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Abstract: Extra virgin olive oil (EVOO) represents a crucial ingredient of the Mediterranean diet.
Being a first-choice product, consumers should be guaranteed its quality and geographical origin,
justifying the high purchasing cost. For this reason, it is important to have new reliable tools able to
classify products according to their geographical origin. The aim of this work was to demonstrate
the efficiency of an open source visible and near infra-red (VIS-NIR) spectrophotometer, relying
on a specific app, in assessing olive oil geographical origin. Thus, 67 Italian and 25 foreign EVOO
samples were analyzed and their spectral data were processed through an artificial intelligence
algorithm. The multivariate analysis of variance (MANOVA) results reported significant differences
(p < 0.001) between the Italian and foreign EVOO VIS-NIR matrices. The artificial neural network
(ANN) model with an external test showed a correct classification percentage equal to 94.6%. Both the
MANOVA and ANN tested methods showed the most important spectral wavelengths ranges for
origin determination to be 308–373 nm and 594–605 nm. These are related to the absorption of
phenolic components, carotenoids, chlorophylls, and anthocyanins. The proposed tool allows the
assessment of EVOO samples’ origin and thus could help to preserve the “Made in Italy” from fraud
and sophistication related to its commerce.

Keywords: VIS-NIR; ANN; made in Italy; minor components; pigments; antioxidants; non-destructive
techniques; ready-to-use; spectral signature; artificial intelligence AI

1. Introduction

Extra virgin olive oil (EVOO) represents one of the most important ingredients of the Mediterranean
diet, being used by most of the countries within the Mediterranean basin, owing to its excellent qualities
and sensory properties ascribable to the fruits of olive trees (Olea europaea L.) [1]. The qualitative
characteristics and the taste of EVOO are largely influenced by the olive plant varieties, the geographical
origin, and the agronomic and production techniques employed as well. [2]. Recently, the consumption
of EVOO has increased worldwide, even outside the Mediterranean and European countries
(for example, India, Russia, China, and Australia). This trend demonstrates an increasing interest
of both the producers and the consumers on the quality of food and calls for proper geographical
identification and traceability of EVOOs [3].
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The price of EVOO is on average 4–5 times higher than other vegetable oils. This is due to the
higher production costs and to its higher nutritional and organoleptic properties. Therefore, the higher
cost should in principle help to ensure high quality standards. On the other hand, the consumer
is increasingly oriented towards the purchase of genuine food products with certified geographical
origin [4]. In order to preserve the EVOO origin, the European Commission has established two types
of certification relative to geographical origin and identification, namely the protected designation
of origin (PDO) and the protected geographical indication (PGI) [4]. The definition of PGI refers to
agricultural products and foodstuffs for which at least one stage of the production process must be
carried out within a defined geographical area. For PDO, on the other hand, the entire production cycle
must take place in a specific area. PGI labelling, therefore, focuses on quality and specific characteristics
related to geographical origin [5]. As reported by the production regulations, in order to obtain the PDO
certification, several conditions must be met such as a specific percentage of olive cultivars employed,
well-defined cultivation practices, limited geographical areas of production, and specific characteristics
regarding chemical and sensory properties of the final product. However, at the moment, to the best of
our knowledge, there are no analytical parameters allowing a post hoc test on the actual geographical
origin of PDO EVOOs. As a consequence, chemical and physical analyses are currently of limited use
in the EVOO geographical certification [6].

Italy is one of the most important countries in the world in terms of olive oil supply and demand.
Moreover, while the country boasts a large number of designations of origin labels, in total there are
indeed forty-two PDOs of EVOO, the geographical indications, PGIs, exist for a limited number of
three. The most active regional Italian realities are mainly located in the southern part of the peninsula,
namely the region of Sicily with six PDOs and one PGI, Puglia with five PDOs, and Campania and
Calabria with three PDOs each; however, there are also two important Italian central regions, such as
Lazio and Tuscany, with four PDOs and one PGI, and five PDOs and one PGI, respectively [7].

Unfortunately, nowadays, one of the most common counterfeits to the detriment of the producer
is the falsification of the EVOO geographical origin. Despite the great commitment and work of
the authorities, counterfeiting is highly relevant for both the internal market and the global one,
with difficulties in identifying and adopting convenient and reliable solutions. Indeed, due to lack
of incentives, and often complex management to comply with, the technologies promoting product
traceability are often difficult to implement.

