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Deep‑learning‑based method 
for the segmentation of ureter 
and renal pelvis on non‑enhanced 
CT scans
Xin Jin 1, Hai Zhong 2, Yumeng Zhang  3* & Guo Dong Pang 2

This study aimed to develop a deep-learning (DL) based method for three-dimensional (3D) 
segmentation of the upper urinary tract (UUT), including ureter and renal pelvis, on non-enhanced 
computed tomography (NECT) scans. A total of 150 NECT scans with normal appearance of the left 
UUT were chosen for this study. The dataset was divided into training (n = 130) and validation sets 
(n = 20). The test set contained 29 randomly chosen cases with computed tomography urography 
(CTU) and NECT scans, all with normal appearance of the left UUT. An experienced radiologist marked 
out the left renal pelvis and ureter on each scan. Two types of frameworks (entire and sectional) 
with three types of DL models (basic UNet, UNet3 + and ViT-UNet) were developed, and evaluated. 
The sectional framework with basic UNet model achieved the highest mean precision (85.5%) and 
mean recall (71.9%) on the test set compared to all other tested methods. Compared with CTU scans, 
this method had higher axial UUT recall than CTU (82.5% vs 69.1%, P < 0.01). This method achieved 
similar or better visualization of UUT than CTU in many cases, however, in some cases, it exhibited 
a non-ignorable false-positive rate. The proposed DL method demonstrates promising potential in 
automated 3D UUT segmentation on NECT scans. The proposed DL models could remarkably improve 
the efficiency of UUT reconstruction, and have the potential to save many patients from invasive 
examinations such as CTU. DL models could also serve as a valuable complement to CTU.
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In urological diagnostics and surgery planning, a profound understanding of the anatomical structure of the 
upper urinary tract (UUT), including the ureter and renal pelvis, is crucial. Many imaging techniques, such as 
intravenous urography (IVU), computed tomography urography (CTU), and magnetic resonance urography 
(MRU), can reveal the anatomical structure of the UUT. However, each of these imaging examinations has its own 
drawbacks. IVU and CTU require intravenous injection of contrast media and have the risk of phlebitis, allergic 
reactions, and contrast-induced nephropathy1–3. In addition, CTU often cannot achieve complete visualization 
of UUT 4–6. Magnetic resonance urography (MRU) is noninvasive, but its image quality relies on the water signal 
and it has rather poor image quality for normal kidneys and ureters without hydronephrosis7.

Non-enhanced CT (NECT) scan is noninvasive, does not require contrast media, and can be applied on 
almost all patients except pregnant women. It can also reveal the anatomical structure of UUT​8. In fact, it is 
possible to distinguish the outline of the renal pelvis and ureter on a thin-layer non-enhanced CT scan most 
of the time. Hence, it is also possible to perform three-dimensional (3D) reconstruction of the UUT on NECT 
scans. However, at present, it cannot replace invasive techniques such as IVU and CTU. First, distinguishing the 
ureter from adjacent structures on NECT scans is extremely tricky without contrast media. Second, although 
experienced radiologists can identify the ureter on a non-enhanced CT scan, it is a time-consuming and labor-
intensive task. Currently, radiologists and urologists cannot obtain 3D structures of UUT through a NECT scan; 
they still need invasive examinations such as CTU and IVU to fulfill their needs9.

In recent years, deep learning (DL) models based on artificial neural networks have been extensively employed 
in medical imaging, demonstrating promising results. DL models can perform different tasks such as lesion 
detection, organ segmentation, and diagnosis10–14. We believe that DL models can also perform urinary tract 
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segmentation on NECT scans with proper design and adequate training. Considering the tiny volume of the 
UUT (usually less than 0.1% of all voxels in a CT scan), and the significant structure difference between renal 
pelvis and ureter, the challenges of a low ground truth share and structural differences pose serious obstacles for 
existing DL models in accurately segmenting the UUT​15,16.

