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Abstract

In the traditional two-step procedure used in intensity-modulated radiation therapy, fluence

map optimization (FMO) is performed first, followed by use of a leaf sequencing algorithm

(LSA). By contrast, direct aperture optimization (DAO) directly optimizes aperture leaf posi-

tions and weights. However, dose calculation using the Monte Carlo (MC) method for DAO

is often time-consuming. Therefore, a rapid DAO (RDAO) algorithm is proposed that uses a

dose influence matrix based piecewise aperture dose model (DIM-PADM). In the proposed

RDAO algorithm, dose calculation is based on the dose influence matrix instead of MC. The

dose dependence of aperture leafs is modeled as a piecewise function using the DIM. The

corresponding DIM-PADM-based DAO problem is solved using a simulated annealing algo-

rithm.The proposed algorithm was validated through application to TG119, prostate, liver,

and head and neck (H&N) cases from the common optimization for radiation therapy data-

set. Compared with the two-step FMO–LSA procedure, the proposed algorithm resulted in

more precise dose conformality in all four cases. Specifically, for the H&N dataset, the cost

value for the planned target volume (PTV) was decreased by 32%, whereas the cost value

for the two organs at risk (OARs) was decreased by 60% and 92%. Our study of the pro-

posed novel DIM-PADM-based RDAO algorithm makes two main contributions: First, we

validate the use of the proposed algorithm, in contrast to the FMO–LSA framework, for direct

optimization of aperture leaf positions and show that this method results in more precise

dose conformality. Second, we demonstrate that compared to MC, the DIM-PADM-based

method significantly reduces the computational time required for DAO.

Introduction

Intensity modulated radiation therapy (IMRT) [1–4] can produce a high degree of dose con-

formality directed at tumor targets while sparing the organs at risk (OARs). Traditional IMRT

methods involve two steps: fluence map optimization (FMO) [5–7] followed by use of the leaf
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sequencing algorithm (LSA) [8–10]. Without geometric constraints from multileaf collimators

(MLC) taken into consideration, FMO uses beams to solve for fluence maps. LSA then trans-

fers each fluence map [11,12] into a set of deliverable MLC apertures, after which the effective

fluence map may be degraded.

By contrast, direct aperture optimization (DAO) [13] bypasses fluence intensity maps and

directly solves for deliverable MLC apertures. With regard to optimization algorithms, DAO

can be solved using simulated annealing (SA) [2,14,15], genetic algorithms [16,17],gradient-

based methods [18], or column generation methods [19,20]. DAO can be modeled on -Monte

Carlo (MC) [21] dose calculation; an approximation of MC, such as the pencil beam model; or

dose influence matrix (DIM)-based analytical models. Although MC dose calculation is an

accurate approach, it is often time-consuming. In a study by Shepard et al. [13], the time

required for a C-shaped target with seven apertures was approximately 12 minutes when the

MC-based DAO method was used. In a study by Cassioli and Unkelbach [22], the dose aper-

ture model was formulated as a piecewise-linear function with respect to aperture leaf posi-

tions, and DIM was used so that the gradients could be efficiently computed for local leaf

position refinement. In the work of De Gersem et al. [23], an analytic dose-difference model

was developed according to predefined leaf movements for fast dose calculation. Alternatively,

the column generation method models all possible apertures with linear combinations of DIM

and iteratively updates the most likely aperture by solving a pricing problem. A DAO method

based on the index concept has been in clinical use since 1996. The rapid DAO (RDAO)

method proposed in the present paper shortens treatment time and improves treatment accu-

racy. The proposed method requires fewer apertures than do the other methods, which may be

a benefit in the method’s clinical application.

To achieve efficient DAO, we begin by modeling the dose dependence as a function of aper-

ture leaf positions and weights for a given number of apertures, as done similarly in previous

DAO studies. The number of optimization variables under consideration is, therefore, rela-

tively small (approximately 100). We then develop a global optimization algorithm based on

SA that is efficient for solving medium-scale-or-larger optimization problems. Finally, we uti-

lize a DIM-based piecewise aperture dose model (PADM) for rapid dose calculation.

Methods

Objective function

A popular objective function is minimization of the least-squares difference between simulated

dose, based on a certain dose aperture model, and prescribed dose.

In this article, we consider the following objective function F with respect to the aperture

set A with a fixed number of apertures indexed by k, each of which consists ofm pairs of aper-

ture leafs that can be fully characterized by three aperture variables—aperture weight α, left

leaf position x, and right leaf position y:

Fða; x; yÞ ¼
X

s2S

ws
Ns

X

i2Vs

ð
X

ðk;mÞ2A

ak fikmðxkm; ykmÞ � diÞ
2
: ð1Þ

We also enforce nonnegative constraints on the aperture weights; thus, the DAO problem can

be formulated as

min
a�0;x;y

Fða; x; yÞ: ð2Þ

In Eq (1), d is the prescribed dose indexed by i and fikm is the aperture dose model from the (k,

m)th aperture leaf to the ith patient voxel, which is specified next. S represents the patient
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structures, including targets and OARs, and is indexed by s, whereas ws is the weight on the sth
structure. Ns is the total number of voxels in the sth structure, and Vs is the index set for voxels

in the sth structure. Here w indicates the relative significance of various structures to the objec-

tive function, and their summation is equal to unity.