Given the presence of consumers not aware of the fakes, an increasing number of low-quality
olive oils often end up on the table, being not easily identifiable. The problems do not only concern
consumers but also producers who operate correctly who are not economically damaged by the
irregular practices of other companies [7]. Nevertheless, this type of counterfeiting causes enormous
damages to the “Made in Italy” products’ image and to the economy of the country.

Fake EVOO bottles often report on the label incorrect information about the product or even refer
to a totally different oil.

The “Made in Italy” products are represented by a set of values enabling the consumer to
distinguish them from the foreign ones. However, sometimes their advertisement is used to lead the
consumer to pay an even higher price for fake qualities relative to a forged product [8]. Thus, the
consumer must also be aware of the differences between fake and authentic products, being guided
through tools that allow them to distinguish “what is” from “what appears to be” [4].

However, within a globalized market, the fight against these counterfeits cannot be solely based
on the enhancement of consumers’ awareness on the peculiarities and qualities that distinguish the
“Made in Italy” from other products. Useful tools to contend with counterfeiting are those ensuring
traceability [9], namely, the “possibility of reconstructing and following the path of a food in all phases
of production, transformation and distribution” [10]. Therefore, traceability systems (technological and
informative) are needed to strengthen and update a reliable information flow along the whole supply
chain, simplifying consumers’ access to information. An infotracing traceability system can integrate
information related to product quality with that regarding its traceability (physical and documentary),
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taking advantage of an online information system [9]. As reported by Violino et al. [11], EVOO
traceability is not only important to define olive oil origin, but it is fundamental for the protection
against fraud. In addition, innovative tools (e.g., radio frequency identification (RFID), near field
communication (NFC), and QR code technologies in combination with blockchain systems) can be
commercially implemented to verify the processes and could aid in controlling the quality of virgin
olive oil. An example is represented by the use of the blockchain system (a distributed database of
records in the form of encrypted blocks), where the developed online information (transactions) can be
protected to proof against eventual alteration and fraud [12].

Nowadays, the traceability of food products has become a priority for both consumers, who are
increasingly careful to buy healthy higher quality food, and producers. Indeed, traceability can
guarantee the quality of raw materials, product certification, allow a rapid identification of problematic
product lots, and permit the implementation of control systems to prevent fraud. Finally, food
traceability is crucial to enhance transparency for a safer internationalization of the EVOO market,
with consequent fair growth of the sector [13].

In the last decade, several analytical techniques have been developed to help the identification
of olive oil [14,15], and about 200 compounds, out of hundreds, have been proved to be useful as
compositional markers for traceability purposes of EVOO [16]. Compositional markers include both
major and minor components. State of the art EVOO traceability approaches for geographical
origin assessment are represented by major components determination (e.g., triacylglycerols,
triglycerides, and fatty acids), stable isotopic ratio (e.g., 13C/12C in combination with 18O/16O), and
multi-element characterization through the application of different multivariate statistical techniques [3].
Those commonly used for data analysis are cluster analysis, multidimensional scaling, artificial neural
networks (ANNs), and partial least squares discriminant analysis (PLSDA).

The multi-element analysis carried out by Benincasa et al. [17] allowed for a correct classification
of all the organic virgin olive oils under investigation collected from different Italian regions; however,
as often visible in similar studies, the method showed a high, but not excellent, percentage of correct
classifications. Another example is given by the stable isotope analysis made by Portarena et al. [18],
reporting an r ranging from 0.76 to 0.80 in distinguishing the compositions of Italian monovarietal
olive oils.

Numerous analytical techniques have focused on targeted approaches for the identification and
quantification of pre-defined compounds, or classes of compounds. These include gas and liquid
chromatography (GC and HPLC) coupled with mass spectrometry (MS) [19,20], nuclear magnetic
resonance (NMR) spectroscopy [21], infrared spectroscopy [22], fluorescence [23], inductively coupled
plasma mass spectrometry (ICP-MS) [17], and DNA-based methods [24]. Conversely, limited literature
is available about the assessment of olive oil adulteration using non-targeted classification approaches,
focusing on the detection of all compounds in a sample without a priori knowledge of chemical entities
comparable with the reference of the pure sample fingerprint profile [25,26].

