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Uncertainty analysis of model 
inputs in riverine water 
temperature simulations
Babak Abdi1, Omid Bozorg‑Haddad1* & Xuefeng Chu2

Simulation models are often affected by uncertainties that impress the modeling results. One of 
the important types of uncertainties is associated with the model input data. The main objective of 
this study is to investigate the uncertainties of inputs of the Heat-Flux (HFLUX) model. To do so, the 
Shuffled Complex Evolution Metropolis Uncertainty Algorithm (SCEM-UA), a Monte Carlo Markov 
Chain (MCMC) based method, is employed for the first time to assess the uncertainties of model inputs 
in riverine water temperature simulations. The performance of the SCEM-UA algorithm is further 
evaluated. In the application, the histograms of the selected inputs of the HFLUX model including 
the stream width, stream depth, percentage of shade, and streamflow were created and their 
uncertainties were analyzed. Comparison of the observed data and the simulations demonstrated the 
capability of the SCEM-UA algorithm in the assessment of the uncertainties associated with the model 
input data (the maximum relative error was 15%).

Mathematical modeling is subject to uncertainties from multiple sources, such as measurement errors and inputs, 
and model structure19. Each of these sources of uncertainties contributes to the generation of uncertain outputs 
and results from the modeling. Uncertainty analysis for the input data and model parameters can be performed 
by specifying the ranges of their variations and identifying the most probable values from these ranges. For 
example, in hydrologic modeling, uncertainties associated with the amount and timing of streamflow can be 
presented by incorporating the full range of simulation results of a hydrologic model7. Sun et al.14 evaluated the 
uncertainty of the Storm Water Management Model (SWMM) by using a generalized likelihood uncertainty esti-
mation (GLUE). The GLUE based uncertainty analysis generated a probability distribution of possible outcomes 
from SWMM, which was compared with the Gaussian distribution developed by using the observed streamflow 
data. Feyen et al.5 used the GLUE algorithm to analyze the uncertainty of the hydraulic conductivity parameter 
in their MODFLOW modeling for a groundwater capture zone. They found that the delineated capture zones 
were most sensitive to the mean hydraulic conductivity. Zheng et al.22 analyzed the parameter uncertainty in an 
irrigated and rainfed agroecosystem model. They used the DayCent agroecosystem model and examined the 
role of parameter uncertainties in characterizing production functions. Their study indicated that incorporating 
rigorous estimates of uncertainty significantly enhanced the use of water production functions for effective water 
management. Yan et al.16 evaluated the impact of parameter uncertainty and water stress parameterization on 
wheat growth simulations by using the GLUE algorithm in the CERES-Wheat modeling. They found that GLUE-
calibrated parameters were significantly different from the observations and concluded that this disagreement 
resulted mainly from the unrealistic water stress parameterization, which strongly affected the GLUE algorithm 
in selection of the calibrated parameters.

