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In Brief
To understand the underlying
resistance mechanisms in
response to imatinib (IMA) and
adriamycin (ADR), we explored
two unique drug resistance
models of K562 cells. We applied
an optimized DIA–MS method to
quantify 98,232 peptides from
7082 proteotypic proteins from
these samples using four DIA
software tools including
OpenSWATH, Spectronaut, DIA-
NN, and EncyclopeDIA. The
sirtuin signaling pathway was
found significantly regulated in
both models, and IDH2 was
identified as a druggable
regulator of acquired drug
resistance.
Highlights
• Temporal proteomic dynamics in the imatinib or adriamycin-induced drug resistance.• Comparison of four DIA software tools (OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA).• Sirtuin signaling pathway was significantly regulated in resistant K562 cells.• IDH2 was identified as a potential drug target correlated for resistant K562 cells.
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RESEARCH
DIA-Based Proteomics Identifies IDH2 as a
Targetable Regulator of Acquired Drug
Resistance in Chronic Myeloid Leukemia
Wei Liu1,2,3,4,5 , Yaoting Sun2,3,4, Weigang Ge6, Fangfei Zhang2,3,4, Lin Gan2,3,4, Yi Zhu2,3,4,
Tiannan Guo2,3,4,* , and Kexin Liu1,*
Drug resistance is a critical obstacle to effective treatment
in patients with chronic myeloid leukemia. To understand
the underlying resistance mechanisms in response to
imatinib mesylate (IMA) and adriamycin (ADR), the
parental K562 cells were treated with low doses of IMA or
ADR for 2 months to generate derivative cells with mild,
intermediate, and severe resistance to the drugs as
defined by their increasing resistance index. PulseDIA-
based (DIA [data-independent acquisition]) quantitative
proteomics was then employed to reveal the proteome
changes in these resistant cells. In total, 7082 proteins
from 98,232 peptides were identified and quantified from
the dataset using four DIA software tools including
OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA.
Sirtuin signaling pathway was found to be significantly
enriched in both ADR-resistant and IMA-resistant
K562 cells. In particular, isocitrate dehydrogenase
(NADP(+)) 2 was identified as a potential drug target
correlated with the drug resistance phenotype, and its
inhibition by the antagonist AGI-6780 reversed the ac-
quired resistance in K562 cells to either ADR or IMA.
Together, our study has implicated isocitrate dehydroge-
nase (NADP(+)) 2 as a potential target that can be thera-
peutically leveraged to alleviate the drug resistance in
K562 cells when treated with IMA and ADR.

The treatment of chronic myeloid leukemia (CML) patients
includes targeted therapy (tyrosine kinase inhibitors [TKIs]),
chemotherapy, biological therapy, hematopoietic cell trans-
plant, and donor lymphocyte infusion (1–3). Chemotherapy
inhibits the rapidly proliferating tumor cells by interfering with
cell replication. However, drug resistance leads to failed
chemotherapy treatment in 90% patients (4). Adriamycin
(ADR) is a traditional chemotherapeutic drug that disturbs the
DNA replication process, which can be therapeutically
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leveraged against certain hematologic tumors. Using a
K562 cell model, various mechanisms have been uncovered
to explain ADR-induced drug resistance, such as transporter-
mediated drug efflux (5, 6), altered mitochondrial function
(7, 8), and changes in survival-related signaling pathways
including epidermal growth factor receptor, extracellular-
regulated kinase, NF-κB, phosphatase and tensin homolog,
and AKT pathways (9–11).
As one of the most effective clinical regimens in the chronic

phase, TKIs have dramatically improved survival rate in CML
patients (12). Indeed, imatinib mesylate (IMA) is among the first
generation of TKIs and the first-line drug for CML treatment,
which targets BCR–ABL1 and inhibits tumor growth (13).
Notably, the 5-year survival rate of CML patients with IMA
treatment has increased to 89% (14). However, about 20 to
25% of CML patients showed a suboptimal response to IMA,
who have likely developed drug resistance (15). Several
mechanisms have been proposed to explain the failed IMA
treatment in CML patients, including, for example, altered
conformation of the BCR–ABL1 kinase domain by mutations
that reduce its binding affinity to IMA (12). Other resistance
mechanisms independent of BCR–ABL1 have also been re-
ported, including P-glycoprotein upregulation, activation of
alternative PI3K/AKT, Janus kinase-2, or mitogen-activated
protein kinase signaling (16, 17), and changes in the intracel-
lular environment such as endoplasmic reticulum stress–
induced autophagy (18).
Drug resistance remains a clinical hurdle to traditional

chemotherapy and targeted therapy (19). Given its complex
nature, both genetic mutations and nongenetic changes (such
as epigenetics) may contribute to a drug-resistant phenotype
(20). Mass spectrometry (MS)-based proteomics could quantify
thousands of proteins and provide unique insights into the
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IDH2 as a Therapeutic Target for CML
dysregulated pathways (21); thus, it can be used to explore the
mechanisms of drug resistance. A deep proteome profiling is
essential for characterizing relevant signaling proteins respon-
sible for drug resistance. Some studies of CML drug resistance
reported relatively small protein numbers, that is, 2059 proteins
(22), 1344 proteins (23), and 477 proteins (24). Some studies
tried to characterize the changes of proteomes related to either
drug-resistant or drug-sensitive phenotypes of CMLcells, bone
marrow extracellular fluids (24–26), or IMA treatment of CML
cells in just 24 h (23). However, the difference in phenotypes
may only be partially attributed to IMA. Furthermore, these are
all proteomic profiling ofCMLcells under a certain physiological
state (27). Here, we focused on the dynamic and temporal
changes of proteomes responsive to the IMA-induced drug
resistance of CML cells at different stages.
Data-independent acquisition (DIA) is an effective proteomic

method with rigorous quantitative accuracy and reproducibility
(28, 29). Based on DIA–MS, our group has recently developed
PulseDIA–MS as an improved approach that utilizes gas phase
fractionation to achieve a greater proteome depth (30). In this
work, we employed the pressure cycling technology (PCT)-
based peptide preparation (31, 32) and the PulseDIA–MS
strategy to quantify the dynamic proteome changes upon
drug treatment, using time-series K562 drug-resistant cell line
models treated by ADR and IMA, respectively. Because of the
lack of correspondence information between precursor ions
and fragment ions in DIA data, DIA data analysis has become a
huge challenge. Different DIA tools have different scoring
methods and core algorithms for prediction of peptides, which
may lead to certain technical deviations in the analytical results
of the same DIA data (33). To reduce the technical deviations of
the quantitative proteome by DIA software tools, we quantified
the proteome with four commonly used independent tools,
Spectronaut (34), DIA-NN (35), EncyclopeDIA (36), and Open-
SWATH (37). With this cell model and quantitative approaches,
we were able to pinpoint and characterize pathways that were
significantly altered upon ADR or IMA treatment. Notably, we
identified isocitrate dehydrogenase (NADP(+)) 2 (IDH2), a pre-
viously unknown potential target that can be therapeutically
leveraged to reverse drug resistance in K562 cells.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