Recently, fundamental research has focused on the development of non-destructive techniques
to reduce the use of solvents and reagents. This is done taking into account an international
context of convergence towards higher environmental sustainability and an increased human health
consciousness [27]. Among various non-destructive solutions aiming to fulfill these needs, near infrared
spectroscopy (NIRS) has made major achievements. NIRS, paired with chemometric techniques,
were satisfactorily used for olive oil authentication and screening [28–33]. Generally, using both
software and hardware, open source infostructure solutions potentially result in significant cost
reduction, making the scientific tools available for a wider audience [34]. Following this path, results
such as the prediction of qualitative parameters, the evaluation of indices of different fruit and
vegetable products [35], the authentication of olive oil according to the variety and geographical
origin [36], and the detection of adulteration through acidic composition [37] were achieved using
visible/near-infrared (VIS-NIR) spectroscopy.
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The aim of this work was to assess the actual geographical origin of EVOOs labeled on the market
as Italian and test the potential efficiency of an open source VIS-NIR device for traceability purposes.
Indeed, the device could produce results for olive oil authentication (according to its variety and origin)
and for the detection of fraud in a fraction of time and potentially on a much higher sampling number
with respect to conventional analytical methods. In detail, the study pursued the goal of analyzing 92
Italian and foreign EVOO samples produced in 2018 and 2019. The samples were purchased from
large commercial retailers and directly from olive mills (to ensure the true origin of the product).
The spectral data were analyzed with an artificial intelligence model based on neural networks.

2. Materials and Methods

2.1. EVOO Samples

The study analyzed a total of 92 samples of Italian and foreign extra virgin olive oil (EVOO) owing
to different cultivars, monovarietal (65) and blend (27), produced in two harvest years (2018 and 2019)
(Figure 1).
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MONOCULTIVAR N.
ARBEQUINA 1

BIANCOLILLA 1
BORGIONA 1
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BUZA ZENSKA VODNJANSKA 1

CARBONCELLA 1
CAROLEA 8

CASALIVA EX ALBIS OLIVIS 1
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CELLINA DI NARDO' 2
CERASUOLA 1

CHETOUI 1
COBRANCOSA 1

CORATINA 8
CORDOVIL 1

DOMAT 1
DRITTA 1

FRANTOIO 3
FS17 FAVOLOSA 1

GALIGA 1
ISTRIANA BJELICA 1

KARBONACA 1
KORONEIKI 4

LECCINO 3
LECCIO DEL CORNO 1

MEMECIK 1
MORESCA 1

NOCELLARA 1
NOCELLARA DEL BELICE 1

NOCIARA 1
OGLIAROLA SALENTINA 4
OLIVASTRA SEGGIANESE 1

OTTOBRATICA 3
PERANZANA 1
PICHOLINE 1

PICUAL 2
TAGGIASCA 1

TOTAL 65
BLEND N.
TOTAL 27

ITALIAN REGIONS N.
ABRUZZO 1
CALABRIA 13

EMILIA ROMAGNA 1
LAZIO 7

LIGURIA 2
MARCHES 2

APULIA 16
SARDINIA 1

SICILY 7
TUSCANY 11

TRENTINO ALTO ADIGE 1
UMBRIA 5
TOTAL 67

COUNTRY N.
ARGENTINE 1

CHILE 1
CROATIA 4
GREECE 5
ITALY 67

PORTUGAL 4
SPAIN 6

SOUTH AFRICA 1
TUNISIA 1
TURKEY 2
TOTAL 92

Trentino 1

Liguria 2
Tuscany 11

Sardinia 1

Sicily 7

Calabria 13

Apulia 16

Abruzzo 1
Umbria 5

Lazio 7

Marches 2

Emilia Rom agna 1

Chile 1

Argentine 1

Croatia 4
Greece 5
Turkey 2
Tunisia 1

South Africa 1

Italy 67
Portugal 4

Spain 6

HARVEST YEARS N.
2018 75
2019 17

Figure 1. Monocultivar and blend extra virgin olive oil (EVOO) samples.