The Monte Carlo simulation has been used for uncertainty analysis as it provides multiple benefits over the 
conventional uncertainty analysis methods13. The Markov chain Monte Carlo (MCMC) combines the Monte 
Carlo approach with the Markov Chain to estimate the uncertainty bound of a model output. MCMC-based 
algorithms update the characteristics of the proposed probability distribution by maintaining the ergodicity21. 
Although the uncertainties associated with model parameters have been examined in numerous studies, the 
MCMC-based algorithms are able to account for input errors and/or model structural errors. Also, such algo-
rithms use time-dependent parameters for exploring model deficits and considering the uncertainties of inputs 
and model structure17. Among the MCMC algorithms, the Shuffled Complex Evolution Metropolis algorithm 
(SCEM-UA) has been used in various hydrologic and environmental studies20. The SCEM-UA algorithm 
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combines the strengths of the Metropolis algorithm, controlled random search, competitive evolution, and 
complex shuffling to infer the posterior target distribution by a continuous updating process20. Due to these 
advantages, the SCEM-UA algorithm was selected for the current study. Lin et al.9 used the GLUE algorithm 
and the SCEM-UA to address the issue of parameter uncertainty for conceptual hydrological modeling. Their 
results showed that when setting the threshold value at the interior sites, the simulated runoff series by the 
Xinanjiang model with the behavioral parameter sets fitted better with the observed runoff series. Liu et al.10 
used the SCEM-UA to calibrate a hydrological model. They represented the posterior distribution functions 
of the hydrologic model output by the SCEM-UA. The calibration of the model, using 16 different parameters, 
was performed using two procedures of SCEM-UA and the genetic algorithm (GA). Results indicated that both 
methods were performing very well, but the SCEM-UA was better. Ajami et al.3 proposed the Integrated Bayesian 
Uncertainty Estimator (IBUNE) to analyze the uncertainty of model parameters. They used the SCEM algorithm 
to analyze the parameter uncertainty of a rainfall-runoff model. By utilizing the Bayesian model average (BMA) 
and the developed SCEM algorithm, they examined the total uncertainty of the model. Tang et al.15 used the 
SCEM-UA algorithm to analyze the uncertainties for nonlinear structural systems and demonstrated that the 
algorithm effectively estimated the parameters with uncertainties. Liu et al.11 evaluated the uncertainty of urban 
flood modeling. Due to the lack of reliable discharge data, they combined experimental data and modelling to 
characterize the floods and map the inundated areas in Xiamen Island, China.

Quantification of the uncertainties for river temperature models based on heat fluxes is considered in evaluat-
ing the effectiveness of ecological restoration alternatives. In ecological restoration studies such as aquatic green 
infrastructure4 and fish habitat2, small changes in driving parameters could cause faulty understanding from 
simulated water temperature, a fundamental factor affecting water quality and ecosystems (e.g.,12,18).

Thus, it is important to select the most efficient method to assess the uncertainties associated with the input 
data and model parameters, as most methods require longer running time and are computationally intensive 
for specific models. Neglecting uncertainty analysis can lead to a series of problems such as overdesign, higher 
costs, reduced reliability, and failure to achieve optimal benefits. Examining the uncertainties of model inputs 
provides a comprehensive insight into their influences on the model outputs, which potentially improves the 
modeling efficiency and lowers the cost in their measurements.

The objective of this study is to investigate the uncertainties of the inputs of the HFLUX model using the 
SCEM-UA algorithm. As a new effort, the SCEM-UA algorithm is used for assessing the HFLUX model inputs, 
and its performance is evaluated in this study. The HFLUX8 is an efficient and useful river water quality model 
for 1D simulation of the spatio-temporal distribution of stream water temperatures. In the simulation of tem-
perature at each discretized node and each time step, the HFLUX considers the heat fluxes from the environment 
and lateral inflows of water to the node. It is also flexible in choosing the solution methods. Thus, the HFLUX 
model is selected for simulating water temperatures in this study. The simulation results are compared with the 
observed data to evaluate the performance of the SCEM-UA algorithm in the analysis of the uncertainties of 
the model inputs.

Materials and methods
In this study, the HFLUX model was coupled with the SCEM-UA algorithm for analyzing the uncertainties of 
the model inputs. The specific procedures started with selecting the inputs of the HFLUX model. With the linked 
HFLUX and SCEM-UA model and implementation of an iteration scheme, the uncertainty of each of the selected 
inputs was obtained based on the ranges (minimum and maximum values) of the input data/parameters and 
the Latin hypercube sampling. The simulations were then compared against the observed data to evaluate the 
performance of the SCEM-UA algorithm. These steps are depicted in Fig. 1.

