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Abstract: Hepatocellular carcinoma (HCC) is one of the most common lethal cancers worldwide and
is often related to late diagnosis and poor survival outcome. More evidence is demonstrating that
gene-based prognostic models can be used to predict high-risk HCC patients. Therefore, our study
aimed to construct a novel prognostic model for predicting the prognosis of HCC patients. We used
multivariate Cox regression model with three hybrid penalties approach including least absolute
shrinkage and selection operator (Lasso), adaptive lasso and elastic net algorithms for informative
prognostic-related genes selection. Then, the best subset regression was used to identify the best
prognostic gene signature. The prognostic gene-based risk score was constructed using the Cox
coefficient of the prognostic gene signature. The model was evaluated by Kaplan–Meier (KM) and
receiver operating characteristic curve (ROC) analyses. A novel four-gene signature associated with
prognosis was identified and the risk score was constructed based on the four-gene signature. The
risk score efficiently distinguished the patients into a high-risk group with poor prognosis. The
time-dependent ROC analysis revealed that the risk model had a good performance with an area
under the curve (AUC) of 0.780, 0.732, 0.733 in 1-, 2- and 3-year prognosis prediction in The Cancer
Genome Atlas (TCGA) dataset. Moreover, the risk score revealed a high diagnostic performance
to classify HCC from normal samples. The prognosis and diagnosis prediction performances of
risk scores were verified in external validation datasets. Functional enrichment analysis of the
four-gene signature and its co-expressed genes involved in the metabolic and cell cycle pathways
was constructed. Overall, we developed a novel-gene-based prognostic model to predict high-risk
HCC patients and we hope that our findings can provide promising insight to explore the role of the
four-gene signature in HCC patients and aid risk classification.

Keywords: hepatocellular carcinoma; differential expressed gene; biomarker; prognosis; diagnosis;
bioinformatics; survival analysis; risk model

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most frequent malignant cancers and the
fourth leading cause of cancer-related deaths worldwide [1]. There were more than 840,000
new cases of HCC and approximately 780,000 deaths annually [2]. Liver transplantation,
tumor ablation, and surgical resection are currently the most effective treatment options
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to improve the survival of early-stage HCC. However, the majority of HCC patients are
first diagnosed at late stage, and these patients experienced poor prognosis and high
recurrence [3–5]. Therefore, HCC patients associated with poor prognosis need to be
monitored and treated effectively to improve their prognosis.

Conventionally, risk factors including tumor-node-metastasis (TNM) staging, vascular
invasion, and other parameters are commonly used for risk assessment of HCC patients [6].
However, these clinicopathological risk factors are not sufficient to classify between patients
who have a high or low risk and fail to predict which patients are more likely to benefit
from adjuvant chemotherapy. Therefore, in addition to clinicopathological risk factors,
there is a strong demand to discover a novel and reliable signature to predict HCC patient
prognosis and to identify the high-risk subgroup of HCC patients.

Prognostic models of gene expression have been constructed in many previous stud-
ies [7–9]. Li et al. built a prognostic model for patients with lung adenocarcinoma based
on gene expression data [8]. L. Chen et al. obtained that the expression of the seven-gene
model was associated with the prognosis of patients with clear cell renal carcinoma by lasso
and Cox regression analysis [9]. For HCC, Chen et al. constructed a model to demonstrate
that a nine-immune-gene-related signature can distinguish high- and low-risk groups [10].
A prognostic model based on a six-gene signature was used for overall survival predic-
tion in HCC [6]. However, the development of multi-gene models to predict high-risk
HCC patients are still unsatisfactory. Thus, it is essential to develop a comprehensive
prognostic evaluation using a variety of prognostic methods to identify more potentially
informative genes.

Recently, the development of next-generation sequencing and microarray technologies
have assisted researchers in exploring genetic alterations in tumorigenesis and identifying
novel biomarkers for several diseases [10,11]. Meanwhile, Cox proportional hazard model
(CPHM) is the most broadly used method in survival analysis. However, when we deal
with high-dimension data such as genomic data, CPHM is not the most appropriate method
to select prognostic genes because of overfitting problems [11,12]. A number of penalized
methods such as lasso [12], adaptive lasso [13] and elastic net [14] can eliminate this
shortcoming and a multivariate Cox regression with three hybrid penalties—elastic net,
lasso and adaptive lasso methods—were applied in our analysis.