Aperture dose model

The motivation to use the DIM for the aperture dose model in Eq (1) is illustrated in Fig 1. Let

Dij be the DIM element denoting the contribution from the jth aperture bixel to the ith patient

voxel. Each aperture leaf pair (k,m) is divided into a fixed number of aperture bixels of size L,

and the left and right leaf positions are denoted by (xkm,ykm). The entire ith bixel falling into

the opening of the (k,m)th aperture leaf is formally denoted by i�(k,m), and akm and bkm
respectively denote the leftmost and rightmost bixel that fully falls into (xkm,ykm). For the bixels

(leftmost and rightmost) that partially belong to the (k,m)th aperture leaf, Llkm or Lrkm is used

to represent the length of the area that falls into (xkm,ykm), and Dia or Dib are used for the corre-

sponding DIM element.

As illustrated in Fig 1(A), when the aperture leaf (xkm,ykm) contains an integer number of

bixels (i.e., does not contain partial bixels), the total contribution from this aperture leaf to the

ith voxel can be regarded as the superposition of the DIM from all the bixels; that is,

fikmðxkm; ykmÞ ¼
X

j2ðxkm ;ykmÞ

Dij: ð3Þ

When the aperture leaf contains partial bixels, as shown in Fig 1(B), we model the DIM

contribution from partial bixels as proportional to their overlapping length with the aperture

Fig 1. Piecewise-linear aperture dose model. (a) Schematic of radiation. The dose at a specific voxel is a weighted sum of irradiation through each bixel. (b) General

scheme with partial bixels: the total dose distribution at the ith voxel is the sum of all DIM elements based on piecewise-linear dose calculation.

https://doi.org/10.1371/journal.pone.0197926.g001
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leaf; that is,

fikmðxkm; ykmÞ ¼ Dia
akm
L
þ

X

j2ðxkm ;ykmÞ

Dij þ Dib
bkm
L
; ð4Þ

where each bixel is assumed to have the same length L. akm and bkm qualify the partial opened

length where the left and right leaf posit and δl = ceil(xkm) and δr = floor(ykm).

Eq (4) represents a DIM-PADM. Note that high-order polynomials can be used in the

DIM-PADM instead of the piecewise-linear model shown in Eq (4). Because the DIM-PADM

has an explicit form based on the DIM, it is solved much faster than the MC model and there-

fore may be used in an RDAO algorithm.

Optimization algorithm

A modified SA algorithm is used to solve the DIM-PADM-based DAO problem (Eq (2)). The

key feature of the SA algorithm is that it can escape local optima with mechanism (i.e., accept

the worse cost value) in contrast to other optimization methods such as the greedy algorithm.

Moreover, SA enables the inclusion of constraint conditions, such as aperture constraints and

dose normalization, and is therefore more useful than a developed software package. We make

two modifications to the traditional SA algorithm: we iteratively update the current best solu-

tion ((i) in Fig 2), and we extend the search area ((ii) in Fig 2). The SA algorithm is based on

Fig 2. SA algorithm for rapid DAO.

https://doi.org/10.1371/journal.pone.0197926.g002
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simulation of the minimum temperature reached during a solid substance’s cooling process.

Therefore, in an SA algorithm, the minimization function is analogous to the change in a spe-

cific system from an arbitrary state to a steady state with the lowest possible internal energy.

As in shown in Fig 2, inputs are assigned both randomly and logically. In the inner iteration

loop (blue lines in Fig 2), the temperature is constant and we stochastically sample a Gaussian

distribution. We then add the Gaussian distribution into optimization variables during each

iteration. The mean of the Gaussian distribution is zero and its width decreases according to

the following [14,24]:

s ¼ 1þ ðL0 � 1Þelogðksuccþ1Þa ð5Þ

where L0 is the initial width and α donates the cooling schedule. The variables are updated if the

corresponding Gaussian distribution satisfies the constraints, such as those of the interval between

the left and right leafs; otherwise the Gaussian distribution is re-sampled (condition (1)).

The metropolis criterion is used to determine whether to accept the solution to a new state.

If the value of the objective function has decreased, the probability of acceptance equals 1. Oth-

erwise, the probability is given by the standard Boltzmann SA cooling schedule [25–27]. Addi-

tionally, a random float point probability within [0,1] is generated during each iteration. The

probability of acceptance is compared with this random probability to determine whether the

new state solution is accepted.