River water temperatures simulated by the HFLUX model.  River water temperature affects the 
water quality and the ecosystem health, and hence control of river water temperature is important to mitigation 
of its adverse effects1. The HFLUX model was used to simulate the streamflow temperatures at different loca-
tions and times. The model is highly flexible in terms of choosing the solution methods for solving the governing 
equations and selecting the energy budget terms such as shortwave solar radiation, latent heat flux, and sensible 
heat transfer flux. The model input data include the initial spatial and temporal temperature conditions, stream 
geometry data, discharge data, and meteorological data8. The water balance and energy balance equations are 
respectively given by8:

where A is the cross section area of the stream (m2), x is the distance along the stream (m), t is the time (s), 
Q is the discharge of the stream (m3/s), qL is the lateral inflow per unit stream length (m2/s), Tw is the stream 
temperature ( ◦C ), TL is the temperature of the lateral inflow ( ◦C ), R is the energy flux (source or sink) per unit 
stream length ( ◦C m2/s), B is the width of the stream (m), ϕtotal is the total energy flux to the stream per surface 
area (W/m2), ρw is the density of water (kg/m3), and Cw is the specific heat of water (J/kg ◦C ). Equation (3) is 

(1)
∂A

∂t
+

∂Q

∂x
= qL

(2)
∂(ATw)

∂t
+

∂(QTw)

∂x
= qL TL +R

(3)R =
B ϕtotal
ρw Cw



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19908  | https://doi.org/10.1038/s41598-021-99371-0

www.nature.com/scientificreports/

based on a thermal datum of 0 ◦C and the impact on the absolute value of the advective heat flux term. In Eq. (2), 
if qL is negative, the first term on the right-hand side of the equation becomes a loss of qLTw. Also, dispersive 
heat transport that is omitted in Eq. 2 is negligible when the longitudinal change in water temperature is small 
in comparison to the temporal changes8.

SCEM‑UA algorithm.  The SCEM-UA algorithm provides posterior distribution functions for the model 
parameters and input data by generating an initial sample from the parameter space. First, the indicators of n, 
q, and s that are respectively dimension (the number of investigate inputs), number of complexes (the popula-
tion to be divided), and population (the number of sample points) are determined for the algorithm. Then, the 
algorithm searches the sampling points in the feasible space and sorts the points according to the density. The 
algorithm determines the sequence and complexes based on those points. The sequence is the first q points of 

Figure 1.   Flowchart for the uncertainty analysis.
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the population and complexes are a collection of m points from the population. Note that m = s/q. In the next 
step, the points of each complex are sorted based on the density, which can be mathematically expressed as20:

where k = 1,2,…,q, α is the ratio of the mean posterior density of the m points of complexes to the mean posterior 
density of the last m generated points of sequences, θ is the points of complexes, cn = 2.4√

n
 , T = 106 , µ is the mean, 

and ∑ denotes the covariance. To investigate the new points created by the algorithm, the points of complexes 
are replaced by20:

where Ck is the Kth complex, Z is drawn from the uniform distribution in the range of 0–1, and Ω is calculated 
by20:

where P
(

θ t+1
∣

∣y
)

 and P
(

θ t
∣

∣y
)

 are the posterior probability distributions for θ t+1 and θ t , respectively. Then, the 
algorithm examines the following condition for each complex. If it is rejected, the algorithm replaces the worst 
member ck(the point with the lowest density) with θ t+1 20.

where Ŵk is the ratio of the posterior density of the best (the point with the highest density) to the posterior 
density of the worst member of ck . The last step is to examine β and L. Note that β = 1 and L = m/10. If β < L , 
β = β + 1 and the algorithm returns to sort complex points. Otherwise, the algorithm examines the Gelman and 
Rubin convergence6, and eventually provides the posterior distribution functions20. The value of the Gelman and 
Rubin convergence should be less than 1.2. The Gelman and Rubin convergence is examined by:

where g is the number of iterations within each sequence, B is the variance between the q sequence means, and 
W is the average of the q within-sequence variances for the parameter under consideration20.