In this study, we aimed to identify and validate differentially expressed genes (DEGs)
associated with overall survival (OS) based on genome-wide expression data of HCC
patients. We initially identified consistently DEGs based on multiple cohorts of the gene
expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. We used a
univariate Cox regression analysis, multivariate Cox regression model with three hybrid
penalties including elastic net, lasso and adaptive lasso algorithms as well as best subset
regression (BSR) to screen a multiple gene signatures with the smallest Akaike information
criterion (AIC) values. The risk score was constructed through a linear combination of the
gene expression level and the multivariate Cox regression coefficient. The risk predictive
model was validated in various aspects using internal and external datasets. Finally,
functional enrichment analysis was conducted to elucidate the biological pathways of the
identified novel four-gene prognostic signature and the co-expressed DEGs. We hope that
this risk predictive model can help to identify HCC patients with a higher risk of mortality
and delivers more insights into the development and progression this disease.

2. Results
2.1. Identification and Validation of Potential DEGs

The overall workflow of this study is shown in Figure 1. Initially, a total of four
different gene expression datasets of HCC patients including GSE112790, GSE84402 and
GSE45267 and TCGA-HCC were collected. After GEO and TCGA data filtering, quality
assessment and normalization, differential gene expression analysis was performed using
limma R package. The distribution of the DEGs in each dataset is shown (Figure 2a–d) and a
total of 711 DEGs in GSE112790, 696 DEGs in GSE45267, 1361 DEGs in GSE84402, and 1928
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DEGs in TCGA-HCC were identified as compared to normal tissue samples. Subsequently,
from the intersection analysis, we found 339 common DEGs in HCC, satisfying the criteria
of absolute value of log2FoldChange (LFC) > 1.5 and false discovery rate (FDR) < 0.01
(Figure 2e and Table S1).
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2.2. Identification of Prognosis-Related DEGs

According to prognostic gene selection methods discussed in the Materials and Meth-
ods section, we identified a total of 75 prognosis-associated DEGs out of 339 DEGs satisfying
the criteria of hazard ratio (HR) > 1 or HR < 1 and p-value < 0.05 based on univariate Cox
regression analysis in TCGA dataset of HCC patients (n = 359). To further identify informa-
tive prognostic genes associated with the prognosis of HCC patients, three popular feature
selection algorithms including elastic net, lasso, and adaptive lasso with 10-fold cross-
validation were implemented to identify the optimal λ values (λEnet

opt = 0.070, λLasso
opt = 0.039

and λAdlasso
opt = 0.00432) that derived from minimum mean cross-validation errors, which

were associated with 13 DEGs, 9 DEGs and 6 DEGs that significantly correlated with
OS, respectively (Table 1; Figure 3a–c). The union of OS-related genes predicted by the
three algorithms (including FAM83D, CDC20, TPX2, UBE2S, LECT2, ANXA10, DNASE1L3,
PON1, CD5L, CYP2C9, ADH4, CFHR3, GHR, and LCAT) were used for best subset regres-
sion (BSR) analysis. Then, BSR analysis was performed to identify a four-gene prognostic
model with the minimum Akaike information criterion (AIC) value, namely Family with
sequence similarity 83-member D (FAM83D), Alcohol dehydrogenase 4 (ADH4), Alco-
hol dehydrogenase 4 (ADH4), Growth hormone receptor (GHR) and Lecithin-cholesterol
acyltransferase (LCAT).
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Change < -1.5; FDR, false discovery rate; DEGs, differentially expressed genes. 
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Figure 2. DEGs analyses in three gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. DEGs
were screened based on criteria |log2FoldChange| > 1.5 and FDR < 0.01. (a–d) The volcano plots of DEGs distribution
are displayed in GSE112790 (a), GSE45267 (b), GSE84402 (c) and TCGA-HCC (d). Common DEGs from four datasets
(e). Red dots indicate genes with FDR < 0.01 and log2FoldChange > 1.5; Blue dots indicate genes with FDR < 0.01 and
log2FoldChange < −1.5; FDR, false discovery rate; DEGs, differentially expressed genes.

Table 1. The regression coefficients of survival-related genes identified by three penalized Cox
methods.

