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ABSTRACT: Aqueous solubility is recognized as a critical parameter in both the early- and late-stage drug discovery. Therefore, in silico
modeling of solubility has attracted extensive interests in recent years.Most previous studies have been limited in using relatively small data
sets with limited diversity, which in turn limits the predictability of derived models. In this work, we present a support vector machines
model for the binary classification of solubility by taking advantage of the largest known public data set that contains over 46 000 com-
pounds with experimental solubility. Our model was optimized in combination with a reduction and recombination feature selection
strategy. The bestmodel demonstrated robust performance in both cross-validation and prediction of two independent test sets, indicating
it could be a practical tool to select soluble compounds for screening, purchasing, and synthesizing. Moreover, our work may be used for
comparative evaluation of solubility classification studies ascribe to the use of completely public resources.

’ INTRODUCTION

Aqueous solubility is one of the most fundamental physico-
chemical properties of drug candidates.1 Highly active compounds
can be totally silent due to the lack of desirable solubility, which is
directly relevant to absorption and eventual bioavailability.2,3

Thus, eliminating compounds with unfavorable solubility as early as
possible at the screening stage will reduce costs and save time for
drug discovery. However, solubility measurement can be laborious,
especially when dealing with a large library of compounds. There-
fore, considerable efforts have been devoted to developing com-
utational tools for fast and accurate estimation of solubility.3,4

Recent modeling studies of solubility (Supporting Information,
Table S1) have employedmethods, such as artificial neural networks
(ANN), multilinear regression (MLR), support vector machines
(SVM), partial least-squares (PLS), random forest (RF), k-nearest
neighbor (KNN), and recursive partitioning (RP).5-18 Though
less prevalent, there are also solubility classification studies in which
a class label (e.g., soluble or insoluble) is assigned to a given
compound.19-23

A common feature in the above studies is that they are based
on relatively small data sets. For example, the largest data set ever
used consists of less than 6000 compounds (Supporting Infor-
mation, Table S1). Though good results can still be achieved,
data diversity is limited by using a small data set. As a result, the
real predictive power of derived model for an independent test
set is also weakened. We notice that the data sets used in most
previous studies are derived primarily or at least partially from
two commercial databases (AQUASOL and PHYSPROP) or
from in-house collections, which often makes it difficult to
conduct comparative evaluation using the same data sets. On
the other hand, public data sets are becoming increasingly
popular, as they are readily available to all researchers. Therefore,
results obtained on public data sets from different studies can be
possibly compared on the same ground.

Unlike previous studies, we took advantage of a high-quality
data set containing over 46 000 compounds with known solubil-
ity, which is believed to be so far the largest public one. In this
study, we considered the binary classification of solubility by
using the SVM, an established machine learning method that
has succeeded in many areas, such as pattern recognition and
pharmacokinetic property prediction.24-29 Our SVMmodel was
optimized in conjunction with a reduction and recombination
feature selection strategy.30 In particular, we constructed a hybrid
fingerprint from three existing structural and/or physicochemical
fingerprints. Our best model employing this fingerprint pro-
duced promising results not only in cross-validation but also in
the prediction of two independent test sets.

’METHODS

Data Set. The Burnham Center for Chemical Genomics
(BCCG) has launched a screening campaign for aqueous solu-
bility against the NIH Molecular Libraries Small Molecule
Repository (MLSMR), which contains more than 350 000
compounds. The resultant bioassay (PubChem AID: 1996) was
deposited publicly in the PubChem BioAssay database.31 As of
June 18, 2010, this bioassay stored experimental solubility data for
47 567 compounds. The solubility data can be downloaded from
the PubChem FTP site (ftp://ftp.ncbi.nlm.nih.gov/pubchem/
Bioassay/). All compounds were measured using a standard proto-
col under the same conditions.32 We consider that data set com-
piled from a single source, e.g., those used in this work, is more
advantageous for statistical studies than those compiled fromvarious
sources (Supporting Information, Table S1).
The 47 567 compounds were processed as follows: First,