Study AREA.  Meadowbrook Creek was selected to test the methods proposed in this study8. The creek 
flows through the City of Syracuse in New York. Thus, this catchment consists of high residential and industrial 
land covers, which contribute runoff to the main channel. The creek is about 4 km long. A portion of this creek 
(475 m long) was selected for the modeling for a period of June 13–19, 2012 in this study. The upstream bound-
ary condition in the HFLUX model was set based on the water temperature of the creek observed at the upstream 
station8. The uncertainty of the model inputs was examined at three selected points as shown in Fig. 2. Note that 
the input values at these three points had greater relative changes than the changes at other locations, which pro-
vided the possibility to improve the evaluation of the algorithm performance. In addition, these three locations 
had the same sampling of the selected input data. During the simulation period, the streamflow velocity varied 
within a range of 0.06–0.63 (m/s). The daily temperature changed between 8.9 and 28.2 °C. The relative humid-
ity, used to calculate the total energy flux to the stream per surface area, changed from 36 to 93%. The creek bed 
mainly consisted of clay, cobbles, sand, and gravel materials. The basic statistics of the data/variables used in the 
HFLUX model are presented in Table 1. Figure 2 shows the study area, the creek, and the three selected points 
for analysis.

Ethical approval.  All authors accept all ethical approvals.

Consent to participate.  All authors consent to participate.

Consent to publish.  All authors consent to publish.

Results and discussion
In the uncertainty analysis, the inputs at the three selected points on the main channel include: the depth and 
width of the creek, the percentage of shade, and the streamflow. Note that the shade value at a location ranges 
from 0 to 1 with 0 being no shade and 1 being total shade. The values of these inputs estimated by the SCEM-UA 
algorithm at different locations along the creek are shown in Fig. 3.

To implement the SCEM-UA, the posterior distribution functions for the selected inputs of the model were 
first developed. The initial ranges of the four selected inputs, according to the related literature and field observa-
tions, were selected to form the first generation of the SCEM-UA population using the Latin hypercube sampling. 
Table 2 presents the values of the maximum and minimum values of these inputs.
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The SCEM-UA simulations were performed for a spatial interval of 10 m and a time step of 30 min. The 
number of the SCEM-UA iterations considered for this study was 30,000, depending upon the Gelman and 
Rubin convergence criterion6, a statistical indicator used for examining the convergence of the chains. The value 
should be less than 1.220. Figure 4 shows the changes in the Gelman and Rubin convergence, indicating that the 
values for all inputs are less than 1.2.

The posterior distribution functions for the selected points of the HFLUX model were obtained based on the 
SCEM-UA algorithm in the form of histograms for the inputs. The width or range of the histograms indicates 
the uncertainty of the inputs and the average value or the most likely value of the histograms is the most likely 
prediction value of the SCEM-UA algorithm for that input. Figures 5, 6, 7 and 8 show the histograms of the 
posterior distribution functions of the selected inputs. As shown in Fig. 5, the uncertainty for the creek width 
at the first point/location ranges from 5 to 6 and the most likely value predicted by the SCEM-UA is 5.6 with a 
probability of 50%. The range of the uncertainty for this input at the second point/location is from 3.6 to 4.05 
and the most likely value is 3.7 with a probability of approximately 60%. For this input at the third point/location, 
the uncertainty ranges from 2.5 to 5.2 and the most likely value is 3.1 with a probability of 50%. According to 
Fig. 6, the uncertainty ranges for the creek depth at the first, second, and third points/locations are 0.08–0.125, 
0.07–0.25, and 0.26–0.44, respectively. The most likely values for this input at the first, second, and third points/
locations are 0.085 with a probability of nearly 70%, 0.13 with a probability of almost 70%, and 0.36 with a 
probability of almost 55%, respectively. Figure 7 shows the uncertainty ranges and the most likely values for the 
percentage of shade at the first, second, and third points/locations. The ranges for the tree points are respectively 
0.2–0.47, 0.17–0.44, and 0.15–0.42, while the most likely values are respectively 0.26 with a probability of almost 
60%, 0.23 with a probability of almost 40%, and 0.18 with a probability of almost 50%. Similarly, Fig. 8 shows the 
uncertainty ranges and the most likely values for the streamflow at the first, second, and third points/locations. 
The ranges for the three points respectively are 0.06018–0.06027, 0.0716–0.0725, and 0.073–0.0739, while the 
most likely values respectively are 0.06023 with a probability of almost 30%, 0.0719 with a probability of almost 
60%, and 0.0735 with a probability of almost 55%.