In this study, a total of 21 samples from seven different drug
sensitivities of K562 cell lines were subjected to MS analysis. For
each cell line, we harvested three individually cultured cell samples
as biological replicates and performed sample preparation inde-
pendently. We also selected five samples for duplicate injection in
MS acquisition as technical replicates. All 26 samples were sub-
jected to four-part PulseDIA analysis as described previously (30)
and generated a total of 104 DIA–MS raw data. To ensure the stability
and reliability of the MS data, a mouse liver digest was used for in-
strument performance evaluation, and blank samples (buffer A) were
also run for every four injections to minimize carryover. We carried
2 Mol Cell Proteomics (2022) 21(2) 100187
out library-based method analysis of the 104 PulseDIA–MS data
using four DIA tools. About 37 data-dependent acquisition (DDA)
acquired samples from 10 in-solution digestion files, seven PCT-
assisted digestion files, and 20 high-PH fractionations were used
to generate the spectral library. Because of the presence of a gap in
the MS2 window of each PulseDIA data, the standard peptides or
proteins were not suitable for retention time (RT) correction (30).
Therefore, we used the software's internal default algorithm for RT
correction or the common index retention time standards (CiRT)
method (38). We obtained quantitative results of peptide levels by
DIA software with peptide precursors of 0.01 Q value (false discovery
rate [FDR]) cutoff. At the protein level, the linear regression of top
three precursor intensities was used to peptide to protein inference
(39).

Establishment of Drug-Resistant K562 Cell Models

The parental-sensitive K562 cells were purchased from Nanjing
KeyGen Biotech Co, Ltd and authenticated via short tandem repeat
profiling by Shanghai Biowing Applied Biotechnology Co, Ltd on
February 28, 2019. The parental K562 cells were cultured in RPMI
medium (Cromwell) with 10% fetal bovine serum (Waltham) and 1%
penicillin–streptomycin (HyClone) at 37 ◦C with 5% CO2 and 95%
humidity.

The building of drug-resistant K562 cell models includes three
phases (Fig. 1A). In the first phase, 1 × 105 K562 cells were treated
with 0.1 μM ADR (CAS: 25316-40-9; meilunbio) (A1) or IMA (CAS:
220127-57-1; meilunbio) (I1). After 1 week, K562 cells were cultured to
about 10 million cells. Then drugs were removed by centrifugation,
and cells were divided into four aliquots for cell cytotoxicity determi-
nation, subsequent drug-resistant induction, cell collection, and cell
freezing. In the second phase, the concentration of ADR and IMA was
increased to 0.4 μM (A2) and 0.8 μM (I2), respectively. The treatment
lasted for 2 weeks. In the third phase, the concentration of ADR and
IMA increased to 0.8 μM (A3) and 1.6 μM (I3), respectively. The
treatment lasted for 4 weeks. In this way, we established two drug-
resistant K562 models for ADR and IMA, separately.

Cytotoxicity Assay

The cytotoxicity of ADR, IMA, or AGI-6780 (CAS: 1432660-47-3;
MedChemExpress) to native K562 cells and the model cells was
detected by Cell Counting Kit-8 (Bimake). Cells were planted into 96-
well plates in a density of 5000 cells/100 μl medium/well. After 24 h,
cells were treated with drugs for 48 h. After 48 h, 10 μl of Cell Counting
Kit-8 was added to each well and incubated for about 2 h in dark. The
absorbance value of each well was determined by a Synergy H1
(BioTek) at 450 nm. The IC50 value was calculated by SPSS (IBM,
version 22.0).

PCT-Based Peptide Extraction

The workflow of PCT-based peptide extraction is described by
Shao et al. (32). For each sample, 500,000 cells were harvested and
cleaned by PBS three times to remove all traces of fetal bovine serum.

Cells were transferred into PCT-MicroTube (Pressure Biosciences,
Inc) with 30 μl of lysis buffer, 5 μl of 1 μg/μl DNAase (STEMCELL), and
15 μl of 0.1 M ammonium bicarbonate (General Reagent). The lysis
buffer includes 6 M urea (Sigma–Aldrich) and 2 M thiourea (Sigma–
Aldrich). Then the cells were lysed by Barocycler NEP2320-45k
(PressureBioSciences, Inc) with 90 cycles containing 25 s of 45,000
psi high pressure plus 10 s at ambient pressure, at 30 ◦C. The lysate
solution was added to 5 μl of 100 mM Tris(2-carboxyethyl)phosphine
(Aldrich) and 2.5 μl of 800 mM iodoacetamide (Sigma) in
PCT-MicroTube to dilute into a final concentration of 10 and 40 mM,
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FIG. 1. Establish derivative K562 cells with mild, intermediate, and severe resistance to ADR and IMA. A, overview of the drug resistance
model. B, native K562 cells and IMA-resistant K562 cells from each of the three phases were treated with a series of cytotoxicity concentrations
(4, 2, 1, 0.5,… 0 μM) for IMA for 48 h. C, native K562 cells and ADR-resistant K562 cells from each of the three phases were treated with a series
of concentrations (4, 2, 1, 0.5, … 0 μM) for ADR for 48 h. The cell survival rate was calculated and plotted in each group. The downward shift of
the survival curves by increasing treating concentration (I1, I2, I3 and A1, A2, A3) indicated suppressed proliferation. ADR, adriamycin; IMA,
imatinib.
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followed by a 30 min of incubation in the dark with gentle vortexing
(800 rpm) at room temperature in a shaker.

After reduction and alkylation, the protein solution was added with
57.5 μl of 0.1 M ammonium bicarbonate and 25 μl of 0.1 mg/ml Lys-C
(Hualishi) and digested using Barocycler NEP2320-45k (Pressure
Biosciences, Inc) with 45 cycles containing 50 s of 20,000 psi high
pressure plus 10 s at ambient pressure, at 30 ◦C.