Gene Symbol Elastic Net Lasso Adaptive Lasso

FAM83D 0.091 0.104 0.113
CDC20 0.048 0.058 0.004
TPX2 0.016 - 0.084

UBE2S - - 0.024
LECT2 −0.001 - -

ANXA10 −0.002 - -
DNASE1L3 −0.004 - -

PON1 −0.009 −0.008 -
CD5L −0.009 −0.009 -

CYP2C9 −0.016 −0.016 -
ADH4 −0.019 −0.021 -
CFHR3 −0.021 −0.024 −0.008

GHR −0.035 −0.037 -
LCAT −0.080 −0.091 −0.135

The median of the four-gene signature expression value was considered as a cutoff to
stratify the TCGA HCC samples into high and low expression groups and then survival
analysis was performed to assess the survival difference between these two groups. The
over-expression of FAM83D (HR = 1.7, p = 0.0046) was correlated with unfavorable progno-
sis of patients with HCC (Figure 3d) whereas high expression levels of LCAT (HR = 0.49,
p = 0.0001), GHR (HR = 0.68, p-value = 0.033), and ADH4 (HR = 0.49, p-value = 0.0001) were
correlated with better prognosis of HCC patients (Figure 3d–g).
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Figure 3. Identifying relevant prognostic genes from hepatocellular carcinoma (HCC) patients based on TCGA dataset.
Tenfold cross validation (10-CV) gained prognostic genes by minimum lambda values for elastic net (a), lasso (b), adaptive
lasso (c). X-axis shows that regularization process and y-axis show partial likelihood deviance. The minimum value
numbers of prognostic genes by three algorithms are shown with two vertical lines that show one standard deviation from
the minimum values. Kaplan–Meier (KM) survival analysis of high expression and low expression identified by BSR model
(d–g). BSR, Best subset regression.

2.3. Genetic Alterations and Survival-Related Gene Expression Profiles

The comparison of the four-gene expression level between HCC and normal tissue
shown in Table 2 and Figure S1 demonstrate that FAM83D was significantly over-expressed
in tumors while LCAT, GHR and ADH4 were significantly downregulated in multiple GEO
and TCGA datasets when compared with normal tissue (p < 0.001). Besides, we utilized
the cBioportal database (https://www.cbioportal.org/, accessed on 1 January 2021) to
examine genetic alterations of the identified four-gene signature across multiple datasets
(Figure 4a). Amplification and missense mutations were observed in LCAT, ADH4, GHR,
and FAM83D, while truncating mutation was commonly observed in LCAT, GHR, and
FAM83D. Additionally, deep deletion was observed in ADH4.

Table 2. Statistical information of differential analysis of candidate genes (GHR, ADH4, FAM83D and LCAT). Log fold
change (LFC) implies log fold change value and adjusted p-value less than 0.01.

Gene Symbol Gene Full Name
GSE112790 GSE84402 GSE45267 TCGA

LFC

GHR Growth Hormone Receptor −2.371 −2.300 −2.632 −3.031
LCAT lecithin-cholesterol acyltransferase −3.359 −3.761 −2.935 −3.478

FAM83D family with sequence similarity 83 member D 2.808 2.114 2.255 2.348
ADH4 Alcohol Dehydrogenase 4 −2.910 −2.328 −4.360 −4.360

https://www.cbioportal.org/
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RS model in TCGA dataset (b). Validation of four-gene signature by time-dependent receiver operating characteristic curve
(ROC) analysis in TCGA dataset (c). RS, risk score.

2.4. Development and Estimation of the Four-Gene Signature

We performed multivariate Cox regression analysis on the identified four-gene sig-
natures to evaluate whether each gene could reveal a significant prognosis prediction
relevance for HCC patients and then we developed a risk score (RS) model using the four-
gene expression profiles and their Cox regression coefficients as: RS = 0.2277∗EXP(FM83D)
− 0.1554∗EXP(LCAT) − 0.0584∗EXP(ADHA) − 0.1137∗EXP(GHR), where the constant
denotes the gene coefficient obtained from multivariate Cox regression and EXP denotes
gene the expression level. The RS of every patient was calculated and the patients were
classified into the high-risk group (n = 180) and low-risk group (n = 179). Then survival
analysis indicated that the higher-risk group had poor overall survival when compared
with lower-risk patients (p < 0.0001; Figure 4b). Additionally, we performed risk stratifi-
cation in HCC patients with TNM stage and tumor grade, and performed KM survival
analysis. The high-risk group had poor prognosis compared with the low-risk group in
stage I and II (p-value < 0.05), stage III and IV (p-value < 0.05), grade 1 and 2 (p-value <0.05),
and grade 3 and 4 (p-value < 0.05) (Figure S2). Time-dependent ROC curve analysis of
the four-gene prognostic signature for 1-year survival showed that the AUC value of the
four-gene prognostic signature was higher than that of a single-gene signature (Figure S3).
Furthermore, the ROC analysis showed that the four-gene signature AUC value of the
time-dependent ROC curve was 0.784, 0.732 and 0.733 for 1-year, 2-year and 3-year survival,
respectively (Figure 4c). Besides, the diagnostic performance of the four-gene signature
was evaluated by ROC curve analysis and the result revealed that the four-gene signature
had higher diagnostic prediction performance when compared with a single gene, which
demonstrates that the multi-gene signature had better diagnostic performance to classify
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HCC from normal tissue (Figure 5a). Finally, univariate and multivariate analysis showed
that the four-gene signature can be used as independent risk factor (Table 3). The overall
result demonstrated that the risk prediction based on a four-gene signature can be used for
risk assessment for HCC patients.
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normal tissue using external International Cancer Genome Consortium (ICGC) dataset (b). Kaplan–Meier (KM) survival
analysis for high-risk and low-risk subgroups stratified RS model in ICGC dataset (c). Validation of four-gene signature by
time-dependent ROC analysis in ICGC dataset (d). RS, risk score.