In this paper a DL-based method was proposed to tackle aforementioned issues. Utilizing image cropping 
and sectional training, the proposed method effectively alleviated the influence of low ground truth share and 
structural differences. Extensive experiments demonstrated that the proposed method could perform end-to-end 
UUT segmentation and achieved comparable accuracy with radiologists in many cases. Therefore, the method 
studied in this paper is a desirable segmentation approach, which could remarkably reduce the work load of 
urologists and save many patients from invasive exams17.

Materials and Methods
Dataset
All experimental protocols of this study were approved by the ethical committee of the Second Hospital of 
Shandong University (No. KYLL-2023-088, March 6 2023). All methods were carried out in accordance with 
relevant guidelines and regulations. Informed consent was obtained from all subjects. The flowchart of case 
selection of the train, validation and test sets is shown in Fig. 1. We searched the picture archiving and commu-
nication system (PACS) database of our hospital for NECT scans of the abdomen and pelvis from January 2022 
to December 2022 and acquired 2334 entries. The inclusion criteria were as follows: (1) thin-layer NECT scans 
(1.25-mm slices) that covered the kidneys, ureter, and bladder; (2) the left renal pelvis and the entire length of 
the left ureter clearly distinguished; and (3) normal anatomical structure of the ureter and pelvis. The exclusion 
criteria were as follows: (1) the ureter and renal pelvis could not be fully and clearly distinguished; (2) morbid-
ity affecting the UUT, such as renal mass, renal cyst, hydronephrosis, lithosis, and so forth; and (3) anatomical 
variations, such as ureteral stenosis, duplicated ureters, ampullary renal pelvis, and so forth. After initial selec-
tion, 150 scans were selected for further study. A radiologist with more than 10 years of experience marked the 
structure of the left ureter and renal pelvis on each CT scan and saved the markings as mask files. The CT scans 
and their corresponding masks were deprived of all private information. They were randomly divided into two 
datasets: training set (130 cases) and validation set (20 cases). The demographic data of the training and test sets 
had no significant difference (Table 1).

We searched the PACS database of our hospital for CTU scans from July 2022 to October 2022 and acquired 
120 entries to test the accuracy of our models. The inclusion and exclusion criteria were the same as for the 
training set, but with one addition: each case must have thin-layer scans of the kidney, ureter, and bladder in 
both non-enhanced and delayed phases. A total of 29 cases were selected for further study. For each case, the 
non-enhanced scan was used to test trained models. The same radiologist performed left pelvis and ureter recon-
struction using delayed-phase scans and marked the structure of the left ureter and renal pelvis on non-enhanced 

Fig. 1.   Flowchart of case selection of the train, validation and test data. NECT: non-enhanced CT; UUT: upper 
urinary tract; CTU: CT urography.

Table 1.   Demographic data of each group. *Comparison between the training and test sets.

Dataset n Age Sex (M/F) Axial slices of UUT​ Range of pixel size (mm)

Train 130 56.7 99/31 198.4 0.810

Valid 20 59.8 17/3 198.3 0.807

Test 29 54.2 22/7 205.7 0.814

P* 0.12 0.97 0.35 0.52
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scans. These masked non-enhanced scans were assigned to the test set. All UUT masks were reviewed by a pro-
fessional urologist with extensive experience of urologic imaging. Any reading disagreement was resolved by 
consensus reading. Two radiologists with more than 10 years of experience independently reviewed the results 
of different DL models on the test set and calculated the recall and false positive rate of each model. Any reading 
disagreement was resolved by consensus reading with senior radiologists and urologists. The corresponding CTU 
reconstructions were used as comparison. All UUT masks were smoothed with Gaussian filter before training 
or testing. The inputs for all models were raw data without windowing or normalization. The training data used 
in this study would be available from the corresponding author upon reasonable request.

All NECT and CTU scans in this study were performed on a single General Electric Discovery CT 750 HD 
scanner. All NECT and CTU scans used the same protocols. CTU scans used intravenous injection with 2 mL/
kg iohexol and a 10-min delayed scan. The tube voltage was 120 kV, and the tube current ranged between 300 
and 400 mA. All CT scans had a horizontal resolution of 512 × 512. Each series had 260–553 axial slices.