The tested samples were bought from large retailers and directly from mills. Some samples were
acquired specifically from the mills of the areas of Apulia, Calabria, and Sicily to ensure their origin.
Other samples were sent, on a voluntary base, directly by the producers willing to participate in
the research.

2.2. The Open Source IoT Spectrometer

The analyzed samples were stored and kept during the analyses at a controlled temperature of
16 ◦C. The samples, owing to the 2018 harvest campaign, were analyzed between March and May
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2019 while those produced in the 2019 harvest campaign were analyzed between February and March
2020. The samples were scanned with a VIS-NIR spectrometer measuring and acquiring the spectral
reflectance signatures for the EVOO samples for consequent qualitative evaluation. From each oil
container (bottle or can) of the same sample, 12 spectral readings were acquired and afterwards
averaged. The device used was the ultra-compact VIS-NIR spectrophotometer (Figure 2) Lumini C
(Myspectral Ltd., Cambridge, MA, USA), able to measure spectral reflectance or absorbance. The device
is small, light, low-cost, and open source. The spectral ranges covered 340–890 nm with an optical
resolution equal to 8 nm and wavelength accuracy equal to 0.5 nm. The spectrophotometer is powered
through a USB cable and stores data on connected cabled devices or on an internal micro SD card
using a dedicated slot. For appropriate acquisition of the spectral signature, in relation to the sample
reflectance characteristics, the acquisition can be set at different integration times. The system is
equipped with its own internal illumination system.
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Figure 2. VIS-NIR ultra-compact spectrophotometer Lumini C Myspectral using standard cuvette
holder for absorbance spectrophotometry.

A specific app was developed to manage and simplify the acquisition procedures. The software
provided with the spectrophotometer, as commonly happens with open source technologies, was quite
poor in terms of features and did not originally provide an appropriate historicization system for
multiple acquisitions. For this reason, an app was developed and implemented. A screenshot of the
app is reported in Figure 3.

The app was engineered considering two kinds of functions. The first (upper side of Figure 3)
enables the configuration parameters of the instrument, such as the IP address, to connect the tablet to
the device, the type of tool (in this case is Lumini C), the exposure time expressed in milliseconds (ms),
and the sample’s name to be archived. The second (lower side of Figure 3), graphically represents
the acquired spectrum for each scan. When a new sample name is entered, the graphic area is reset,
ready to display the new spectra. This helps in case of incomplete or bad acquisition since it avoided
losing samples’ values during the acquisition campaign. The app was developed using the Android
environment and it is based on a client-server paradigm; on the client side there is the app, and on the
server side there is the database for real-time storage of the spectrum and the node.js server to which
the Lumini C is connected (Figure 4). The app software implements control mechanisms for the data
stored on the database; these are essential since the data stored originally onboard within a microSD
are now stored to a remote database. Through this mechanism, the data loss is minimized. In case of
communication problems among the devices, the app notifies the problem and does not display the
spectrum just acquired, allowing for a new scanning process.
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2.3. Statistical Analysis

The multivariate matrix of Italian and foreign EVOO samples was analyzed with a 50–50
multivariate analysis of variance (MANOVA) procedure [38], a generalized multivariate Anova method
based on principal component analysis (PCA) standardized data. The MANOVA was conducted in
order to highlight significant differences between Italian and foreign VIS-NIR matrices. Adjusted
p-values were conducted on a rotation testing based on 99,999 simulated datasets. The contribution of
the variables was extracted for each rotation test [39].