Based on the statistical results related to the inputs, their sensitivity can be identified. The smaller the coef-
ficient of variation (CV) of an input, the more sensitive the input. Figure 9 indicates the order of sensitivity of 

Figure 2.   Study area and the locations of three evaluation sections (the gray enlarged map shows the State of 
New York), the map in this Figure is created by Google Earth 7.0.2.8415 (https://​google.​com/​earth/​versi​ons).

Table 1.   Basic statistics of the data/variables used in the HFLUX model.

Variable Mean Std Min 25% 50% 75% Max

Water temperature at the upstream boundary (°C) 16.98 1.61 13.68 15.87 16.88 18.19 20.26

Discharge (m3/s) 0.0670 0.0039 0.0603 0.0634 0.0672 0.0705 0.0734

Air temperature (°C) 20.08 5.10 8.90 16.40 20.50 24.10 28.20

Relative humidity (%) 64.89 16.30 36.00 50.00 65.00 77.00 93.00

Shortwave solar radiation (W/m2) 251.23 364.63 0.00 0.00 24.00 469.36 1208.00

https://google.com/earth/versions
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the inputs. Accordingly, inputs Q2, Q3, and Q1 with CV values of 1.94%, 2.57%, and 3.18%, respectively, have the 
higher sensitivity, implying very small changes in the histograms of these three points. Inputs D1, Sh3, and Sh2 
with CV values of 78.14%, 65.08%, and 60.48%, respectively, have the lower sensitivity. Table 3 shows the CV 

Figure 3.   Characteristics of Meadowbrook Creek: (a) width, (b) depth, (c) percent shade, and (d) streamflow.

Table 2.   The selected HFLUX inputs and their upper and lower limits considered in the uncertainty analysis.

Input Unit Minimum Maximum Description

W1 m 1 7 Creek width at the beginning of the study reach (0 m)

W2 m 1 7 Creek width at 375 m from the beginning of the study reach

W3 m 1 7 Creek width at the end of the study reach (475 m)

D1 m 0.001 1 Creek depth at the beginning of the study reach (0 m)

D2 m 0.001 1 Creek depth at 375 m from the beginning of the study reach

D3 m 0.001 1 Creek depth at the end of the study reach (475 m)

Sh1 - 0 1 Percent shade coefficient at the beginning of the study reach (0 m)

Sh2 - 0 1 Percent shade coefficient at 375 m from the beginning of the study reach

Sh3 - 0 1 Percent shade coefficient at the end of the study reach (475 m)

Q1 m3/s 0.05 0.1 Streamflow at the beginning of the study reach (0 m)

Q2 m3/s 0.05 0.1 Streamflow at 375 m from the beginning of the study reach

Q3 m3/s 0.05 0.1 Streamflow at the end of the study reach (475 m)
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and the most likely values of all inputs. Knowing the most likely value of each input is important in evaluating 
the performance of the uncertainty analysis algorithm. Figure 10 shows the comparison of the observed data 
and the most likely values estimated by the SCEM-UA algorithm. According to Fig. 10 the SCEM-UA algorithm 
overestimated the inputs of W1, W2, W3, D3, Sh1, Sh2, Q2, and Q3 and underestimated the inputs of D1, D2, Sh3, 
and Q1. The most likely values of the selected inputs simulated by the SCEM-UA algorithm were compared with 
the observed data and their relative errors are shown in Table 4. It can be observed that the maximum relative 
error (15%) is related to the percentage of shade for the second point/location. Thus, it is suitable to use the 
SCEM-UA algorithm for evaluating the uncertainties of the HFLUX inputs.