Table 3. Univariate and multivariate Cox analyses of clinical pathological factors and risk model in TCGA and ICGC HCC
datasets.

Factors
Univariate Analysis Multivariate Analysis

HR p-Value HR p-Value

TCGA dataset
Age(>60 vs. ≤ 60) 1.27(0.88–1.85) 0.205

Gender (Male vs. Female) 0.78(0.54–1.15) 0.209
Stage (III+IV vs. I+II) 2.54(1.74–3.69) <0.001 1.05(0.15–7.66) 0.960

T-stage (T3+T4 vs. T1+T2) 2.56(1.76–3.74) <0.001 2.35(0.32–17.12 0.400
Grade (G3+G4 vs. G1+G2) 1.14(0.78–1.66) 0.506

RS (High vs. Low risk) 2.28(1.54–3.36) <0.001 2.20(1.48–3.25) <0.001
ICGC dataset

Age(>60 vs. ≤60) 1.28(0.70–2.35) 0.427
Gender (Male vs. Female) 0.48(0.26–0.90) 0.022 0.38(0.20–0.73) 0.004

Stage (III+IV vs. I+II) 2.18(1.19–4.01) 0.012 2.66(1.42–5.01) 0.002
RS (High vs. Low risk) 3.52(1.77–6.99) <0.001 3.57(1.78–7.18) <0.001

Abbreviations: TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium, HR, hazard ratio; CI, confidence
interval; RS, risk score.
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2.5. External Prognostic and Diagnostic Validation of Four-Gene Signature

To validate the prognostic and diagnostic prediction values of the four-gene signature,
we utilized the International Cancer Genome Consortium (ICGC) dataset as an external
validation set. The expressions levels of the four genes between tumor and normal tissue
samples were compared (Figure 5b), which were consistent the results of TCGA and GEO
datasets. Then, the risk model was developed using this dataset and the risk score of each
patient was calculated. The KM survival analysis showed that high-risk patients had poor
OS rate when compared with the low-risk subgroup (p-value < 0.001; Figure 5c). The ROC
analysis showed that the four-gene signature AUC value of the time-dependent ROC curve
was 0.634, 0.674 and 0.671 for 1-year, 2-year and 3-year survival, respectively (Figure 5d).
Furthermore, the ROC curve analysis showed the four-gene signature AUC value of ROC
curve was 0.952, which indicates that the four-gene signature yielded a stronger diagnostic
performance to classify HCC from normal tissue (Figure S4).

2.6. External Prognostic and Diagnostic Verification of the Four-Gene Signature

To verify the four-gene signature, we used 158 HCC and 12 normal samples of patients
as external verification dataset from China Medical University Hospital (CMUH). We first
examined gene differential expression between HCC and normal tissue samples and the
results were consistent with the aforementioned findings (Figure 6a). Besides, the four-gene
risk model was used to calculate risk score of each patient and then patients were classified
into high-risk and low-risk subgroups. The KM survival analysis showed that the high-risk
group had poor prognosis relative to the low-risk group (p-value < 0.001; Figure 6b). The
ROC analysis showed that the four-gene signature AUC value of the time-dependent
ROC curve was 0.865, 0.854 and 0.779 for 1-year, 2-year and 3-year survival, respectively
(Figure 6c). Moreover, the AUC value of the four-gene signature was 0.985, which revealed
that the four-gene signature had strong diagnostic performance to classify HCC tissue from
normal tissue (Figure 6d). Overall, the results demonstrate that the four-gene signature
can be used for predicting the prognosis and diagnosis of HCC, which indicate that the
four-gene signature may serve as a potential biomarker in HCC patients.

2.7. Identification of Biological Pathways of Four-Gene Signture and Thier Coe-Expressed Degs

To understand the functional roles of the identified four-gene signature and the co-
expressed genes, we first performed correlation analysis between the four-gene signature
and the remaining DEGs in HCC. We obtained many genes, which were co-expressed
with four prognostic genes (Pearson’s correlation coefficient, r ≥ 0.5 and p-values < 0.05)
(Table S2). Next, the four-gene signature and its co-expressed genes were used for en-
richment analysis. The gene ontology (GO) analysis of the four-gene signature and the
co-expressed genes were mainly involved in cell division, fatty acid beta-oxidation us-
ing acyl-CoA dehydrogenase, mitotic nuclear division, DNA replication, and other key
biological processes were used for the GO analysis (Table S3). Meanwhile, Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis of the four-gene signature and
the co-expressed genes was mainly enriched in retinol metabolism, metabolic pathways,
complement and coagulation cascades, cell cycle and chemical carcinogenesis, and other
biological pathways (Table 4). We also performed gene set enrichment analysis (GSEA)
between high-risk and low-risk HCC subgroups. The high-risk subgroup with low expres-
sion levels of LCAT, ADH4, and GHR was enriched in the organic hydroxyl compound
metabolic process, lipid metabolic process, alcohol metabolic process, and cellular hor-
mone metabolic process (Figure 7a–d), while FAM83D upregulation in the high-risk group
involved in cell cycle, cell cycle regulation, and cytoskeleton organization (Figure 7f–h).
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Table 4. The results of significantly enrich KEGG pathways of prognostic genes and their co-expressed deregulated genes.