After Lys-C digestion, the solution was added with 10 μl of
0.2 mg/ml trypsin (Hualishi) and was tryptic digested by Barocycler
NEP2320-45k with 90 cycles containing 50 s of 20,000 psi high
pressure plus 10 s at ambient pressure, at 30. Then, 15 μl of 10%
trifluoroacetic acid (Fisher Scientific) was added to the lysate solution
at a final concentration of 1% to stop digestion.

Then the digested peptides were cleaned in microspin columns
(The Nest Group, Inc) and dried in CentriVap DNA Vacuum Con-
centrators (Labconco). Peptides were redissolved in MS buffer
(0.1% formic acid [FA] and 2% acetonitrile in HPLC water). The
peptide concentration was measured using ScanDrop2 (Analytik
Jena).

PulseDIA–MS

The PulseDIA–MS method was performed as previously described
(30). The redissolved peptides of each sample were analyzed by
EASY-nLC 1200 System (Thermo Fisher Scientific) coupled to a QE
HF-X mass spectrometer (Thermo Fisher Scientific). The MS1 was
acquired in an m/z range of 390 to 1210 with the resolution at 60,000,
automatic gain control target of 3e6, and the maximum ion injection
time of 80 ms. The MS2 was performed with the resolution at 30,000,
automatic gain control target of 1e6, and the maximum ion injection
time of 50 ms. Different from the conventional DIA method
(the 400–1200 m/z mass range is divided into 24 windows) (28), the
PulseDIA symmetrically divided each window into four parts and
acquired the data of each part independently. For one sample, we
Mol Cell Proteomics (2022) 21(2) 100187 3



IDH2 as a Therapeutic Target for CML
acquired four injections with a different MS2 range. For each pulse
acquisition, 0.2 μg of peptides was injected and separated across a
linear 45 min LC gradient (from 8% to 40% buffer B) at a flow rate of
300 nl/min (precolumn, 3 μm, 100 Å, 20 mm * 75 μm i.d.; analytical
column, 1.9 μm, 120 Å, 150 mm * 75 μm i.d.). Buffer A was HPLC-
grade water containing 0.1% FA, and buffer B was 80% acetonitrile
and 20% water containing 0.1% FA.

Quality Control Samples

Cells with mild, intermediate, and severe resistance to ADR and IMA
were analyzed in three duplicates for peptide extraction and acquisi-
tion as biological replicates. Five samples were repeatedly injected by
PulseDIA as the technical replicates to evaluate the data quality.

Generating Spectral Library for DIA–MS

To build the spectral library, we acquired 37 DDA files including 10
in-solution digestion files, seven PCT-assisted digestion files, and 20
high-PH fraction files on a QE-HFX mass spectrometer in DDA mode.
A library was built by Spectronaut (version 13.5.190902.43655) for
Spectronaut and DIA-NN analysis. Another library was built by
OpenSWATH (version 2.0) for OpenSWATH and EncyclopeDIA anal-
ysis. In the two libraries, data were searched against the SwissProt
Human database (20,269 entries). Trypsin and Lys-C were used to
generate peptides in silico.

For Spectronaut library building, carbamidomethyl (C) was set as
the fixed modification, and acetyl (protein N-term) and oxidation (M)
were set as the variable modifications. Two missed trypsin cleavages
were allowed. The precursor and fragment tolerance were set as
dynamic. Two calibration searches were performed: based on the
first-pass calibration (rough calibration), the ideal tolerance for the
second-pass calibration was defined; based on the second-pass
calibration (finer calibration), the ideal tolerance for the main search
was defined (Spectronaut Manual, https://biognosys.com/
resources/spectronaut-manual/). The FDR cutoff for precursor and
protein identification was 0.01. Finally, a K562 library containing
191,008 precursors, 133,025 peptides, 8226 protein groups, and
8313 proteins was built.

For OpenSWATH library building, the pFind (40) (version 3.1.5) was
used as a search engine with the parameters including carbamido-
methyl (C) as a fixed modification and oxidation (O) as a variable
modification. DDA library was built according to the workflow (41)
(http://openswath.org/en/latest/docs/pqp.html#id3). No missed
trypsin cleavage was allowed by default. The precursor peptide mass
tolerance was 20 ppm, and fragment ion mass tolerance was 0.05 Da.
The FDR cutoff for precursor and protein identification was 0.01, and
other parameters were set as default. Finally, a K562 library containing
110,583 transition groups, 84,548 target peptides, 84,910 decoy
peptides, 9511 target protein groups, 9575 decoy protein groups, and
7935 target proteotypic proteins was built.

Based on the analysis of K562 spectral library, we finally identified a
total of 8524 proteins based on proteotypic peptides and up to 10,732
protein groups.

PulseDIA Data Analysis

Library-based PulseDIA data analysis was performed by Spec-
tronaut, OpenSWATH, DIA-NN, and EncyclopeDIA.

For Spectronaut (version 13.5.190902.43655) analysis, the default
setting of library-based DIA analysis was used for PulseDIA analysis.
PulseDIA analysis was performed according to the standard workflow
in Spectronaut (Spectronaut Manual, https://biognosys.com/
resources/spectronaut-manual/). RT prediction type was set to dy-
namic iRT (correction factor for window 1). The MS mass tolerance
was set as dynamic, which means Spectronaut calculated the ideal
4 Mol Cell Proteomics (2022) 21(2) 100187
mass tolerances for data extraction and scoring based on its extensive
mass calibration. At least three fragment ions were used per peptide
identification and major and minor group quantities were set to mean
peptide and mean precursor quantity. The FDR was set to 1% at the
peptide precursor level.

For DIA-NN (version 1.6.0) analysis, we used the same library with
Spectronaut analysis. Library search was performed according to the
DIA-NN manual (https://github.com/vdemichev/DiaNN/blob/master/
DIA-NN%20GUI%20manual.pdf). For RT prediction and extraction
mass accuracy, we used the default parameter 0.0, which means
DIA-NN performed automatic mass and RT correction. Top six
fragments (ranked by their library intensities) were used for peptide
identification and quantification. The FDR was set to 1% at the
peptide precursor level.