Models
To improve accuracy and reduce training costs, an adaptive framework was proposed. As the Fig. 2 shows, before 
the raw NECT scan was input into the model, the image was cropped to a 240 × 112 × 112 array containing the 
left UUT, according to the left kidney position detected by the pre-trained DL model18. On this basis, two types 
of segmentation frameworks were elaborated. (A) entire: training a single model that took the entire 3D array 
as the input (Fig. 2a) and (B) sectional: separating the 3D array into two sections, with the upper one-third 
containing the renal pelvis and upper part of the ureter and lower two-third containing the lower part of the 
ureter; then two independent models were separately trained to process the upper part (80 × 112 × 12) and the 
lower part (160 × 112 × 112) respectively (Fig. 2b).

To evaluate the segmentation performance of different DL models and construct effective segmentation method, 
three deep learning models were employed in aforementioned frameworks: (A) basic UNet model based on 3D con-
volution (Fig. 3a); (B) UNet3 + model also based on 3D convolution but with modified skip connections19 (Fig. 3b); 
and (C) ViT-UNet model combining convolution and vision transformer20,21 (Fig. 3c). these models were trained with 
the training set, the training process was monitored with the validation set. The models with the highest F1 score 
(

2×precision×recall
precision+recall

)

 were saved and tested with the test set. All models were coded with Python 3.9.0 and PyTorch 
1.13.1. The training workstation used 64-GB RAM and 24-GB GeForce RTX 4090.

Fig. 2.   Different frameworks in this study. a. entire: one model took the entire 3D array containing UUT as 
input; b. sectional: two models processed upper 1/3 and lower 2/3 of the input respectively, and their outputs 
were combined to form the final output. In order to give better visual depiction, the 3D images in this figure 
were reconstructed from CTU scan.
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Statistical analysis
After training, both frameworks with different models were tested with the test set. We compared the precision, 
recall, and Dice coefficient of each method. The method with the best performance was chosen for comparison 
with the CTU scans. When comparing with CTU, the axial recall of the ureter was calculated, representing the 
number of horizontal planes in which DL model (or CTU) successfully identified the ureter or renal pelvis. 
Additionally, the axial false-positive rate was calculated to indicate the number of horizontal planes in which the 
DL model mistook other structures for the ureter or renal pelvis. Statistical analysis was carried out with IBM 
SPSS 26.0. Statistical methods used in this study included student t test and chi-square test.

Results
The overall precision and recall of different methods are depicted in Table 2. The sectional framework with basic 
UNet model exhibited the highest precision and recall among all methods tested, with an overall precision of 
85.5% and recall of 71.9%. Additionally, all models performed better in the sectional framework than in the 
entire framework.

In the result comparison of the best DL method and CTU scans in the test set (Table 3), the overall axial recall 
of the DL model and CTU scan was 82.2% and 69.1%, respectively; the difference was statistically significant 
(P < 0.01). In this study, the DL model achieved more than 85% axial recall in 13 cases, whereas CTU achieved 
higher than 85% recall in 9 cases. In three cases, the DL model had lower than 60% axial recall. In 18 cases, the 
DL model exhibited greater than 10% false-positive rate. To exclude the impact of false positives on axial recall, 
we introduced a novel metric called ’recall without ambiguity’. Under this metric, only axial planes without false-
positive dots were considered valid. The DL model exhibited a ’recall without ambiguity’ of 69.4%, showing no 
significant difference compared to CTU (69.1%, P = 0.27).

Fig. 3.   Schematic diagram of DL models used in this study. (a) Basic UNet model; (b) UNet3 + model; (c) 
ViT block. The ViT-UNet model in this study had the same structure with basic UNet model (a), but with E5 
replaced by 12 ViT blocks shown in (c). E: encoders; D: decoders; ViT: vision transformer; MSA: multi-head 
self-attention; MLP: multi-layer perceptron; arrows: data flow; dotted lines: skip connections.

Table 2.   Test results of the three trained models. The bold numbers means the highest value among all 
models.