KEGG Terms Count FDR Enriched Genes

hsa00830:Retinol metabolism 14 1.02 × 10−5
CYP3A4, CYP2B6, CYP2C9, CYP2C8, ADH1C,

CYP26A1, ADH1B, ADH1A, CYP1A2, RDH5, ADH4,
AOX1, CYP2A6, RDH16

hsa01100:Metabolic pathways 64 2.85 ×10−5

CYP3A4, NAMPT, CNDP1, OGDHL, ADH1C,
ADH1B, ADH1A, ASPA, TDO2, MAT1A, ST3GAL6,
GSTZ1, HPD, AADAT, ALDH6A1, FBP1, CYP26A1,
CYP2E1, CYP1A2, ACADL, TAT, CTH, FOLH1, SDS,

SQLE, RRM2, HAO2, BHMT, HSD11B1, CYP2A6,
AKR1D1, SLC27A5, XDH, ASS1, CYP2B6, ALDOB,

KMO, GLS2, TYMS, ACSL1, ADH4, DHODH, ENO3,
DMGDH, ACSL4, CYP2C9, CYP2C8, NAT2, ACMSD,

EPHX2, FTCD, IDO2, MAN1C1, PCK1, ACSM3,
GBA3, AOX1, AGXT2, CYP4F3, CYP4F2, RDH16,

CYP8B1, ACSM5, NNMT

hsa04610:Complement and
coagulation cascades 13 2.42 × 10−4 F11, MBL2, C7, C9, MASP2, C6, F9, C1R, PLG, C8A,

C8B, KLKB1, SERPINE1

hsa05204:Chemical
carcinogenesis 13 0.001

CYP3A4, CYP2C9, CYP2C8, NAT2, ADH1C, ADH1B,
ADH1A, CYP1A2, CYP2E1, CYP3A43, ADH4,

HSD11B1, CYP2A6

hsa00982:Drug metabolism—
cytochrome P450 12 0.002

CYP3A4, CYP2B6, CYP2C9, CYP2C8, ADH4, AOX1,
ADH1C, ADH1B, CYP2A6, ADH1A,

CYP2E1, CYP1A2

hsa04110:Cell cycle 14 0.026
CDC6, CDK1, TTK, CDC20, PTTG1, MCM2, MCM6,

CCNB1, CCNE2, CCNB2,MAD2L1, BUB1,
BUB1B, CCNA2

hsa00980:Metabolism of
xenobiotics by

cytochrome P450
11 0.027

CYP3A4, CYP2B6, CYP2C9, ADH4, HSD11B1,
ADH1C, ADH1B, CYP2A6, ADH1A,

CYP2E1, CYP1A2

hsa00350:Tyrosine metabolism 8 0.036 ADH4, AOX1, ADH1C, ADH1B, GSTZ1, ADH1A,
TAT, HPD

3. Discussion

HCC remains the most common malignant cancer worldwide. Traditional risk factors
such as TNM staging and vascular invasion used to predict prognosis of HCC patients.
However, as discussed above, pathological risk factors alone are not sufficient to predict
prognosis. Identifying robust prognostic biomarkers and the construction of an effective
prognostic model to predict the prognosis of HCC is urgently needed for clinical practice.

In this study, we first identified robust DEGs from multiple cohorts of GEO and TCGA
by reducing noise arising from sequencing platform type, data selection and data normal-
ization. Prognosis-related DEGs screened from the univariate Cox regression method in
TCGA dataset from the identified DEGs and then multivariate Cox regression with elastic
net, lasso and adaptive lasso penalties were applied with 10-fold cross-validation to identify
12 informative survival-related DEGs including FAM83D, CDC20, TPX2, UBE2S, LECT2,
ANXA10, DNASE1L3, PON1, CD5L, CYP2C9, ADH4, CFHR3, GHR and LCAT. Finally, BSR
analysis screened out the final optimal novel four-gene signature (FAM83D, ADH4, GHR
and LCAT), where the procedure and feature section methods were novel as compared
with most previous research, and two verification analyses were performed using external
datasets, to show the reproducibility of the results.