For OpenSWATH (version 2.4) analysis, the RT extraction window
was 300 s, and m/z extraction for MS2 was performed with 30 ppm
tolerance, whereas m/z extraction for MS1 was performed with
20 ppm tolerance. RT was then calibrated using CiRT peptides. The
m/z extraction for CiRT peptides was performed with 50 ppm toler-
ance. Peak groups were used for peptide identification if they con-
tained peaks in three of five transitions, and the most intense peaks
were prioritized. Peptide precursors were identified by OpenSWATH
and Pyprophet with an FDR of 0.01.

For EncyclopeDIA (version 0.9.0) analysis, the library was converted
from OpenSWATH library. The precursor, fragment, and library mass
tolerance were set as 10 ppm for the PulseDIA data. The RT model
was generated from peptides detected at 1% FDR using a nonpara-
metric kernel density estimation algorithm that follows the density
mode over time. Peptide quantities were set to the sum of the top five
transitions that pass EncyclopeDIA criteria, and peptides with at least
three quantitative transitions were considered to be trustworthy. The
search results were filtered at a 1% peptide-level FDR.

The peptide matrices from four DIA software tools were converted
to protein matrices by an in-house R code (https://github.com/
Allen188/PulseDIA/blob/master/Pulsedia_DIANNresult_combine.R)
and the ProteomeExpert server (38).

Calculation of IC50 Values

The IC50 values were calculated by a nonlinear least-squares
regression model to fit the data log (inhibitor) versus normalized
response in GraphPad Prism 6 (GraphPad Software, Inc).

Bliss Independence Model Analysis

Bliss independencemodel analysiswasperformedusingCombenefit
software (Cancer ResearchUKCambridge Institute, version 2.021) (42).
With the cytotoxicity assay results as input, we calculated the cell sur-
vival rate after jointly treated with AGI-6780 and IMA or ADR.

Statistical Analysis

The statistical significance of protein intensity in different types of
resistant cells and parental K562 cells was determined by one-way
ANOVA, and p values were adjusted using Benjamini and Hochberg
correction. Proteins with p values less than 0.05 were considered as
statistically significant. Soft clustering analysis of statistically signifi-
cant proteins was performed by the R/Bioconductor package Mfuzz
(43). The average protein intensity of the parental K562 cells and each
type of resistant cells was used as the input data for clustering. The
time series were separated according to the cell sensitivity to ADR or
IMA, with the initial being the parental K562 cells. Ingenuity pathway
analysis (IPA; QIAGEN) was performed to outline the significant ca-
nonical pathways (44). In IPA, the p value was calculated using the
right-tailed Fisher's exact test, and a p value less than 0.05 is
considered as significant (45).
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RESULTS

Establishment of Drug-Resistant Cell Models

Drug-resistant K562 cell models were developed as shown
in the workflow (Fig. 1A). The parental K562 cells were sen-
sitive to ADR and IMA treatment and then treated with
increasing concentrations of these drugs, respectively, for 1,
2, and 4 weeks to obtain derivative cell lines with differential
drug sensitivities. Each model contained three time points
during the drug resistance acquisition, with each time point
containing cells showing a different degree of drug sensitivity
(Fig. 1A, method).
At this point, we have generated derivative K562 cells with

different degrees of IMA resistance: mild, intermediate, and
severe, which were defined by resistance indexes of 2.76, 6.41,
and 7.06 (Fig. 1B), respectively, as shown in Table 1. Similarly,
we generated mild, intermediate, and severe ADR-resistant
K562 cells with resistance indexes at 2.00, 3.49, and 11.59,
respectively (Fig. 1C and Table 1). These K562 cells with
different degrees of IMA and ADR resistance were all collected
for PulseDIA-based proteomic analysis (Fig. 2A).

Peptide and Protein Identification

PCT-assisted peptide preparation and PulseDIA–MS were
then carried out to analyze the parental K562 cells and the
derivative resistant cells in biological triplicates (Fig. 2A). In
total, 98,232 peptides, 8630 protein groups, and 7082 pro-
teins from proteotypic peptides were quantified from 26 in-
dependent PulseDIA–MS runs (Fig. 2, B and D and
supplemental Table S1). About 30,289 peptides and 4493
proteins from proteotypic peptides were consistently quanti-
fied by four DIA software (Fig. 2, C and E). We used these
commonly identified proteins for the subsequent quantitative
analysis of proteome changes during the development of drug
resistance in K562 cells.

Quality Control of PulseDIA Proteome Dataset

We examined the reproducibility of PulseDIA data by
calculating the Pearson correlation coefficient between
TABLE

IC50 values and resistance inde

Model
IC50 (μM, 95% co

IMA

Native K562 cells 0.37 (0.26–0.54)
Model IMA phase 1 0.74 (0.61–0.90)
Model IMA phase 2 1.29 (1.06–1.58)
Model IMA phase 3 4.29 (3.03–6.36)
Model ADR phase 1 —

Model ADR phase 2 —

Model ADR phase 3 —

aIC50 values represent the best-fit values and 95% confidence interva
bResistance index was calculated by dividing the best-fit IC50 values

values of model cells.
technical duplicates and the coefficient of variation (CV) of
the protein intensity among the biological triplicates. Using
four different DIA analysis tools as described previously, the
five pairs of technical duplicates showed a strong correlation
(r > 0.9) (Fig. 3A), and the median CV of protein intensity
among biological triplicates was around 20% (Fig. 3B). These
results confirmed the high degree of reproducibility of MS
data acquired by the PulseDIA method. To compare the
quantified results of the same peptides and proteins in the
four DIA software, we calculated the Spearman correlation of
the overlapped 30,289 peptides and 4493 proteins quantified
in the four DIA software. At the peptide and protein levels,
DIA-NN and Spectronaut exhibited the strongest correlation
(r > 0.9), with the correlation of any two DIA software as no
less than 0.85 (Fig. 3, C and D). To check whether the
quantified proteome thus acquired can classify different drug
resistance models, we performed principal component
analysis between the cells in the ADR-resistant and IMA-
resistant cells as well as the parental K562 cells. The re-
sults showed that the two resistant cell lines and parental
K562 cells were separated into three clusters (Fig. 3, E–H).