compounds with multiple components, such as mixtures and
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salts, were discarded. Second, compounds with conflicting or
redundant information were minimized. For instance, if two
compounds could be characterized with the same fingerprint
and their solubility class labels (soluble or insoluble) were
inconsistent, then both compounds were discarded to avoid
conflict; if their solubility class labels were identical, then only
one compound was retained to avoid redundancy. In total,
41 501 compounds were compiled and used as the training
set for SVM model construction (Table 1, data set I). The
solubility of each compound is expressed in μg/mL unit. As we
considered the binary classification of solubility in this study,
compounds with solubility g10 μg/mL were regarded as
soluble, while those <10 μg/mL were regarded as insoluble.
This criterion is in accordance with that specified by the
original BCCG depositors, although there are considerable
debates in the literature on defining the boundary of a soluble/
insoluble class.33

While this manuscript was in preparation, another 4795
compounds with experimental solubility data were added to
the PubChem BioAssay database under the same bioassay
(PubChem AID: 1996, updated on July 15, 2010). They
were processed as above and served as an internal test set
(4510 compounds in total) to assess the performance of our
SVM model (Table 1, data set II). In addition, 32 drug-like
compounds with reliably measured intrinsic solubility from
a recent solubility prediction challenge34 were used as an
external test set (Table 1, data set III) to provide a comparative
evaluation of our model with those previous methods. The same
criterion as above was applied to classify soluble and insoluble
compounds.
Fingerprints and Feature Selection. Molecular fingerprints

are widely applied in substructure/similarity searching,35 com-
pound clustering,36 and classification.22 In this study, considering
both their popularity and public availability, we adopted the
MDL MACCS key37 and the PubChem fingerprint.38 The
MACCS key is a binary vector of 166 structural and/or physico-
chemical features (MACCS166), while the PubChem fingerprint
represents the presence/absence of 881 substructures (PC881).
We also considered one additional fingerprint consisting of six
physicochemical properties (ADD6), which were previously
found to be relevant to solubility modeling.22,39 With respect
to these physicochemical properties, data sets I and II are rather
diverse (Figure 1). Regardless of the minimal and maximal
values, both data sets have similar distributions with respect to
most of these properties. This is probably because theMLSMR is
a compound library designed for screening purposes. Data set III
demonstrates a better diversity in terms of these properties. The
PC881 and ADD6 were downloaded from the PubChem Com-
pound database. The MACCS166 keys were generated by using
the Open Babel.40

Feature selection has been broadly applied to select a subset of
features from a given fingerprint.41-44 In this study, we adopted a
simple strategy based on F-score, which measures the discrimi-
nation of two sets of numbers.45 Given a binary classification task

and a data set, in which the compound is characterized by an
m-feature fingerprint, the F-score of the ith feature is defined as

Fi ¼ ðx½ þ �
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where nþ and n are the numbers of soluble and insoluble samples
within a data set; xhi, xhi

[þ] and xhi
[-] are the average of the ith

feature of all, soluble, and insoluble samples, respectively; and
xk,i
[þ] and xk,i

[-] are the ith feature of the kth soluble and insoluble
samples, respectively.
In principle, the larger an F-score is, the more likely a feature

is more discriminative. In this study, for each of the three
fingerprints MACCS166, PC881, and ADD6, the F-score of
each feature was calculated from the distribution of soluble and
insoluble samples in data set I. Features were ranked in a
descending order of their F-scores. Our aim is to select the most
discriminative features so that computational efficiency can be
improved, though information may be lost to some extent.
Considering both sides, we chose the F-score of 0.001 as a
threshold to select only the top-ranked features from each parent
fingerprint. We adopted this F-score-based feature selection
because it is very straightforward to implement and generally

Table 1. Data Sets Used in This Study

data set type total compounds soluble compounds insoluble compounds soluble/insoluble ratio

I training set 41 501 28 921 12 580 2.30: 1

II internal test set 4510 3177 1333 2.38: 1

III external test set 32 25 7 3.57: 1

Figure 1. Six additional physicochemical properties (ADD6) used in
this study. The box plot shows the minimum, lower quartile (Q1),
median (Q2), upper quartile (Q3), and maximum of each property.
MW:molecular weight; HBD: number of hydrogen-bond donors; HBA:
number of hydrogen-bond acceptors; ROTB: number of rotatable
bonds; CPLX: molecular complexity; and TPSA: topological polar
surface area. The properties of training set (data set I) are suffixed with
I, while those of two test sets (data set II and III) are suffixed with II and
III, respectively. Note that the statistics for all properties have been
increased by one to fit in the logarithmic coordination, because the
minimal values of some properties (e.g., HBD) are zeros, which would
become infinity in the logarithmic scale.



