertainty with
using risk prediction models for individual decision-making: an exemplar
cohort study examining the prediction of cardiovascular disease in English
primary care. BMC Med. 2019. https://doi.org/10.1186/s12916-019-1368-8.

28. Smith R, Roberts I. Time for sharing data to become routine: the seven
excuses for not doing so are all invalid. F1000Res. 2016;5:781.

29. Kostkova P, Brewer H, de Lusignan S, Fottrell E, Goldacre B, Hart G, et al. Who
owns the data? Open data for healthcare. Front Public Health. 2016;4:7.

30. Tenopir C, Allard S, Douglass K, Aydinoglu AU, Wu L, Read E. Data sharing
by scientists: practices and perceptions. PLoS One. 2011;6(6):e21101.

31. Loder E, Groves T. The BMJ requires data sharing on request for all trials.
BMJ. 2015;350:h2373.

32. Goldacre B, DeVito NJ, Heneghan C, Irving F, Bacon S, Fleminger J, et al.
Compliance with requirement to report results on the EU clinical trials
register: cohort study and web resource. BMJ. 2018;362:k3218.

33. Barbui C. Sharing all types of clinical data and harmonizing journal
standards. BMC Med. 2016;14:63.

34. Waithira N, Mutinda B, Cheah PY. Data management and sharing policy: the
first step towards promoting data sharing. BMC Med. 2019;17:80.

35. Nebeker C, Torous J, Bartlett Ellis RJ. Building the case for actionable ethics
in digital health research supported by artificial intelligence. BMC Med.
2019. https://doi.org/10.1186/s12916-019-1377-7.

36. More than half of global population now online: UN. Globe post; 2017.
https://theglobepost.com/2018/12/07/half-of-population-online/. Accessed
27 June 2019.

37. Woodie A. Why Gartner dropped big data off the hype curve. Datanami;
2015. https://www.datanami.com/2015/08/26/why-gartner-dropped-big-
data-off-the-hype-curve/. Accessed 27 June 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Car et al. BMC Medicine          (2019) 17:143 Page 5 of 5

https://doi.org/10.1186/s12916-019-1364-z
https://www.phekb.org/
https://doi.org/10.1186/s12916-019-1368-8
https://doi.org/10.1186/s12916-019-1377-7
https://theglobepost.com/2018/12/07/half-of-population-online/
https://www.datanami.com/2015/08/26/why-gartner-dropped-big-data-off-the-hype-curve/
https://www.datanami.com/2015/08/26/why-gartner-dropped-big-data-off-the-hype-curve/

	Abstract
	Introduction
	At the heart of precision health
	Implementation science and genomic medicine
	Increasing the validity of risk progression models derived from electronic health record-derived data
	Big data, shared data, good data?
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