Dynamic Proteomic Changes During Acquisition of Drug
Resistance

To minimize the statistical variation for each analytic step,
these 4493 overlapped proteins were selected, and those with
less than 25% missing ratio in each derivative-resistant cell
line were subjected to the ANOVA analysis. Proteins with
adjusted p value less than 0.05 were selected for further
downstream analysis.
By fuzzy c-means clustering (43, 46), we identified four

clusters related to the resistance to ADR and IMA
(supplemental Fig. S1 and Fig. 4), among which only those
that were continuously upregulated and downregulated were
further selected and studied (Fig. 4). In addition, we selected
1035 (by Spectronaut), 1273 (by EncyclopeDIA), 1088 (by
OpenSWATH), and 2161 (by DIA-NN) proteins related to
resistance to ADR (supplemental Table S2 and Fig. 4A), and
1662 (EncyclopeDIA), 747 (OpenSWATH), 950 (Spectronaut),
1
x of the derivative K562 cells

nfidence interval)a
Resistance indexb

ADR

0.29 (0.24–0.35) 1
— 2
— 3.49
— 11.59

0.80 (0.51–1.24) 2.76
1.86 (1.5–2.30) 6.41
2.05 (1.32–3.32) 7.06

l of three independent experiments performed.
of native K562 cells in response to ADR and IMA to the best-fit IC50

Mol Cell Proteomics (2022) 21(2) 100187 5



A +Lysis 
 buffer

Lysis 

PCT +TCEP
 +IAA

Reduction and
 alkylation

PCT

PCT

Tryptic digestion

Lys-C digestion

C18 desalting Drying peptides
Redissolving 
peptides

Detecting peptides 
concentration PulseDIA  

MS raw data
 analysing Protein matrix

DIA
-N

N

Spe
ctr

on
au

t

Enc
yc

lop
eD

IA

B C

D

76407 73938

45098
56350

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

7040

5030

7031
6509

6935

4926
5603 5354

0

1000

2000

3000

4000

5000

6000

7000

8000

protein groups proteins from proteotypic peptides

88

37

48

36
5

51
2

44
93

9

3

10
11

14
3

10
9

98

1

9

20
4

48
62

20
63

41
35

12
12

72
5

30
28

9 25
47

13
42

10
74

8

54
9

47
80

27
43 65

7

62
19

25
36

1

Ope
nS

W
ATH

DIA
-N

N

Spe
ctr

on
au

t

Enc
yc

lop
eD

IA

Ope
nS

W
ATH

Pe
pt
id

e 
nu

m
be

r
Pr

ot
ei

n 
 n

um
be

r

DIA-NN Spectronaut

EncyclopeDIA OpenSWATH

DIA-NN Spectronaut

EncyclopeDIA OpenSWATH

100000

Tota
l

98232

8630

7082

Tota
l

9000

E

K562 cells Protein solution

Peptide solution

FIG. 2. PulseDIA raw data acquisition and analysis. A, the workflow of peptide extraction from samples and analysis of mass spectrometry
raw data. B, the numbers of identified peptides by four DIA software tools and their Venn diagram (C). D, the numbers of identified proteins by
four DIA software and their Venn diagram (E). DIA, data-independent acquisition.

IDH2 as a Therapeutic Target for CML

6 Mol Cell Proteomics (2022) 21(2) 100187



0.91 0.85

0.86

0.88

0.89

0.87

0.9 0.87

0.86

0.85

0.85

0.87

OpenSWATH

DIA-NN

Spectronaut EncyclopeDIA

EncyclopeDIA

Spectronaut

OpenSWATH

DIA-NN

Spectronaut EncyclopeDIA

EncyclopeDIA

Spectronaut

A B

0
0.

5 1

k A1 A2 A3 I1 I2 I3

C
V

0.
51C
V

00
.5

1
C

V
0

EncyclopeDIA

DIA-NN

Spectronaut

00
.5

1
1.

5

OpenSWATH

C
V

0.925

0.950

0.975

1.000

DIA-N
N

Enc
ycl

op
eD

IA

Spe
ctr

on
au

t

Ope
nS

WATH

Pe
ar

so
n 

co
rre

la
tio

n

ADR K IMA

−100

−50

0

−40 −20 0 20 40 60
PC1(24.68%)

PC
2(

18
.6

5%
)

EncyclopeDIA

−80

−40

0

40

−40 −20 0 20 40
PC1(21.35%)

PC
2(

15
.9

3%
)

−25

0

25

50

75

−50 −25 0 25 50
PC1(22.96%)

PC
2(

17
.9

2%
)

ADR K IMA ADR K IMA
SpectronautDIA-NN

−20

0

20

40

−40 −20 0 20 40
PC1(22.43%)

PC
2(

13
.4

5%
)

ADR K IMA
OpenSWATH

C D E

F G H

FIG. 3. PulseDIA proteome data quality control (QC) analysis. A, the box plot shows the Pearson correlation coefficient of five
technical replicates in four DIA software quantification. B, the violin plot shows the distribution of the coefficient of variation (CV) of each
protein's quantitative values in the three biological replicates. Three lines of the black box inside the violin represented lower quartile,
median, and higher quartile, respectively. C, Spearman correlation coefficient of overlapped 30,289 peptide quantitative values in the four
DIA software. D, Spearman correlation coefficients of overlapped 4493 protein in the four DIA software. E–H, PCA plot shows the distri-
bution of the samples in the first two principal component levels. The red, blue, and green dots indicate samples from model ADR, model
IMA, native K562 cells, respectively. ADR, adriamycin; DIA, data-independent acquisition; IMA, imatinib; PCA, principal component
analysis.

IDH2 as a Therapeutic Target for CML

Mol Cell Proteomics (2022) 21(2) 100187 7



550 proteins

Spectronaut

Ex
pr

es
si

on
 c

ha
ng

es

K A1 A2 A3

−1
.5

−0
.5

0.
5

1.
5

485 proteins

Spectronaut

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

563 proteins

OpenSWATH

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

525 proteins

OpenSWATH

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

663 proteins

EncyclopeDIA

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

610 proteins

EncyclopeDIA

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

480 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

267 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

611 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

334 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

717 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

591 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

359 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

504 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

523 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

K A1 A2 A3

K A1 A2 A3 K A1 A2 A3 K A1 A2 A3 K A1 A2 A3

Spectronaut
K I1 I2 I3

Spectronaut

DIA-NN DIA-NN

K I1 I2 I3

K I1 I2 I3 K I1 I2 I3

OpenSWATH OpenSWATH
K I2 I2 I3 K I1 I2 I3

EncyclopeDIA
K I1 I2 I3

EncyclopeDIA EncyclopeDIA
K I1 I2 I3 K I1 I2 I3

345 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

612 proteins

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

549 proteins

DIA-NN

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

635 proteins

DIA-NN

Ex
pr

es
si

on
 c

ha
ng

es

−1
.5

−0
.5

0.
5

1.
5

K A1 A2 A3 K A1 A2 A3
DIA-NN DIA-NN

K A1 A2 A3 K A1 A2 A3

A

B

FIG. 4. Protein cluster analysis. The cluster for proteins that were continuously upregulated and downregulated from K562 cells resistant to
ADR (A) and IMA (B).The horizontal axis represents the progress of the model (K-native K562 cells, A1/I1—first phase of model ADR/IMA, A2/I2—
second phase of model ADR/IMA, and A3/I3—third phase of model ADR/IMA). The vertical axis represents protein expression changes in each
cluster. ADR, adriamycin; IMA, imatinib.