Model Framework Precision Recall Dice coefficient

Basic UNet
Entire 76.4 59.3 0.667

Sectional 85.5 71.9 0.781

UNet3 + 
Entire 70.7 52.6 0.603

Sectional 72.6 63.8 0.679

ViT-UNet
Entire 69.3 55.8 0.618

Sectional 75.7 67.3 0.712

Table 3.   Comparison of DL model and CTU scan in the test set.

Axial recall (%) Axial false positive (%) Axial recall > 85% (%) Axial recall < 60% (%)
Axial recall without 
ambiguity (%)

DL Model 82.2 (51.6–98.6) 14.7 (1.5–34.8) 44.8 (n = 13) 10.3 (n = 3) 69.4 (46.4–95.5)

CTU​ 69.1 (31.8–99.7) NA 31.0 (n = 9) 17.2 (n = 5) NA
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To test the robustness of our model, we tested the basic UNet model with different morbidities. Small renal 
or ureteral stones seemed to have minimal impact on our model, nor did small renal cyst and renal tumor. The 
model also had no difficulty recognize ureter and renal pelvis with slight hydronephrosis. However, its recall 
of ureter could be drastically decreased by larger ureteral stones (diameter > 1 cm) and severe hydronephrosis. 
The model’s recall of upper UUT could also be affected by the deformation of kidney caused by large renal cysts 
or renal tumors.

Discussion
In this study, we used NECT scans with manually labeled left renal pelvis and ureter as the training set, and 
trained different DL models to perform UUT segmentation on NECT scan. The test result showed promising 
results. The DL models could achieve 85% precision and 71% recall on NECT scans with a training set of 130 
cases. The accuracy was not ideal, but it is crucial to consider that the identification of UUT on NECT scans 
was a challenging task. First, the ureter often adhered to other structures, such as the psoas major muscle, iliac 
artery, and uterus; the density of all of them was similar to that of the ureter (Fig. 4a,b). Sometimes, even most 
experienced radiologists could not accurately distinguish the outline of the ureter. Second, in NECT scan, the 
density of the ureter was only slightly higher than the background noise (surrounding fat and connective tissue) 
(Fig. 4c). Third, the ureter always runs parallel with seminal vessels (ovarian vessels in women). They have nearly 
identical density and appearance on NECT scans (Fig. 4d)22. Considering all these difficulties, we believed that 
the current performance of our DL models was acceptable and the false-positive rate was within tolerance23. 
The result of this study demonstrated that it was possible and practical to use DL models to perform automatic 
UUT reconstruction with NECT scans24. It can save many patients from invasive exams and their complications, 
effectively reducing healthcare cost. Although current models still had some limitations, this method has great 
potential for improvement in the future25. The DL models reported in this study were only trained with UUT 
with normal appearing, and just as expected, they had rather poor result in the robustness test with abnormal 
samples. W.l.o.g., these models would have no difficulty in recognizing the right UUT or UUT with morbidity 
through adequate training and larger dataset.

As the segmentation result discussed in above section shows, the simplest basic UNet model achieved higher 
accuracy than more complex models. We speculated that the low fine-grained precision of basic UNet actually 
made it more suitable for the UUT segmentation task because the precise boundary of UUT on NECT scans 
was not so clear. That could be why the UNet3 + model, which emphasized fine-grained precision, had worse 
performance26,27. Theoretically, the combination of convolution and vision transformer in the ViT-UNet model 
should have a better overall vision of the entire input image28. However, in this research, the UUT structure 
has tiny volume, and the low correlation with other pixels in the same slice, so it can be regarded as a semantic 
high-frequency signal, and ViT model has limited performance on this problem29. As the experimental results 
showed, all models performed better under sectional framework. This was partially because the structures of the 
renal pelvis (thin-slice renal pelvis with multiple horn-shaped calices) and the ureter (a thin, curvy tube) were 
significantly different. In this case, training different models for more specific tasks could improve efficiency30. 
The other reason could be the limitation of our training platform31,32. With the same amount of memory usage, 
training in two parts with smaller inputs could enable DL models of more convolution channels and attention 
heads to capture more input characters33.