231 dx.doi.org/10.1021/ci100364a |J. Chem. Inf. Model. 2011, 51, 229–236

Journal of Chemical Information and Modeling ARTICLE

quite effective as well.45 Besides, F-score can be calculated in
advance and thus is independent of the chosen classifier.
SVMModeling and Evaluation. All SVM calculations in this

work were conducted by using the LIBSVM.46 The 10-fold cross-
validation was applied to evaluate model performance. Briefly,
data set I was randomly split into 10 folds in a stratified way so
that the ratio of soluble/insoluble samples in each fold was kept
identical. In each round, one fold was chosen as a test subset,
while the remaining nine folds were combined into a training
subset. An SVM model was then built using this training subset,
which in turn was used to predict the test subset. The above
procedures were repeated for each of the 10 folds. The results
from 10 rounds were averaged to give a final assessment of model
performance. In addition, two independent test sets (data set II
and III) were also used to provide additional evaluations. The
following metrics were calculated

Sensitivity ¼ Recall ¼ TP
TPþ FN

ð2Þ

Specificity ¼ TN
TNþ FP

ð3Þ

Precision ¼ TP
TPþ FP

ð4Þ

Accuracy ¼ TPþTN
TPþ FNþTNþ FP

ð5Þ

where TP, FP, TN, and FN denote the predicted true positive,
false positive, true negative, and false negative, respectively. In
addition, G-mean that tries to maximize the accuracy on the both
sides of two classes was also calculated

G-mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
ð6Þ

’RESULTS

SVMModeling with Default Parameters. The linear kernel
and radical basis function (RBF) kernel are two common kernel
functions in the LIBSVM. To get an overview of their general
performance, we first investigated a few simple SVMmodels with
default parameters within the LIBSVM. The 10-fold cross-
validation results given by these models are listed in Table 2.
While others have found SVM models with RBF kernel outper-
form those with linear kernel,47,48 we observed that they were
similar in performance. For example, when MACCS166 was
employed, both kernels reported comparable G-means (69.7 vs
70.9%). The linear kernel gave marginally better results than RBF
kernel when PC881 was used (76.6 vs 74.7%). We consider that
the default parameters in the LIBSVM might not be suitable for
RBF kernel in this case. Actually, several studies have shown that
selecting optimal parameters is critical for RBF kernel.49,50 Some
researchers also indicate that linear kernel is a special case of RBF
kernel for some parameters.51 Therefore, RBF kernel is more
commonly used and was also adopted by us.
When there are multiple fingerprints available, it is important

to choose an appropriate one. It is clear from Table 2 that the
SVMmodels employing PC881 demonstrate significantly super-
ior results than those employing MACCS166. For example,
PC881 outperformed MACCS166 by nearly 4% (74.7 vs 70.9%)
when RBF kernel was applied. This is imaginable since the PC881

fingerprint is more than five times (881/166) as long as the
MACCS166 key. The much longer PC881 is believed to be more
information-rich,making itmore discriminative thanMACCS166 in
our binary classification.
Data imbalance is known to have a great impact on most

classifiers, including SVM.47,48,52 As shown in Table 1, data set I
shows partial data imbalance with a ratio of soluble to insoluble
samples of 2.30. To address this issue, biased weights were
assigned respectively to soluble and insoluble classes during
model construction. The weights were determined from the
proportion of soluble to insoluble samples in data set I, by
imposing a larger penalty on the classification error for the minor
class (0.435 and 1.000 for soluble and insoluble classes, re-
spectively). As seen in Table 2, there was a significant decrease in
performance (10-20%) if data imbalance was not taken into
account. In the following analysis, data imbalance was always
considered.
Optimizing SVM Models with Feature Selection. The

reduction and recombination feature selection strategy success-
fully enhanced compound recall and structural diversity for hits
discovery.30 This inspired us to mix the three fingerprints of
MACCS166, PC881, and ADD6. The underlying assumption is
that different fingerprints can encode different aspects of in-
formation for the problem of interest, so they may complement
each other to yield better performance.
We first investigated the fingerprint combination strategy