To the best of our knowledge, there has not been any study using multivariate Cox
regression with elastic net, lasso and adaptive lasso penalties screening methods like ours
to identify informative DEGs associated with prognosis of HCC patients. The four novel
genes are significantly associated with prognosis of HCC patients. While FAM83D is a risky
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prognostic gene, ADH4, GHR and LCAT are protective prognostic genes. The biological
roles of the four identified genes have been reported in the existing literature. The FAM83D
gene has been confirmed as a target in various cancers including HCC [15,16]. FAM83D
is overexpressed and related to gender, TNM stage, tumor recurrence and prognosis in
HCC [17]. Overexpressed of FAM83D leads to amplified cell proliferation, migration and
metastasis of ovarian cancer cells and high expression correlated with tumor stage and
grade [18]. Downregulated LCAT is strongly related to poor survival in HCC [19]. ADH4 is
significantly downregulated in HCC when compared with non-cancerous tissue, besides
the ADH4 protein expression is lower in HCC [20]. Wei et al. reported that lower expression
of ADH4 was associated with poor prognosis in HCC [21]. Furthermore, the level of GHR
is upregulated in breast cancer [22,23] and lung cancer [24]. The correlation analysis of
four prognostic genes and DEGs in HCC showed that four prognostic genes significantly
correlated with several DEGs in HCC, which indicated that the identified novel four-gene
signature may be the driver of many genes during progression and development of HCC.
Our functional enrichment analysis of the identified four-gene prognostic signature and
the co-expressed DEGs demonstrated that the novel four-gene prognostic signature and/or
the co-expressed genes were mainly enriched in the metabolic and cell cycle pathways,
which may suggest that the disturbance of four novel genes may promote HCC formation
and development through affecting metabolic and cell cycle pathways.

Compared to previous research, our study used a different approach to identify novel
gene signatures [25,26]. Our prognostic model building strategy include multivariate Cox
regression with elastic net, lasso and adaptive lasso penalties can identify robust prognostic
genes by reducing the multicollinearity problems in the genome [27], where multicollinear-
ity is a situation in which two or more prognostic genes are pairwise correlated. The
BSR analysis identified an optimal four-gene signature predictive model, which had the
minimum AIC values. After pinpointing the four prognostic genes, a four-gene prognos-
tic model was constructed and examined for its prognostic value in HCC patients. The
high-risk groups of patients had significantly worse prognosis than the low-risk group of
patients. Additionally, the prediction of the four-gene-based risk model could be utilized in
the stratified HCC patients such as stage I and II, stage III and IV, grade 1 and 2 and grade 3
and 4. We observed that high-risk patients were associated with poor prognosis compared
with low-risk patients in stage I and II, stage III and IV, grade 1 and 2 and grade 3 and 4,
which demonstrates that the novel four-gene-based risk model could be used to classify
HCC patients into different risk groups in these subgroups. The AUC value of the risk
prediction performance of the four-gene signature for 1-year, 2-year and 3-year survival
revealed good prediction performance. Furthermore, the four-prognostic gene signature
showed high diagnostic performance to classify HCC from normal samples. The univariate
and multivariate Cox regression analyses indicated that the four-gene signature could be
an independent risk factor to evaluate the prognosis. Besides, we used external validation
datasets from ICGC and CMUH to verify the prediction performance of the four-gene
signature. However, we acknowledge some limitations in our study. Frist, PCR-based
functional experiments should be conducted to reveal the role of the four novel genes in
cancers formation and development. Second, we did not include treatment effect while
developing the risk predictive model due to a lack of complete medical records.

4. Materials and Methods
4.1. HCC Sample Source

In this study, the gene expression profiles of HCC samples were retrieved from TCGA
(https://gdac.broadinstitute.org/, accessed on 1 January 2021), GEO (https://www.ncbi.
nlm.nih.gov/geo/, accessed on 1 January 2021), and ICGC (https://icgc.org/, accessed
on 1 January 2021) databases. We selected three gene expression profiles of HCC patients
from GEO including GSE112790 [28], GSE84402 [29], and GSE45267 [30,31]. The inclusion
criteria of three datasets were as follows: the human samples were classified into the
HCC group and adjacent or nontumor groups; samples sizes above fourteen for HCC

https://gdac.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://icgc.org/
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and nontumor groups were included in each dataset and mRNA expression profiling was
used to examine each the samples. The gene expression profiles of TCGA-HCC dataset
consist of 371 HCC and 50 normal tissue samples. The gene expression data of three GEO
datasets and TCGA were used to identify DEGs. The normalized gene expression data
and the clinical medical records (age, gender, pathological stage, OS time and status) of
TCGA-HCC dataset (n = 359) with complete clinical information was used as a training
set to develop prognostic models. The gene expression profiles of ICGC LIRI-JP dataset
consist of 243 HCC and 202 normal tissue samples. The normalized gene expression data
and the clinical information (including age, gender, pathological stage, OS time and status
information) of ICGC LIRI-JP dataset (n = 232) with complete clinical information was used
to validate prognostic models. The detailed description of the datasets used our study is
shown in Table S3.