Concluding remarks
This study focused on investigating the uncertainties of the HFLUX model inputs by using the SCEM-UA algo-
rithm. Meadowbrook Creek in the City of Syracuse, New York was selected as an application of the proposed 
methods. The histograms of the selected model inputs were obtained, based on which the uncertainty of the 
inputs and their most likely values were determined. Specifically, the width of each histogram indicated the 
uncertainty of the corresponding input. It was found that the creek depth at the beginning of the study reach 
with a CV of 78.14% was the most uncertain and thus the least sensitive input. The streamflow at 375 m from 
the beginning of the study reach with a CV of 1.94% was the least uncertain and thus the most sensitive input. 
The mean of each histogram indicated the most likely value for the corresponding input. The performance of 
the SCEM-UA algorithm was evaluated by comparing the observed data and the most likely values from the 
SCEM-UA algorithm. Based on the comparisons, the streamflow at 375 m from the beginning of the study 
reach with the smallest relative error (0.03%) was the most accurately estimated input, while the percent shade 
coefficient at 375 m from the beginning of the study reach with the largest relative error (15%) was the least 
accurately estimated input. These results demonstrated that the SCEM-UA algorithm was suitable for analyzing 
the uncertainties associated with the inputs of the HFLUX model.

Figure 4.   Gelman and Rubin convergence criterion chart: (a) width, (b) depth, (c) percent shade, and (d) 
streamflow.
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Figure 5.   Histograms of the HFLUX inputs at three sections (a) Creek width at the beginning of the reach 
study range (0 m), (b) Creek width at 375 m from the beginning of the reach study range, and (c) Creek width at 
the end of the reach study range (475 m).
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Figure 6.   Histograms of the HFLUX inputs at three sections (a) Creek depth at the beginning of the reach 
study range (0 m), (b) Creek depth at 375 m from the beginning of the reach study range, and (c) Creek depth at 
the end of the reach study range (475 m).
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Figure 7.   Histograms of the HFLUX inputs at three sections (a) percent shade coefficient at the beginning of 
the reach study range (0 m), (b) percent shade coefficient at 375 m from the beginning of the reach study range, 
and (c) percent shade coefficient at the end of the reach study range (475 m).
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Figure 8.   Histograms of the HFLUX inputs at three sections (a) streamflow at the beginning of the reach study 
range (0 m), (b) streamflow at 375 m from the beginning of the reach study range, and (c) streamflow at the end 
of the reach study range (475 m).

Figure 9.   Order of sensitivity of the inputs quantified by the CV values.
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Table 3.   Coefficient of variation (CV) and most likely values of inputs.

Input CV (%) Most likely value Input CV (%) Most likely value

W1 (m) 7.71 5.6 Sh1 (dimensionless) 36.20 0.26

W2 (m) 10.10 3.7 Sh2 (dimensionless) 60.46 0.23

W3 (m) 25.74 3.1 Sh3 (dimensionless) 65.08 0.18

D1 (m) 78.14 0.085 Q1 (m3/s) 3.18 0.06023

D2 (m) 53.35 0.130 Q2 (m3/s) 1.94 0.07190

D3 (m) 19.19 0.360 Q3 (m3/s) 2.57 0.07350

Figure 10.   Comparison of the observed data and the most likely values estimated by the SCEM-UA algorithm: 
(a) width, (b) depth, (c) percent shade, and (d) streamflow.



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19908  | https://doi.org/10.1038/s41598-021-99371-0

www.nature.com/scientificreports/

Data availability
All of the required data have been presented in our article.

Received: 28 April 2021; Accepted: 23 September 2021

References
	 1.	 Abdi, R. & Endreny, T. A river temperature model to assist managers in identifying thermal pollution causes and solutions. Water 

11(5), 1060. https://​doi.​org/​10.​3390/​w1105​1060 (2019).
	 2.	 Abdi, R., Endreny, T. & Nowak, D. A model to integrate urban river thermal cooling in river restoration. J. Environ. Manage. 258, 

110023. https://​doi.​org/​10.​1016/j.​jenvm​an.​2019.​110023 (2020).
	 3.	 Ajami, N. K., Duan, Q. & Sorooshian, S. An integrated hydrologic Bayesian multi-model combination framework: confronting 

input, parameter and model structural uncertainty in hydrologic prediction. Water Resour. Res. 43, 1. https://​doi.​org/​10.​1029/​
2005W​R0047​45 (2007).