(without reduction). Table 2 shows the four different combina-
tions of MACCS166, PC881, and ADD6. As one can see, the
SVM models employing combined fingerprint consistently out-
performed those employing individual fingerprint. For instance,
the SVMmodel employingMACCS166þ ADD6 outperformed
the one employing MACCS166 by about 2% (72.8 vs 70.9%).
This supports previous findings that the six additional physico-
chemical properties comprised in the ADD6 fingerprint are
relevant to solubility.22,39 An interesting observation is that
model performance increased as combined fingerprint became
longer. This is in line with our previous observation that the
longer PC881 performed better than MACCS166. On the other
hand, the performance of SVMmodels tended to converge as the

Table 2. The 10-Fold Cross-Validation Using G-Mean as a
Metric for SVM Models with Default Parameters

SVM (%)b

fingerprinta linear kernelc RBF kernel

MACCS166 69.7 (53.3) 70.9 (51.0)

PC881 76.6 (70.6) 74.7 (63.2)

MACCS166 þ ADD6 72.8

PC881 þ ADD6 74.8

PC881 þ MACCS166 75.6

PC881 þ MACCS166 þ ADD6 75.7

PC307 þ MACCS90 þ ADD5 75.6
aMACCS166: the MDL MACCS 166 keys; PC881: the PubChem
fingerprint; ADD6: the six additional physicochemical properties
described in Figure 1; and PC307, MACCS90, and ADD5 are the
truncated versions of their parent fingerprints whose component
features have F-scores above 0.001. The trailing digit indicates the length of
the corresponding fingerprint. bThe number inside the parentheses is
generated by the SVM model in which data imbalance has not been
considered. cRelevant metrics for SVM models with linear kernel have
not been calculated for the last five fingerprints.
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length of combined fingerprint increased. For example, Table 2
shows that the gained performance was merely 1% by extending
PC881 to PC881 þ MACCS166 þ ADD6 (74.7 vs 75.7%).
Therefore, elongating a fingerprint by incorporating more fea-
tures may not necessarily improve a model effectively. Moreover,
issues, such as feature intercorrelation and feature redundancy,
may arise when integrating different fingerprints.
The best result of 10-fold cross-validation was given by the

SVMmodel employing PC881þMACCS166þ ADD6 (75.7%,
Table 2). However, using such a long fingerprint (1053 features)
would be computationally expensive, especially in the grid search
for the optimal parameters of RBF kernel. Therefore, we utilized
the reduction and recombination strategy to make a shorter
fingerprint from existing ones. We believed this strategy could
alleviate, if not fully solve, the issue of feature redundancy. Only
the top-ranked features with F-score above 0.001 from each
of the PC881, MACCS166, and ADD6 were retained, which
resulted in three truncated fingerprints: PC307, MACCS90, and
ADD5. They were then recombined together to yield a new
fingerprint: PC307þMACCS90þADD5. Compared to its full-
length parent PC881 þ MACCS166 þ ADD6, there is only
negligible information loss (75.6 vs 75.7%, Table 2), and this new
fingerprint is much shorter (402 features). The above results
provided us with confidence to use the reduction and recombi-
nation strategy for feature selection. Further optimization of
SVM model was based on this new PC307 þ MACCS90 þ
ADD5.
The two parameters of C and γ in RBF kernel are critical to a