4.2. Data Preprocessing and Identfication of DEGs

The datasets were pre-processed separately depending on the profiling methods for
different platforms. The robust multi-array average technique was used for the standardiza-
tion of GEO-Affymetrix platform-based gene expression profiles. We used logarithm base
two transformation for the normalized RNA-Seq by Expectation–Maximization (RSEM)
values of the genes of TCGA data. We removed minimally expressed genes if they had zero
reads in more than 20% of the samples in each dataset. Then, normalized gene expression
profiles of the three GEO and TCGA datasets of HCC sample of patients were used to
screen DEGs based on the “limma” package (in R platform) [32]. Gene differential analysis
between HCC tissue samples and normal tissue samples were compared and genes with
absolute log fold change (LFC) values ≥1.5 and adjusted p-values < 0.01 were considered
as DEGs.

4.3. Prognosis-Related Gene Selection and Development of Prognostic Model

Feature (gene) selection is a key process to improve prognosis prediction performance
by avoiding noise or irrelevant features. The normalized RSEM values of the genes were
further transformed using log2RSEM for subsequent survival analysis. Then, normalized
gene expression data were utilized to estimate the association between gene expression
level and the survival time of HCC patients based on TCGA dataset (n = 359). A univariate
Cox proportional hazard model was employed to identify the prognosis-associated DEGs
satisfying the criteria of hazard ratio (HR) > 1 or HR < 1 and p-value < 0.05. Finally, the
prognosis-related DEGs were used in subsequent analysis.

After identifying the candidate survival-related genes, we proposed multivariate Cox
regression model with lasso, adaptive lasso and elastic net penalties to select the most sig-
nificant survival-related genes in TCGA dataset for prognostic model construction. Three
methods are penalized approaches that are used to avoid the overfitting problem [12–14,33].
Lasso and adaptive lasso are used to select prognostic genes through the shrinkage of
some of the irrelevant genes’ regression coefficients to zero. Adaptive lasso imposes a
greater penalty in comparison with the lasso algorithm, which further reduces less relevant
prognostic genes in such a way that the resulting coefficient estimates are sparse. Though
the lasso algorithm is widely used to select prognostic-associated genes, it has a weakness
in selecting prognostic genes when there is a multicollinearity among genes in the genome.
In other words, a number of genes in a genome are pairwise correlated due to the complex
interaction and this situation creates the problem of multicollinearity. In contrast, the elastic
net algorithm is a hybridized version of the ridged [34] and lasso algorithms [13], which
was proposed to identify informative genes when there is a problem of multicollinearity in
the genomic data [27]. Since each algorithm has the strength to select informative genes
with vigorous predictive power, a multivariate Cox proportional hazard regression model
with lasso, adaptive lasso and elastic net penalties was proposed to construct a multi-gene
signature for predicting prognosis using “glmnet” package of R software [35]. To increase
the robustness of the results, 10-fold cross validation was implemented to estimate the
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optimal lambda value(λ) for each method that came from the minimum mean-squared
prediction error.

Then, the union of prognostic-related genes selected by three methods with 10-fold
cross-validation was further analyzed using best subset regression (BSR) algorithm. The
BSR algorithm can compare all possible generated prognostic models based upon the iden-
tified prognosis-associate genes. Suppose we obtained a total of K prognostic-associated
genes from lasso, adaptive lasso and elastic net algorithms. The BSR method identified an
optimal prognostic model based on the following procedure.

Consider τ = 1, 2, 3; τ = K.

a. Construct all possible models C (K, τ) using τ subset of identified genes.
b. Calculate Akaike information criterion (AIC) for each constructed model in a.
c. Choose an optimal prognostic model, whose AIC is the smallest τ prognostic genes

using the “glmulti” package (in R platform) [36].

4.4. Construction and Estimation of Prognostic Gene Signature

TCGA dataset (n = 359) and external validation set (n = 232) were used to confirm the
predictive ability of multi-gene signature in HCC. All regression coefficients were obtained
from optimal multivariate Cox regression model using TCGA dataset and validation
datasets. Then, the risk score (RS) for each HCC patient was calculated using the formula:
RS = ∑

i
Xiβi, where βi is the regression coefficient of the ith gene and Xi is the log2-

transformed expression value of the ith prognostic gene. The HCC patients were then
stratified into high-risk and low-risk subgroups, based on the median RS as a cutoff. Kaplan–
Meier (KM) survival analysis was used to evaluate the survival difference between the
high-risk and low-risk subgroups. The prediction performance of the risk prediction model
was evaluated by the area under the time-dependent receiver operating characteristic
(AUROC) curve. The multivariate Cox analysis adjusting clinicopathological variables
based on Equation (1) was used to confirm whether RS could be used as an independent
prognostic risk factor in HCC patients.

h
(
t, x′β

)
= h0(t) exp

(
β′x

)
(1)

x′β = βStageStage + βT_stageT_stage + βgrade grade + βRS RS (2)

where h(t, x′β) is the multivariate Cox model associated with covariates at time t (stage,
tumor stage, neoplasm grade, and RS), and β denotes the regression coefficient of stage,
tumor stage, tumor grade, and RS.