IDH2 as a Therapeutic Target for CML

8 Mol Cell Proteomics (2022) 21(2) 100187



IDH2 as a Therapeutic Target for CML
and 1027 (DIA-NN) proteins related to resistance to IMA
(supplemental Table S3 and Fig. 4B).

Activated Sirtuin Signaling Pathway and Abnormal
Mitochondrial Function in Drug-Resistant K562 Cells

The selected proteins from the four DIA analytic tools as
described previously in resistance to ADR and IMA were
further analyzed by IPA (supplemental Tables S4 and S5), with
the top three pathways (sorted by p value) as listed in Figure 5,
A and B. Notably, eukaryotic initiation factor 2 signaling and
sirtuin signaling pathway were enriched from at least three DIA
tools related to ADR resistance. In contrast, sirtuin signaling
pathway and oxidative phosphorylation were frequently
enriched related to IMA resitance (Fig. 5, A and B). These data
indicate that the sirtuin signaling pathway was significantly
enriched in both types of drug resistance with a positive
activation mode (Z-score > 0; Table 2).
We then focused on the proteins involved in the sirtuin

signaling pathway, whose expression levels were shown in a
heatmap (Fig. 5C). As a result, 16 proteins, which were
involved in the sirtuin signaling pathway, were quantified be-
tween all four DIA analytic tools in the model ADR (Fig. 5D),
and five proteins in the model IMA (Fig. 5E). The overlapped
proteins between all four DIA analytic tools showed the same
expression pattern (Fig. 5C). Among the overlapped proteins,
13 of the 16 related to ADR resistance were involved in
maintaining mitochondrial function, and three of the five
related to IMA resistance participated in the formation of the
mitochondrial respiratory chain (Fig. 6A).
NDUFB1, NDUFB6, NDUFA4, and NDUFA6 are the subunits

of NADH–ubiquinone oxidoreductase (complex I) of the
mitochondrial respiratory chain (Fig. 6A) (47). UQCRFS1 is a
subunit of ubiquinol–cytochrome c oxidoreductase (complex
III) (Fig. 6A). The main physiological function of complex I and
complex III is to oxidize NADH, transfer electrons to ubiqui-
none and from ubiquinone to cytochrome C, and carry out the
next electron transfer in the mitochondrial respiratory chain
(Fig. 5A) (48). In addition, complex I and complex III also
regulate mitochondrial production of reactive oxygen species
(49). Our results showed decreased expression levels of
complex I and III components (Fig. 6, A and B), suggesting low
oxidative stress levels in the drug-resistant cells.
We also identified upregulation of succinate dehydrogenase

complex iron sulfur subunit B, which participates in the elec-
tron transfer process of succinate dehydrogenase (complex II)
from succinate to ubiquinone (Fig. 6, A and B), and when
mutated, is closely related to pheochromocytoma (50).
Voltage-dependent anion channel (VDAC) proteins are the

most abundant proteins (51) on the outer mitochondrial
membrane (Fig. 6A) and function to maintain free diffusion of
small molecules across the mitochondrial membrane (52). In
tumor cells, the interaction between VDAC and hexokinase
inhibits apoptosis (53), therefore targeting both molecules
could potentially offer improved antitumor benefits. Our
results showed that the three VDAC isoforms, namely VDAC1,
VDAC2, and VDAC3, were significantly downregulated upon
acquisition of ADR resistance (Fig. 6C), suggesting that tar-
geting VDAC may not be an effective strategy in the drug-
resistant tumor cells.
The translocase of the outer mitochondrial membrane

(TOMM) complex proteins regulates entry of mitochondrial
protein precursors into the mitochondria cytoplasm (Fig. 6A)
(54). Our data showed that the subunits of TOMMs, TOMM40,
TOMM5, TOMM6, TOMM22, and TOMM20 were significantly
downregulated in cells resistant to ADR or IMA (Figs. 5C and
6, A and D). In contrast, we found increased expression of
TOMM34 upon acquisition of drug resistance (Fig. 5D).
Located in the cytoplasm, TOMM34 is known to interact with
HSP70 and HSP90 and regulate the activity of ATPase (55).
High expression of TOMM34 has been found in colon cancer
(56), breast cancer (57), and ovarian cancer (58).
Glutaminase (GLS) can convert glutamine into glutamic

acid, which constitutes the major source for α-ketoglutarate
(α-KG) production (Fig. 6A) (59, 60), which promotes cell dif-
ferentiation through dioxygenases (61). Our results showed
significantly downregulated expression of GLS when
K562 cells became resistant to ADR (Fig. 6E, right panel).
IDH2 catalyzes the oxidative decarboxylation of isocitrate

into α-KG in tricarboxylic acid cycle, and NADPH was syn-
chronously produced at the biochemical process (62) (Fig. 6A).
NADPH is essential in protecting cells from oxidative damage
(63). We found that the IDH2 abundance increased upon
resistance to both ADR and IMA (Fig. 6E, left panel), indicating
that IDH2 overexpression may promote cellular resistance
against high doses of both therapeutic drugs.
Taken together, our results showed significantly changed

abundance of proteins involved in mitochondrial functions that
may sustain the survival of drug-resistant cells, and might be
therapeutically targeted to enhance drug sensitivity and
response in tumor cells.