SVMmodel.49,50 To seek the optimal pair of C and γ, grid search
in the parameter space was conducted along with five-fold cross-
validation, which turned out to be themost inefficient step during
model construction. In this work, it took about two hours to
accomplish a typical five-fold cross-validation task on a 16 CPU �
2.60 GHz Linux cluster (using only one CPU) with a maximal

memory of 224 MB used. We started from a coarse grid (C ∈ [0,
12] and γ ∈ [-12, 0], both in log 2 units) with a grid spacing of
1.0. A subregion (C ∈ [1, 3] and γ ∈ [-7, -5]) showing
relatively better performance was identified. Further grid search
was restricted in this subregion with a finer grid spacing of 0.25 to
identify an even better subregion. This procedure was repeated
until the optimal parameters (C = 2.43 and γ = -6.34) were
determined. Built on these two parameters, our final SVMmodel
achieved a G-mean of 80.3% by 10-fold cross-validation.
Predicting an Internal Test Set (Data Set II). More often

than not, a model fails to predict an independent test set, although
it can perform extremely well during training. A common mistake
in the applications of feature selection, as pointed by Smialowski
et al.,53 is that some researchers first use thewhole data set for feature
selection, then split it into training and test sets, with the former
to build a classifier and the latter to evaluate model performance.
We strongly agree that more rigorous evaluation should be pro-
vided, since in such procedure the trained classifier has already taken
advantage of the information leaked from test set.
In this study, data set II, which was excluded entirely from

feature selection and model construction, was used as an internal
test set to evaluate the performance of our final SVM model.
We preprocessed this test set using the 402 features of PC307þ
MACCS90 þ ADD5 as applied to data set I. The prediction
results by our model are listed in Table 3. The G-mean was 83.1%,
which is close to that of the 10-fold cross-validation (80.3%),
indicating the robustness of our model. As for soluble com-
pounds, our model successfully recognized 2622 out of the 3177
soluble compounds, giving a sensitivity of 82.5%. This result may
not be surprising since our data sets are imbalanced toward
soluble compounds (Table 1), and thus classifiers tend to label
samples as major class.54 Nevertheless, when focusing on the
classification of insoluble compounds, our model also gave a low
false positive rate (16.4%). This can be ascribed to the application

Table 3. Prediction of Independent Test Sets

soluble compoundsa insoluble compoundsb

data set model TP FN

sensitivity

(%)

FNR

(%) TN FP

specificity

(%)

FPR

(%)

precision

(%)

recall

(%)

accuracy

(%)

G-mean

(%)