An artificial intelligence approach was then applied in order to evaluate the possibility to classify
Italian EVOOs and distinguish them from the foreign ones on the base of the 288 spectral transmittance
values acquired through the VIS-NIR device. To do this, a multilayer feed forward artificial neural
network (MLFN) was designed using a single hidden layer architecture with sigmoid hidden and
SoftMax output neurons. The ANN was trained with the Bayesian regularization back propagation
algorithm [40,41], as implemented in the deep learning MATLAB (The MathWorks, Inc., MA, USA)
toolbox. The dataset was partitioned using 60 percent of the samples (55) as a training set and the
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rest as a test set (37). The test set was used to validate the model. This partitioning (equal for each
soil group) was optimally chosen with the Euclidean distances calculated by the algorithm reported
by Kennard and Stone [42], selecting parameters without a priori knowledge of a regression model.
The cost function was minimized using the root mean squared (RMS) normalized error performance
function with a 10−8 threshold on the gradient. In order to extract the most informative spectral
transmittance values among the 288 acquired, in distinguishing Italian EVOO from foreign ones,
it also conducted an analysis to study the feature importance. The hidden layer matrix (10 nodes ×
288 variables) was a posteriori analyzed considering its elementwise absolute value. From the matrix
was extracted the maximum value for each variable (e.g., column) obtaining a 1 × 288 row vector.
The top 40 most significant spectral frequencies were chosen. The larger the value, the more relevant
was the contribution to the ANN model. The model was developed using the MATLAB 9.7 R2019b
Deep Learning Toolbox.

3. Results and Discussion

3.1. Artificial Intelligence Modeling Based on VIS-NIR Spectra

The MANOVA (50–50 MANOVA procedure) reported significant differences (p < 0.001) between
the two Italian and foreign EVOO VIS-NIR matrices. The results of the analysis are reported in Table 1.

Table 1. MANOVA results based on Italian and foreign EVOO samples.

Source DF exVarSS nPC nBu exVarPC exVarBU p-Value

Italian vs.
Foreign 1 0.04276 2 42 0.832 1 0.005056

Error 90 0.95724

DF, degrees of freedom; exVarSS, explained variances based on sums of squares; nPC, number of principal
components used for testing; nBu, number of principal components used as buffer components; exVarPC, variance
explained by nPC components; exVarBU, variance explained by (nPC+nBU) components; p-value, the result from
50–50 MANOVA testing.

The ANN trained had a hidden layer size of 10 nodes and the algorithm converged after
976 iterations. Table 2 reports the characteristics and principal results of the ANN model used to
predict Italian vs. foreign EVOO on the base of 288 VIS-NIR spectral transmittance data. All the
55 EVOOs in the training set were correctly classified. In testing, only five out of 37 samples were
misclassified. These five samples consisted of two Italian commercial monocultivars (Coratina from
Apulia and Taggiasca from Liguria) and three foreign blends from Greece, Argentina, and Croatia.
Overall, 87 out of 92 samples (94.6%) were correctly classified.

Table 2. Characteristics and principal results of the multilayer feed forward artificial neural network
(MLFN) model (training and internal test) in predicting the classification of Italian vs. foreign EVOO:
number of cases, training time, number of trials, and percentage of bad predictions.

Training (60%)

Number of Cases 55
Number of hidden layers 1

Number of nodes 10
Training time 1:26:02

Number of trials 976
% bad predictions 0.0

Testing (40%)

Number of cases 37
% bad predictions (N) 13.51 (5)
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The confusion matrix of the test set is reported in Table 3.

Table 3. Confusion matrix of the test set of the MLFN model used in predicting the classification
of Italian vs. foreign EVOO. The correctly classified samples are reported on the main diagonal of
the matrix.

Italian Foreign Total

Italian 25 2 24
Foreign 3 7 8

Overall, VIS-NIR spectroscopy analyses showed significant differences between Italian and foreign
samples. From the results obtained through the ANN analysis, only five samples out of 37 were
misclassified, e.g., two Italian commercial monocultivars (Coratina from Apulia and Taggiasca from
Liguria) and three foreign blends (from Greece, Argentina, and Croatia). Probably, the two Italian
samples were misclassified because of their uncertain geographical origin, considering that they are
commercial oils. All the samples bought directly from the mills (noncommercial) were correctly
classified. The off diagonal elements of the test confusion matrix (Table 3) are reported in Table 4.

Table 4. Off diagonal elements of the test confusion matrix reported in Table 3.

Origin Cultivar Commercial

Italy Coratina Yes
Italy Taggiasca Yes

Greece Koroneiki Yes
Argentina Coratina Yes

Croatia Karbonaka Yes

Generally, machine learning relies on the amount of data for good modeling, where more data
correspond to a modeling approach with increased robustness and performance. For this reason,
even if the overall accuracy of the model is almost 90% and the convergence threshold of 10-8 on the
RMS error gradient is very strict, the small size of the dataset (made of 92 samples) is not enough to
validate the model. On the other hand, the high accuracy obtained despite the small dataset returns
the reliability of the correlation observed [43].