	 4.	 Bernhardt, E. S. et al. Synthesizing river restoration efforts. Science 308(5722), 636–637. https://​doi.​org/​10.​1126/​scien​ce.​11097​69 
(2005).

	 5.	 Feyen, L., Beven, K. J., De Smedt, F. & Freer, J. Stochastic capture zone delineation within the generalized likelihood uncertainty 
estimation methodology: Conditioning on head observations. Water Resour. Res. 37(3), 625–638. https://​doi.​org/​10.​1029/​2000W​
R9003​51 (2001).

	 6.	 Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457–472. https://​doi.​org/​
10.​1214/​ss/​11770​11136 (1992).

	 7.	 Georgakakos, K. P., Seo, D. J., Gupta, H., Schaake, J. & Butts, M. B. Towards the characterization of streamflow simulation uncer-
tainty through multimodel ensembles. J. Hydrol. 298(1–4), 222–241. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2004.​03.​037 (2004).

	 8.	 Glose, A. M., Lautz, L. K. & Baker, E. A. Stream heat budget modeling with HFLUX: Model development, evaluation, and applica-
tions across contrasting sites and seasons. Environ. Model. Softw. 92, 213–228. https://​doi.​org/​10.​1016/j.​envso​ft.​2017.​02.​021 (2017).

	 9.	 Lin, K., Liu, P., He, Y. & Guo, S. Multi-site evaluation to reduce parameter uncertainty in a conceptual hydrological modeling 
within the GLUE framework. J. Hydroinf. 16(1), 60–73. https://​doi.​org/​10.​2166/​hydro.​2013.​204 (2014).

	10.	 Liu, J., Dong, X. & Li, Y. Automatic calibration of hydrological model by shuffled complex evolution metropolis algorithm. Int. 
Conf. Artif. Intell. Comput. Intell. Sanya 3, 256–259. https://​doi.​org/​10.​1109/​AICI.​2010.​291 (2010).

	11.	 Liu, J., Shao, W., Xiang, C., Mie, C. & Li, Z. Uncertainties of urban flood modeling: Influence of parameters for different underlying 
surface. Environ. Res. 182, 108929. https://​doi.​org/​10.​1016/j.​envres.​2019.​108929 (2020).

	12.	 Morrill, J. C., Bales, R. C. & Conklin, M. H. Estimating stream temperature from air temperature: implications for future water 
quality. J. Environ. Eng. 131(1), 139–146 (2005).

	13.	 Papadopoulos, C. E. & Yeung, H. Uncertainty estimation and Monte Carlo simulation method. Flow Meas. Instrum. 12(4), 291–298. 
https://​doi.​org/​10.​1016/​S0955-​5986(01)​00015-2 (2001).

	14.	 Sun, N., Hong, B. & Hall, B. Assessment of the SWMM model uncertainties within the generalized likelihood uncertainty estima-
tion (GLUE) framework for a high-resolution urban sewershed. Hydrol. Process. 28(6), 3018–3034. https://​doi.​org/​10.​1002/​hyp.​
9869 (2013).

	15.	 Tang, H., Guo, X., Xie, L. & Xue, S. Experimental validation of optimal parameter and uncertainty estimation for structural systems 
using a shuffled complex evolution metropolis algorithm. Appl. Sci. 9(22), 4959. https://​doi.​org/​10.​3390/​app92​24959 (2019).

	16.	 Yan, L., Jin, J. & Wu, P. Impact of parameter uncertainty and water stress parameterization on wheat growth simulations using 
CERES-wheat with GLUE. Agric. Syst. 181, 102823. https://​doi.​org/​10.​1016/j.​agsy.​2020.​102823 (2020).