4.5. Evaluation of the Diagnostic Performance of the Multi-Gene Signature in HCC

To evaluate the diagnostic capacity of the multi-gene signature, we first computed
a logistic regression model to extract the coefficients of the identified prognostic genes
based on TCGA dataset of HCC patients including both HCC and normal tissue samples
(n = 421) and ICGC LIRI-JP dataset including both HCC and normal tissue samples as
external validation set (n = 445); then, the RS model was derived to evaluate the diagnostic
performance in classifying HCC tissue from normal tissue.

4.6. Clinical HCC Patient Samples

To verify the identified optimal gene expression levels, we analyzed a total of 158 HCC
and 12 normal tissue samples from CMUH, Taiwan. The prognostic model was verified
based on the CMUH-HCC dataset (n = 80) with complete survival time (at least more than
30 days follow-up). We also verified the diagnostic performance of the risk mode using
158 HCC and 12 normal tissue samples. All the patients who participated in this study
signed informed consent and all the protocols for the trial was approved by the Human
Research Ethics Committee of CMUH (CMUH106-REC1-053, 6 May 2020). The tumor and
adjacent normal tissues were then collected from patients who underwent liver surgical
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resection. All tissues were then obtained immediately after surgical resection and frozen at
−80 ◦C until RNA extraction.

4.7. RNA Sequencing (RNA-Seq) and Data Analysis

For CMUH dataset, RNA was extracted from clinical tissue samples using the NucleoSpin®

RNA Kit (MACHEREY-NAGEL GmgH, Düren, Germany) following the manufacturer’s
instructions. The quality, quantity, and integrity of the total RNA were evaluated using the
NanoDrop1000 spectrophotometer and Bioanalyzer 2100 (Agilent Technologies, Palo Alto,
CA, USA). Samples with an RNA integrity number >6.0 were used for RNA-seq. An
mRNA-focused, barcoded library was generated using the TruSeq strand mRNA Library
Preparation Kit (Illumina). The libraries were sequenced on the Illumina Nova Seq 6000
instrument (Illumina), using 2x151 bp paired-end sequencing flow cells following the
manufacturer’s instructions. After obtaining the RNA fastq data, we performed quality
control via Trimmomatic v0.38 [37] with the following parameters: LEADING:3, TRAIL-
ING:3, SLIDINGWINDOW:4:15, MAXINFO:40:0.2, MINLEN:100, AVGQUAL:20. The
passed reads were then aligned with the Ensembl 84 release GRCh38 reference genome
by HISAT2 [38] and the gene expression profiles were qualitied by StringTie [39] with
Homo_sapiens.GRCh38.95.chr_patch_hapl_scaff.gff3. Finally, transcripts per million (TPM)
was applied for normalizing the gene expression and then further transformed using
logarithm base two.

4.8. Biological Characterization of the Identified Prognostic Genes

To elucidate the biological roles of the identified prognostic DEGs and their co-
expressed DEGs, pathway analysis using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) [40] was performed. Gene Set Enrichment Analysis
(GSEA) V4.1.0, https://www.gsea-msigdb.org/gsea/index.jsp, accessed on 1 January
2021) was used to understand whether the expression levels of the predefined genes
showed a significant difference between the high-risk and low-risk subgroups of HCC
patients. The gene set “C5.bp.v7.1symbols.gmt” obtained from the molecular signature
database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp, accessed on 1 January
2021) was chosen for enrichment analysis. A p-value < 0.05 was used to select significant
enrichment results.

4.9. Statistical Analysis

Data preprocessing and normalization, and statistical analyses were performed using
R software. Welch’s t-test was used for differential gene analysis. KM survival analysis with
a log rank test was used to evaluate the survival of the HCC patient subgroups. Pearson’s
correlation coefficient (r) was used to identify genes that were co-expressed with identified
prognostic gene signatures. A p-value < 0.05 was used to select significant results, unless
otherwise stated.

5. Conclusions

In summary, we identified and validated four novel prognostic gene signature using
a novel integrated statistical methodology approach. Our findings demonstrate that the
four-gene prognostic signature is a potential biomarker for patients with HCC. The four-
gene-based risk model is effective to stratify patients with HCC into high- and low-risk
groups. Therefore, this risk predictive model could potentially help in clinical practice for
predicting the survival of individual patients and facilitating the development of better
treatment options for HCC patients.
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