The present work considered 67 Italian EVOOs and 25 foreign ones (two harvesting years: 2018
and 2019). However, it must be considered that other work using different methods to authenticate
EVOO geographical origin were developed using a number of samples comparable and sometimes
lower than that presented in this work. As reported by Bucci et al. [44], the data set for the statistical
analysis was constructed on the results of the chemical analyses performed on 153 EVOOs (years of
harvesting: 1997–1999), but finally only the samples produced in 1999 (53 oils) were analyzed in the
laboratory. In the work conducted by Portarena et al. [45], they analyzed the isotopic composition and
carotenoid content of 38 EVOOs from seven regions along the Italian coast using isotope ratio mass
spectrometry (IRMS) and resonance Raman spectroscopy (RRS). The correlation between color and
pigment content is well known in the literature [46]: the crushing of very green olives produces a typical
green colored oil due to the high content in chlorophyll; if olives are more mature, carotenoids will
prevail, determining a yellow-gold colored oil. Additionally, as the maturation progresses, the content
and profile of phenolic compounds will also be affected: crushing green olives will result in an oil
characterized by a higher content of phenolic acids, phenolic alcohols, oleuropein, and secoiridoids,
whereas oils produced with dark brown olives will have a high content of anthocyanins, water-soluble
plant pigments that take on different colors: red, blue, or violet [47,48].
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3.2. Feature Importance

Observing the top 40 MANOVA rotation test’s most important variables (e.g., spectral lengths),
the most informative ones ranged within the following frequencies: 308–373 nm, 594–612 nm, and
617–641 nm. The average VIS-NIR spectral data of foreign and Italian EVOOs are reported in Figure 5
together with the higher importance spectral values extracted with the aforementioned MANOVA
rotation test.
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values extracted with the MANOVA rotation test are evidenced with green rectangles.

Consequently, the 40 most important features extracted through the ANN procedure (e.g., spectral
lengths), ranged within the following frequencies: 308–378 nm, 415–422 nm, 474–507 nm, 564–570 nm,
and 596–605 nm. The average VIS-NIR spectral data of both Italian and foreign samples, together with
the higher importance spectral values in terms of ANN feature importance, are reported in Figure 6.
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Figure 6. Mean VIS-NIR spectral data: Italian (red line), foreign (blue line). Higher importance
spectral values in terms of artificial neural network (ANN) feature importance are evidenced with
green rectangles.

The two feature importance approaches, MANOVA and ANN, evidenced common ranges of
higher importance, which were: 308–373 nm and 594–605 nm. These spectral bands represent portions
of the visible spectral range. The color of an oil is, therefore, due to the combination and proportion of
its pigments [49]. These molecules do not depend only on the characteristics of the fruits (Olea europaea
L.), the extraction processes used to produce the oil, and the conservation conditions [50] but, also, on
weather and pedo-climate conditions [51]. Therefore, the relationship between the stage of ripeness
and pigment content in EVOO could be, indeed, very important for further authentication studies [52].

The molecular structure of chlorophylls and, in particular, the planar structure of the tetrapyrrolic
macrocycle coordinated by a magnesium ion, Mg++, is responsible for the absorption of visible light
in the green region. Chlorophyll a gives a greenish-blue coloration, while chlorophyll b determines
a yellowish-green color. The sensitivity of chlorophylls to extreme temperature and pH allows the
formation of several distinct derivatives such as pheophytins, chlorophyllides, and pheophorbides.
During the olive oil extraction process, the release of acids may cause pheophytinization reactions in
the chlorophyll fraction, increasing the oils’ pheophytin content. The conversion of chlorophylls to
Mg2+ free derivatives, such as pheophytins, where the Mg++ ion is replaced by two H+ ions, causes
oil color changes over time [53–55]. Pheophytin a is present in greater quantities than pheophytin b.
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If olive oil is not well preserved, pheophytins can transform further, degrading to pyro pheophytin [55].
These latter can be considered an index of an aging oil. In addition to chlorophyll derivatives, pigments
in extra virgin olive oil include carotenoids, the majority of which are lutein and carotene. Carotenoids
are isoprenoid compounds with a hydrocarbon structure with various double bonds, C–C, which are
responsible for their interesting properties as antioxidants [56]. Carotenoids can be further divided
into carotenes (which contain only carbon and hydrogen atoms) and xanthophylls (which also contain
oxygen atoms).