IDH2 Is a Potential Target for Reversing Drug Resistance in
K562 Cells

As discussed previously, among the dysregulated proteins,
IDH2 was upregulated in K562 cells resistant to both ADR and
IMA. To validate its biological function, we utilized a selective
inhibitor of IDH2 (64), AGI-6780, and treated sensitive or
resistant K562 cells with ADR and IMA alone or combined with
AGI-6780, followed by monitoring cell survival with a cyto-
toxicity assay. Our results showed that, compared with ADR
and IMA treatment alone, combination with AGI-6780 did not
affect the survival in the parental-sensitive K562 cells (Fig. 7, A
and B and Table 3). However, in resistant K562 cells, the
sensitivity to ADR and IMA significantly increased (IMA + AGI-
6780, IC50 = 0.53 μM; ADR + AGI-6780, IC50 = 0.29 μM), when
combined with AGI-6780. We further showed that in IMA-
resistant cells the reversal indexes of 2 and 4 μM AGI-6780
were 1.92 and 2.94, respectively (Fig. 7C and Table 3),
Mol Cell Proteomics (2022) 21(2) 100187 9
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TABLE 2
The enrichment statistics of sirtuin signaling pathway in four DIA

software

Model Software pa Ratiob Z-scorec

Model IMA OpenSWATH 4.48 0.0825 1.155
Model IMA Spectronaut 13.7 0.155 2.414
Model IMA DIA-NN 8.97 0.134 2.449
Model IMA EncyclopeDIA 20.6 0.251 3.202
Model ADR OpenSWATH 9.87 0.144 2.4
Model ADR Spectronaut 6.8 0.12 1
Model ADR DIA-NN 21.8 0.296 1.336
Model ADR EncyclopeDIA 9.31 0.155 3.138

ap Value is the result of Fisher's exact test.
bRatio is the number of proteins from different DIA software that

map to the pathway divided by the total number of proteins that map
to the same pathway.

cZ-score is calculated by the IPA z-score algorithm to predict the
direction of change for the function. An absolute z-score of ≥2 is
considered as significant.
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whereas in ADR-resistant cells, the reversal indexes of 2 and
4 μM AGI-6780 were 1.60 and 2.74, respectively (Fig. 7D and
Table 3). To further confirm the synergistic sensitization effect
of AGI-6780 in combination with IMA or ADR on drug resis-
tance models, we performed Bliss independence model using
Combenefit software (version 2.021) (42). The surface plots
showed the dose–response results of AGI-6780 in combina-
tion with IMA or ADR (Fig. 7, E–H). As shown in the surface
plot, for the parental K562 cell line, the combination of AGI-
6780 with IMA (Fig. 7E) or ADR (Fig. 7F) did not produce a
significant synergistic effect. In the IMA resistance model, the
combination of 0.03 to 0.25 μM IMA and 4 μM AGI-6780
produced a significant synergistic effect (Fig. 7G). In the
ADR resistance model (Fig. 7H), the combination of 0.03 to
0.125 μM ADR and 2 to 4 μM AGI-6780 produced a synergistic
effect, although this synergy is relatively weak.
Taken together, the cytotoxicity assay confirmed the ability

of AGI-6780 to reverse drug resistance in vitro, implicating
IDH2 as a potential target to improve drug sensitivity and
clinical responses.
DISCUSSION

Two major paradigms have been widely proposed to
elucidate the underlying mechanism of drug resistance. One is
based on the principle of Darwinian selection, which posits
that a fraction of tumor cells is inherently more tolerant and
thus becomes enriched after drug treatment, thereby gradu-
ally developing and exhibiting a drug-resistant phenotype. The
other mechanism, which is called Lamarckian induction,
0.05 calculated by ANOVA) involved in sirtuin signaling pathway from fou
with the overlapped quantified proteins being highlighted in red. Each ro
intensity matrix was normalized by Z-score and colored in the heatmap
sirtuin signaling pathway in the ADR-resistant cells. E, Venn diagram show
in the IMA-resistant cells. ADR, adriamycin; DIA, data-independent acqu
proposes that drug treatment induces a resistance phenotype
in tumor cells (65). In our resistant cell line model, we focused
on the proteins that showed continuous and consistent
changes upon acquisition of drug resistance. Here, we un-
covered potential association between multiple proteins and
drug responsiveness in K562 cells. These proteins serve as
potential therapeutic targets for combating drug resistance.
While establishing the resistance cell lines, we also

constantly monitored drug sensitivity in the parental-sensitive
K562 cells (Fig. 1, B and C). Different from other similar studies
(66), we did not consider morphology changes as a parameter,
primarily because K562 cells are suspension cells in the me-
dium in a spherical shape when the drug-resistant phenotype
is established. After K562 cells with mild, intermediate, and
severe resistance to ADR and IMA were developed and
collected, we performed PCT-based peptide extraction. The
efficient and prompt sample preparation under high pressure
(lysis in 45,000 psi; digest in 20,000 psi) by PCT ensures that
the process of peptide extraction is reproducible and stable
(32).
The resistant model K562 cells and parental K526 cells

were acquired by PulseDIA (30). Because of the inherent
complexity of DIA data, multiple computational software
tools have been developed to analyze DIA data, among
which Spectronaut (34), DIA-NN (35), EncyclopeDIA (36), and
OpenSWATH (37) are all widely used. These software tools
identify and quantify peptides and proteins by various
different algorithms with some commonality and difference.
The exact algorithm of commercial software Spectronaut is
not available to users. However, all software tools meet the
rigorous statistical criteria of FDR. Navarro et al. (67) reported
the quantified proteins of several DIA analysis software
(OpenSWATH, SWATH2.0, Skyline, Spectronaut, and DIA
Umpire) for the same SWATH–MS proteomics data, with the
number of proteins quantified in the library-based parsing
algorithm ranging from 3673 to 4692 and with 3064 proteins
shared by all. In our study, the number of proteins quantified
from the four DIA tools varied from 4926 to 6935 for the same
set of proteomics raw data, with 4493 shared by all (Fig. 2D).
Therefore, we focused on the 4493 shared proteins for a
more unbiased discovery of potential candidates. This
approach is a useful way to further narrow down the candi-
dates for functional validation. While most DIA studies used
only one software tool for data interpretation and prioritiza-
tion of proteins of interest, our study presents a more
rigorous approach for protein selection. Nevertheless, this
approach may miss certain useful candidates and may not be
the best option for all DIA studies.
r DIA software expression in the IMA-resistant and ADR-resistant cells,
w indicats a protein, and each column indicats a sample. The protein
. D, Venn diagram shows the 16 overlapped proteins involved in the
s the five overlapped proteins involved in the sirtuin signaling pathway
isition; IMA, imatinib; IPA, ingenuity pathway analysis.
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FIG. 7. IDH2 enhanced the sensitivity to ADR and IMA in K562 cells. A and C, the parental-sensitive and IMA-resistant K562 cells were
treated with various concentrations (4, 2, 1, 0.5, … 0 μM) of IMA alone or combined with 4 μM or 2 μM AGI-6780 for 48 h. B and D, the parental-
sensitive and ADR-resistant K562 cells were treated with various concentrations (4, 2, 1, 0.5, … 0 μM) of ADR alone or combined with 4 μM or
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TABLE 3
IC50 values and reverse index of the derivative resistant K562 cells