The comparison with CTU scans showed that the DL model could achieve a higher recall of UUT than CTU. 
The smooth muscle of the ureter exhibits constant peristalsis, with a high chance that the contrast cannot fill the 
entire UUT​34 (Fig. 5a1). In addition, the timing for the pyelographic-phase scan was hard to control35. Too early 
a scan would leave a large portion of the ureter non-opacified (Fig. 5b1). The DL models do not rely on contrast 
but distinguish UUT by image features21. This study included many cases in which CTU could not visualize the 
distal ureter, but the DL model recognized ureter segments that CTU failed to visualize (Fig. 5a,b). Our DL model 
demonstrated a higher recall but occasionally suffered from a high false-positive rate. Hence, the DL model could 
serve as a valuable complement to CTU.

Fig. 4.   The difficulty of recognizing ureter on NECT scan. (a) barely visible ureter (arrow) adheres to psoas 
major muscle; (b) barely visible ureter (arrow) adheres to iliac artery; (c) very thin ureter (arrow) blended 
into surrounding fat; (d) ureter (yellow arrow) runs parallel with ovarian vein (white arrow) which has almost 
identical appearance.
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Limitations
Our test results showed that current DL models still had some limitations (Fig. 6). (A) The result of sectional 
framework sometimes had break points at the joining part (Fig. 6a1). (B) They occasionally mistook adjacent 
seminal vessels (ovarian vessels in women) for the ureter (Fig. 6b). (C) They had difficulty recognizing the 
ureter at the site where the ureter ran across the iliac artery (Fig. 6c). (D) In female patients, the DL models had 
difficulty recognizing the ureter where it ran near the uterus (Fig. 6d). (E) DL models had poor recall and high 
false-positive rate in patients with too much intestinal gas or inflammatory secretions (Fig. 5c and Fig. 6e). (F) 
The model’s recall could be affected by morbidities like large renal cysts, renal tumors and stones. For (A), (B) 
and (C), we believed that adjusting the model structure could be helpful21. Increasing the number of training 
sets could also help ameliorate these problems. For (D) and (E), no effective solutions existed, as even the most 
experienced radiologists could not distinguish the ureter on NECT under these circumstances. That was one 
reason why the DL models could not replace CTU. For (F), we believe further training with more sample variety 
could solve this problem, as a DL model could only recognize what it had already ‘seen’.

Fig. 5.   Comparison of CTU reconstruction (1), model output (2) and ground truth on NECT (3). (a) Lower 
part of the ureter missing in CTU (a1) and full-length visualization using the DL model (a2). (b) Large portion 
of the ureter missing on CTU due to bad timing of the scan (b1) and higher recall of the ureter using the 
DL model (b2), though with a few false-positive dots and relatively poor pelvis visualization. (c) Full-length 
ureter visualization using CTU (c1) and poor DL model output with multiple false-positive points and missing 
segments (c2).

Fig. 6.   Limitations of the current DL segmentation model. Examples are shown in the 3D view (1) and CT 
images (2). Red marks are UUT masks generated by the DL model. (a) Missing ureter segment at the joining 
part of the two models (circle). (b) Misidentification of ovarian vessels as the ureter (arrows in 3D view). Left 
ureter (arrow in coronal view) and ovarian vein on its left are shown in the coronal view. (c) Missing ureter 
segment and false-positive dots near the iliac artery (circle). The missed ureter segment at the model-joining 
part was also seen in the 3D view. (d) Missing ureter segment in female patients (circle). The ureter beside the 
uterus is barely visible (arrow). Misidentification of the ureter at the model-joining part was also seen in the 3D 
view. (e) Missed ureter segment (circle in 3D view) caused by intestinal filling (arrows in coronal view).
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Conclusions
In summary, the proposed DL-based method is feasible and achieved promising performance in recognizing 
the ureter and renal pelvis on NECT scans. These segmentation models can save many patients from invasive 
examinations and can serve as a valuable complement of CTU. These models can also reduce the work load and 
improve the efficiency of radiologists. Although the current models had many limitations, we believed that they 
hold significant potential for improvement through additional training with more diverse samples. In addition, 
this work also extends the technical framework of DL in clinical medical research.

Data availability
The training data used in this study would be available from the corresponding author upon reasonable request.
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