The spectra of olive oils analyzed in this work agree with those reported in the literature [57–61].
The peaks occurring in the range between 308 and 380 nm are mostly due to phenolic

components [62]. In detail, we found the peak at around 350 nm, the absorption zone of flavones,
present in the EVOO absorbance spectrum useful to distinguish Italian EVOOs from foreign ones.
Flavonoids are plant secondary metabolites with different phenolic structures. These compounds are
mostly used to generate pigments, which play an important role in the colors of plants producing
yellow or red/blue pigmentation. Flavonoids such as apigenin, apigenin-7-O-glucoside, luteolin,
luteolin-7-O-glucoside, luteolin-4-O-glucoside, diosmetin, quercetin, and quercetin-3-rutinoside are
present in olive oils and contribute to the health benefits of consumers. The antioxidant and cellular
damage repairing properties that make them useful for preventing cancer, cardiovascular disease,
and degenerative diseases in general have been widely studied [63]. The main factors that contribute to
their increase in the oil is the maturity index of the fruits and the degree of grinding and the malaxation
conditions of the paste during the extraction processes of the oil [64].

The peaks occurring in the range between 415 and 422 nm are due to the compounds absorbing
dark blue colored light, mainly carotenoids, as well as pheophytin a, pheophorbide a, and pyro
pheophytin a [59], and are characterized by a yellow color.

The peaks occurring in the range between 474 and 507 nm are due to the compounds absorbing
green/yellow colored light, and correspond to carotenoids, such as astaxanthin and canthaxanthin.
In any case, the major carotenoids in olive oil are β-carotene and lutein, both of them providing several
health benefits. Lutein exhibits antioxidant and anti-inflammatory activity protecting against DNA
damage [65].

Moreover, the peaks occurring in the range between 564 and 570 nm and between 594 and
605 nm are due to the compounds absorbing orange colored light, characterized by purple/violet and
green/blue colors, respectively, and corresponding to chlorophylls and anthocyanins.

4. Conclusions

Spectroscopic techniques paired to chemometric analyses are widely used to authenticate and
differentiate edible oils. Most spectroscopic methods tend to focus on the major compounds of the
saponifiable fraction of an oil, and only a few have been concentrating on the contents of minor
compounds, such as pigments and antioxidants. The European community has not yet accepted
many of the scientific community’s indications concerning minor compounds, which, by law, are
not taken into consideration for the definition of EVOOs’ authenticity. However, many of the minor
compounds are present in significant amounts only in EVOOs, and their quantification could greatly
help the oil industry. Although further analysis will be needed to expand the case studies on olive
oils, this work provides a clear indication of how pigment and antioxidant contents are crucial for the
authentication and definition of the quality parameters of an EVOO. In detail, we found that the peak
at about 360 nm and the broad band around 550 nm present in the EVOO absorbance spectrum can be
used to distinguish Italian EVOO from foreign ones. As opposite to expensive and time-consuming
chromatographic methods, procedures relying on (open source) spectroscopic instruments are cheap
(less than 1000 €) and do not require sample preprocessing. Moreover, being fast, these techniques can
be used to assess a huge collection of samples within a reasonable time. The quantitative analysis of
pigments can take place directly at production sites and stores, through portable tools that are easy to
use, even by non-expert staff. The trained ANN used to classify the samples according to their optical
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spectra can be easily implemented on an app for immediate classification. The development of simple
and reliable methods that can verify the authenticity and guarantee the quality of agri-food products is
crucial. Encouragingly, this type of analysis would be very beneficial for the producers themselves as
well as consumers. Indeed, these techniques can score comparable precision with respect to the more
expensive and time-consuming traditional ones. Moreover, since their application cost relies entirely
on the instrumental budget, and not on reagent or other expensive consumable materials, they can be
applied to a high number of samples and thus, in case of supposed fraud, can be used as pre-screening
tools leading to time and economic optimization.
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