Drugs
IC50 (μM, 95% confidence interval)a

Resistance indexb Reversal indexc
Native K562 Model IMA Model ADR

IMA 0.26 (0.19–0.36) 1.55 (1.12–2.19) — 5.96 1
IMA + AGI-6780 (2 μM) 0.35 (0.26–0.48) 1.09 (0.80–1.49) — 3.11 1.92
IMA + AGI-6780 (4 μM) 0.26 (0.20–0.33) 0.53 (0.27–1.16) — 2.03 2.94
ADR 0.37 (0.31–0.45) — 0.67 (0.49–0.95) 1.81 1
ADR + AGI-6780 (2 μM) 0.38 (0.31–0.46) — 0.43 (0.27–0.68) 1.13 1.60
ADR + AGI-6780 (4 μM) 0.44 (0.31–0.61) — 0.29 (0.18–0.47) 0.66 2.74

aIC50 values represent the best-fit values, and 95% confidence interval of three independent experiments were performed.
bResistance index was calculated by dividing the best-fit IC50 values of parental K562 cells to ADR or IMA by the best-fit IC50 values of the

model cells.
cReversal index was calculated by dividing the resistance index in the absence of ACI-6780 by the resistance index in the presence of AGI-

6780.

IDH2 as a Therapeutic Target for CML
Our results showed that the CV of protein intensity in three
biological replicates was around 20% (Fig. 3B). For PulseDIA-
based MS raw data acquisition, we identified and quantified
83.1% (7082/8524) proteotypic proteins of the DDA library
from 26 samples by the four DIA datasets, and 63.4% (4493/
7082) proteotypic proteins were detected by all four tools
(supplemental Table S1 and Fig. 2, D and E). The PulseDIA
data stability was assessed by the Pearson correlation of two
technical replicates, which was no less than 0.9 (Fig. 3A). The
principal component analysis results demonstrated that the
resistant K562 cells can be discriminated from the parental
cells at the whole proteome level (Fig. 2, E–H). These high-
quality MS data provide a key basis for our subsequent data
mining analysis.
We independently analyzed 4493 proteins identified by all

four tools. Based on cluster analysis and ANOVA (p ≤ 0.05),
we selected proteins that exhibited continuous changes dur-
ing development of IMA and ADR resistance (supplemental
Table S2 and S3; Fig. 4), followed by IPA analysis. Pathway
analysis revealed common characteristics associated with
drug resistance. Significantly changed stress signaling path-
ways including oxidative phosphorylation and the sirtuin
signaling pathway (Fig. 5, A and B) are known to enhance the
resistance and plasticity of tumor cells (68–70). We then
decided to focus on the identified proteins involved in the
sirtuin signaling pathway as identified by all four DIA tools,
including IDH2, NDUFB1, NDUFB6, NDUFA4, NDUFA6,
SHDB, and GLS, which are involved in mitochondrial ATP
generation (Figs. 5, D and E and 6A) (47, 71). These results
suggest that inhibiting ATP production and blocking
2 μM AGI-6780 for 48 h. The cell survival rate was calculated and plotte
suppressed proliferation. Columns are expressed as mean ± SD. E–H
combination of two drugs. The parental K562 treated with AGI-6780 (0, 2
IMA resistance model cell treated with AGI-6780 (0, 2, and 4 μM) combi
AGI-6780 (0, 2, and 4 μM) combined with ADR (0–4 μM). Each point rep
were generated using Combenefit by applying the Bliss independence m
IMA, imatinib.
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P-glycoprotein energy supply could potentially enable reversal
of drug resistance (5, 72).
IDH2 mutation catalyzes D-2-hydroxyglutarate production,

which leads to competitive inhibition of α-KG-dependent DNA
demethylases and consequently promotes tumorigenesis (61).
Preclinical experiments have shown that IDH2 inhibitors pro-
mote leukemic cell differentiation in 40% of the patients with
relapsed/refractory AML (64). Here, we analyzed the thera-
peutic potential of IDH2 using a the selective inhibitor AGI-
6780. Our data nominate IDH2 as a potential target for
reversing drug resistance in tumor cells. Recent research has
shown that 5 μM of AGI-6780 selectively impaired wildtype
IDH2 enzymatic activity in multiple myeloma cells in vitro (59).
In contrast, our data showed no effect on cell proliferation
even 48 h after 4 μM of AGI-6780 treatment in either sensitive
or resistant K562 cells (supplemental Fig. S2). As a potential
therapeutic avenue for reversing drug resistance, IDH2 in-
hibitors are specifically efficacious in resistant tumor cells.
Derivative cell lines that have developed drug resistance

could provide an important and informative model to help
elucidate the underlying mechanism that can be strategically
leveraged to manipulate and improve the sensitivity of tumor
cells to therapeutic treatment. Single-cell proteomics studies
of melanoma-derived cells with different levels of drug sensi-
tivity revealed changes in intracellular signals before drug
resistance has developed (73). By constructing a cisplatin-
resistant neuroblastoma cell line, Piskareva et al. (66) char-
acterized the epithelial to mesenchymal transition during the
development of drug resistance. Herein, we have developed
multiple K562 cell lines with different degrees of resistance to
d in each group. The downward shift of the survival curves indicated
, surface plots show the synergistic or antagonistic effects from the
, and 4 μM) combined with IMA (0–4 μM) (E) or ADR (0–4 μM) (F). G, the
ned with IMA (0–4 μM). H, the ADR resistance model cell treated with
resents the mean of two independent cytotoxicity assay results. Plots
odel. ADR, adriamycin; IDH2, isocitrate dehydrogenase (NADP(+)) 2;
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ADR and IMA treatment, which could be used for preclinical
investigation of the molecular and cellular mechanisms that
underlie the therapeutic resistance in CML patients. We further
identified and characterized IDH2 as a potentially useful target
that can be utilized to enhance tumor cell sensitivity to tar-
geted treatment.
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