	17.	 Yang, J., Reichert, P., Abbaspour, K. C., Xia, J. & Yang, H. Comparing uncertainty analysis techniques for a SWAT application to 
the Chaohe Basin in China. J. Hydrol. 358(1–2), 1–23. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2008.​05.​012 (2008).

	18.	 Yang, X. E., Wu, X., Hao, H. L. & He, Z. L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. 9(3), 197–209. 
https://​doi.​org/​10.​1631/​jzus.​B0710​626 (2008).

	19.	 Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W. & Verstraten, J. M. Improved treatment of uncertainty in hydrologic modeling: 
Combining the strengths of global optimization and data assimilation. Water Resour. Res. 41, 1. https://​doi.​org/​10.​1029/​2004W​
R0030​59 (2005).

	20.	 Vrugt, J. A., Gupta, H. V., Bouten, W. & Sorooshian, S. A Shuffled complex evolution metropolis algorithm for optimization and 
uncertainty assessment of hydrologic model parameters. Water Resour. Res. 39, 8. https://​doi.​org/​10.​1029/​2002W​R0016​42 (2003).

	21.	 Vrugt, J. A., TerBraak, C. J. F., Clark, M. P., Hyman, J. M. & Robinson, B. A. Treatment of input uncertainty in hydrologic modeling: 
Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44, 12. https://​doi.​org/​10.​1029/​2007W​
R0067​20 (2008).

	22.	 Zheng, Y., Arabi, M. & Paustian, K. Analysis of parameter uncertainty in model simulation of irrigated and rainfed agroecosystems. 
Environ. Model. Softw. 126, 104642. https://​doi.​org/​10.​1016/j.​envso​ft.​2020.​104642 (2020).

Acknowledgements
The authors thank Iran’s National Science Foundation (INSF) for its support for this research.

Table 4.   Relative errors of the inputs in the SCEM-UA algorithm.

Input Relative error (%) Input Relative error (%)

W1 9.80 Sh1 4.00

W2 7.24 Sh2 15.00

W3 10.71 Sh3 10.00

D1 5.56 Q1 0.11

D2 7.14 Q2 0.03

D3 2.86 Q3 0.16

https://doi.org/10.3390/w11051060
https://doi.org/10.1016/j.jenvman.2019.110023
https://doi.org/10.1029/2005WR004745
https://doi.org/10.1029/2005WR004745
https://doi.org/10.1126/science.1109769
https://doi.org/10.1029/2000WR900351
https://doi.org/10.1029/2000WR900351
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1016/j.jhydrol.2004.03.037
https://doi.org/10.1016/j.envsoft.2017.02.021
https://doi.org/10.2166/hydro.2013.204
https://doi.org/10.1109/AICI.2010.291
https://doi.org/10.1016/j.envres.2019.108929
https://doi.org/10.1016/S0955-5986(01)00015-2
https://doi.org/10.1002/hyp.9869
https://doi.org/10.1002/hyp.9869
https://doi.org/10.3390/app9224959
https://doi.org/10.1016/j.agsy.2020.102823
https://doi.org/10.1016/j.jhydrol.2008.05.012
https://doi.org/10.1631/jzus.B0710626
https://doi.org/10.1029/2004WR003059
https://doi.org/10.1029/2004WR003059
https://doi.org/10.1029/2002WR001642
https://doi.org/10.1029/2007WR006720
https://doi.org/10.1029/2007WR006720
https://doi.org/10.1016/j.envsoft.2020.104642


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19908  | https://doi.org/10.1038/s41598-021-99371-0

www.nature.com/scientificreports/

Author contributions
B.A.; software, formal analysis, writing—original draft. O.B.-H.; conceptualization, supervision, project admin-
istration. X.C.; validation, writing—review and editing.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to O.B.-H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Uncertainty analysis of model inputs in riverine water temperature simulations
	Materials and methods
	River water temperatures simulated by the HFLUX model. 
	SCEM-UA algorithm. 
	Study AREA. 
	Ethical approval. 
	Consent to participate. 
	Consent to publish. 

	Results and discussion
	Concluding remarks
	References
	Acknowledgements