II (N = 4510) SVMc 2622 555 82.5 17.5 1115 218 83.6 16.4 92.3 82.5 82.9 83.1

SVMd 2705 472 85.1 14.9 1084 249 81.3 18.7 91.6 85.1 84.0 83.2

III (N = 32) SVMc 22 3 88.0 12.0 2 5 28.6 71.4 81.5 88.0 75.0 50.1

SVMd 22 3 88.0 12.0 3 4 42.9 57.1 84.6 88.0 78.1 61.4

SVMc,e 19 3 86.4 13.6 2 4 33.3 66.7 82.6 86.4 75.0 53.6

ASM-ATC-LOGP f 24 1 96.0 4.0 3 4 42.9 57.1 85.7 96.0 84.4 64.1

MLRg 21 4 84.0 16.0 5 2 71.4 28.6 91.3 84.0 81.2 77.5

ANNg 24 1 96.0 4.0 4 3 57.1 42.9 88.9 96.0 87.5 74.1

categoryg 24 1 96.0 4.0 2 5 28.6 71.4 82.8 96.0 81.2 52.4

ChemSilicog 24 1 96.0 4.0 1 6 14.3 85.7 80.0 96.0 78.1 37.0

optibriumg 24 1 96.0 4.0 3 4 42.9 57.1 85.7 96.0 84.4 64.1

pharma algorithmsg 24 1 96.0 4.0 1 6 14.3 85.7 80.0 96.0 78.1 37.0

Simulations Plusg 22 3 88.0 12.0 3 4 42.9 57.1 84.6 88.0 78.1 61.4

original consensusg 23 2 92.0 8.0 2 5 28.6 71.4 82.1 92.0 78.1 51.3

SPARCg 15 10 60.0 40.0 6 1 85.7 14.3 93.7 60.0 65.6 71.7
aTP: true positive; FN: false negative; and FNR: false negative rate = FN/(FNþTP). bTN: true negative; FP: false positive; and FPR: false positive rate =
FP/(FP þ TN). cModel is based on the selected feature set, i.e., PC307 þ MACCS90 þ ADD5. dModel is based on the complete feature set,
i.e., PC881 þMACCS166 þ ADD6. eResults are based on a clean version of data set III by removing the four common samples in data set I and III.
fData are cited from ref 16. gData are cited from the Supporting Information of ref 55.
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of biased weights to soluble/insoluble classes during model
training. As a result, the hyper-plane of SVM classifier was
pushed toward minor class (insoluble samples), giving a promis-
ing specificity (83.6%). In addition, using G-mean as a quality
control in cross-validation, the performance of our SVM model
was maximized for both soluble and insoluble compounds. The
overall classification accuracy is 82.9%, which is comparable to
those reported in previous studies (Supporting Information,
Table S1). This level of performance is satisfactory, considering
the large-size test set used here.
In the above analysis, the optimal parameters of C and γ were

applied to the SVM model employing a selected subset of
features (PC307 þ MACCS90 þ ADD5). What if the same
parameters were applied to the SVM model employing the full-
length PC881 þ MACCS166 þ ADD6? One can see from
Table 3 that slightly better results were obtained in terms of
accuracy and G-mean. Therefore, information loss occurred after
feature selection, but it was rather marginal. For example, the
reported G-mean for the SVM models with and without feature
selection are 83.1 and 83.2%, respectively. It is thus interesting to
observe that the optimal parameters derived from the SVM

model with feature selection are also applicable to that without
feature selection, although they may not be truly optimal for
the latter. This might also indicate that SVM models are more
sensitive to the chosen parameters than the employing features of
a fingerprint, which may be responsible for the universal success
of SVM applications.
Predicting an External Test Set (Data Set III). This data set

consists of 32 pharmaceutical chemicals from a recent solubility
prediction challenge34 and was used to provide an external
evaluation of our SVM model. A number of previous studies
have reported their predictions for the same test set,16,55 making
it possible to compare our model with theirs on the same ground.
The comparative results are also listed in Table 3. Our SVM
model employing PC307 þ MACCS90 þ ADD5 gave a
moderate accuracy of 75.0%, while slightly better results were
obtained when PC881 þ MACCS166 þ ADD6 was applied. It
should be noted that four compounds (Supporting Information,
Table S2) in this test set were also contained in data set I
(i.e., training set), making the prediction not completely inde-
pendent. Comparable or slightly better results were obtained
when these four common compounds were removed from data

Table 4. Top 10 Features That Contribute Most to Classification

a Example fragment of respective SMARTS is depicted with red.
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III. It is notable that one compound (PubChem CID: 3108) was
incorrectly classified though it was included in data set I. Further
investigation indicates that this compound was reported as
soluble in data set I, while insoluble in data set III. Therefore,
the inconsistency in the experimental determination of solubility
for this compound finally led to the misclassification by our
model. This indicates again the importance of data quality,
especially when compiling frommultiple sources. In comparison,
our model achieved comparable performance to some previous
methods (e.g., ChemSilico and SPARC). Relevant discussion is
given below.

’DISCUSSION

Features and Physical Meanings of the Fingerprints. In
this work, we have employed the reduction and recombination
feature selection strategy to select the most discriminative
features. It thus would be very helpful to interpret the predict-
ability as well as the physical meanings of our SVM model from
the perspective of these features. The description, F-score and
weight of all the 1053 features from PC881, MACCS166, and
ADD6 were provided (Supporting Information, excel file). The
weight (i.e., relative contribution to classification) of each feature
was derived from a linear SVMmodel by using the svm-weight.56

In particular, the top 10 features that contributed most to
classification are listed in Table 4. A greater positive weight
indicates a larger contribution of this feature to the classification
of soluble samples and vice versa. As one can see, these top 10
features came from PC881, MACCS166, or ADD6, implying
that all three fingerprints indeed played a key role in our model.
It can be observed in Table 4 that the most significant feature
for the classification of soluble samples is the 1053rd feature
(topological polar surface area). This is anticipated because the
larger polar surface area a compound has, the more likely it is
soluble in water. Similarly, compounds containing the 944th
feature (nitroso group) also tend to be soluble, which is in
accordance with the previous findings that this functional group
makes a negative contribution to hydrophobicity.57,58 Likewise,

the 1048th feature (molecular weight) contributes most to
insolubility classification. This is true for many chemicals. For
example, the solubility of alcohol in water decreases as the
molecular size increases. However, the relationship between
molecular weight and solubility is not always that straight-
forward. Other features, such as the 510th feature, can also be
interpretable for insolubility classification since it basically en-
codes hydrophobic substructures. Nevertheless, this does not
mean that compounds containing such negatively contributing
features suggested in this work are necessarily insoluble or vice
versa. Solubility or insolubility should always consider a molecule
as a whole.
Diversity and Chemical Space of Data Sets. Data diversity

should always be addressed when building a computational
model. That is the reason why we emphasized the use of large
data sets in this work. We plotted in Figure 2A the chemical
space of data sets I-III, which is defined by molecular weight
and topological polar surface area. These two coordinates were
chosen because they were found in the above analysis to be
relevant to solubility classification. As one can see, both data sets
II and III (test sets) share a similar chemical space of data set I
(training set), which may account for the reasonably good
prediction of our SVM model on both test sets. However, data
sets that are within a similar low-dimension chemical space may
not necessarily distribute similarly in a higher dimension chemi-
cal space. As shown in Figure 2B, the experimental solubility of
data set III is more sparsely scattered than that of data set II,
implying that the former is a more challenging test set for
our SVM model as well as for other methods.34,59 This is in
accordance with the relatively lower performance of our SVM
model for data set III. In contrast, some other methods, such
as MLR and ANN (Table 3), were calibrated by using the
100 compounds from the training set of the solubility prediction
challenge,34 whose chemical space (Figure 2B) is more similar to
that of data set III. This might contribute to their relatively better
performance than ours for data set III. Another possible reason is
that the choice of 10 μg/mL as a binary cutoff for solubility

Figure 2. Diversity analysis of data sets I-III and the 100 compounds from the training set of the solubility prediction challenge (SPC100).34

(A) Chemical space defined by molecular weight and TPSA. Note that one data point (1139.8, 133) from data set II is not included in this figure.
(B) Distribution of solubility in a chemical space defined by molecular weight and TPSA. Both figures use the same color scheme.
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classification may not be suitable for data set III, as the solubility
of compounds therein was measured using a completely different
experiment. Data set I covers a very small portion of the chemical
space of theMLSMR and an even smaller portion of the chemical
space of the PubChem BioAssay database (Supporting Informa-
tion, Figure S1). Thus, the predictability of our model for a data
set that is beyond the training chemical space of our model
should not be anticipated without caution, which is true for any
supervised machine learning methods.

’CONCLUSIONS

In this study, we have presented a binary classification model
of aqueous solubility using the SVM. A reduction and recombi-
nation feature selection strategy was applied to design a new
fingerprint by selecting and recombining the most discriminative
features from three existing fingerprints. Based on this new
fingerprint (PC307 þ MACCS90 þ ADD5), an SVM model
was constructed and optimized using a large and diverse training
set (data set I, N = 41 501). For an internal test set (data set II,
N = 4510), our model correctly classified both soluble and
insoluble samples with an overall accuracy of 82.9%. For an
external drug-like test set (data set III, N = 32), the performance
of our SVM model was found to be comparable to that of some
other methods, such as MLR and ANN. Therefore, our model
may be used as a practical tool for fast and accurate classification
of solubility for untested compounds, which may facilitate
compound selection and library design at the early stage of drug
discovery. Our study may also provide insights into building
predictive models based on very large data sets. In addition, using
completely public resources (data sets, software, andmethods) in
this work will facilitate others to reproduce or compare with our
results. The performance of our SVM classification model may
be further improved when more experimental solubility data
become available.

’ASSOCIATED CONTENT

bS Supporting Information. Recent modeling studies of
aqueous solubility. Four common compounds in data set I and
III. Chemical space for the compounds in data sets I-III as well
as for those in theMLSMR and the PubChemBioAssay database.
Definition, F-score, and weight of all the 1053 features from
PC881,MACCS166, and ADD6. This material is available free of
charge via the Internet at http://pubs.acs.org.
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