P ¼
1; Fiþ1ða; x; yÞ < Fiða; x; yÞ

2P0

1

1þ elogðksuccþ1Þ=b
; otherwise

ð6Þ

8
<

:

where P0 denotes the initial probability and β denotes the rate of cooling. To terminate the SA

effectively, we adopt a dual threshold strategy to reduce the computational complexity. The

stopping criteria ksucc and imax are the number of iterations with successful acceptance and

maximum number of iterations, respectively. The inner iteration terminates when either k
equals ksucc or when i equals imax. To avoid missing the current optimal solution, the improve-

ment algorithm increases the memory function to remember the current best state; thus, the

modified SA algorithm is intelligent.

In the outer loop (red lines in Fig 2), we extend the search area by reraising the temperature

while the temperature is less than T�, which is the threshold used for several iterations. In this

process, Tmin is the termination temperature. The improvement algorithm can re-search the

area while the iteration is in progress, thus increasing the possibility of finding a better solu-

tion. Finally, the algorithm terminates when the temperature becomes less than Tmin.

Materials and results

The common optimization for radiation therapy (CORT) dataset [28] was used as benchmark

with which to validate the proposed RDAO algorithm in comparison with a two-step FMO–

LSA algorithm. In the comparative experiments, the same IMRT beam angles and apertures

were used for RDAO and FMO–LSA. In all the experiments, the FMO-LSA method has

reached the optimization values. For FMO–LSA, FMO solved the weighted least-square objec-

tive function, similar to Eq (1), with nonnegative constraints on fluence maps, by using qua-

dratic programming; LSA was performed according to the method proposed by Engel [29].

The CORT dataset included four case types: TG119, prostate, liver, and head and neck (H&N)

cases. In the forward modeling stage of the present study, we used a DIM-PADM as the dose

calculation method (Eq (4)). The DIMs for the four case types were obtained from the open-

source CORT dataset. Thus, we were able to compute dose distributions according to arbitrary
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aperture positions and aperture weights. In the inverse problem stage, we used a modified SA

algorithm to optimize aperture positions and weights. That is, we iteratively updated the aper-

ture weights and leaf positions. The purpose of the optimization process was to minimize the

objective function shown in Eqs (1) and (2). In the present study, the prescribed dose to the

planned target volume (PTV) was 1 and to OARs was 0. At the end of optimization, a final

dose calculation was performed using the optimized apertures and aperture weights. The 3D

dose distributions were created using the computational environment for radiotherapy

research toolbox. We normalize the target dose into the same dose level in our comparative

study. Here, we let 95% of the volume receiving the prescribed dose, i.e. 1.

TG119 case

For the TG119 case, we used five beams at gantry angles 0˚, 72˚, 144˚, 216˚, and 288˚. The aper-

tures at each beam angle were 25, 5, 14, 14, and 7, respectively. The region of interest contained

one PTV (OuterTarget) and one OAR (core) with wPTV= 0.9 and wOAR = 0.1. As shown in Fig 3,

the dose volume histogram (DVH) suggests that RDAO resulted in better protection of the OAR

Fig 3. TG119 results. (a) DVH and (b) cost values (red: PTV; blue: OAR; dotted line: FMO–LSA; solid line: RDAO); dose distribution from (c) FMO–LSA and (d)

RDAO.

https://doi.org/10.1371/journal.pone.0197926.g003
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(Fig 3(A)) and a lower cost value than FMO–LSA (Fig 3(B)). The dose distribution results indicate

a significant dose conformality improvement occurred with RDAO (Fig 3(C) and 3(D)).

Prostate case

For the prostate case, 19, 13, 14, 16, and 14 apertures were applied to five coplanar beams at 0˚,

72˚, 144˚, 216˚, and 288˚ gantry angles. The region of interest contained one PTV (PTV_68) and

two OARs (OAR1: rectum and OAR2: bladder), with wPTV= 0.9, wOAR1 = 0.05, and wOAR2 = 0.05.

For the prostate dataset (Fig 4), RDAO resulted in significantly higher protection of the OARs

than FMO–LSA, especially for irradiation near 0, as indicated by the decrease in the cost value

(Fig 4(B)) and decreases in the DVH (Fig 4(A)). Although the improvement in the DVH was non-

significant (Fig 4(A)), both components of the cost value decreased for the PTV.

Liver case

For the liver case, we utilized 6, 8, 9, 10, 10, 7, and 11 apertures for seven noncoplanar beams

at (gantry, couch) angles (58˚, 0˚), (106˚, 0˚), (212˚, 0˚), (328˚, 0˚), (216˚, 32˚), (226˚, −13˚)

Fig 4. Prostate results. (a) DVH and (b) cost values (red: PTV; magenta: OAR1; blue: OAR2; dotted line: FMO–LSA; solid line: RDAO); dose distribution from (c)

FMO–LSA and (d) RDAO.

https://doi.org/10.1371/journal.pone.0197926.g004
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and (296˚, 17˚), respectively. The region of interest contained one PTV and three OARs

(OAR1: liver, OAR2: heart, and OAR3: entrance) with wPTV = 0.9, wOAR1 = 0.1/3, wOAR2 = 0.1/

3, and wOAR3 = 0.1/3. For the liver dataset (Fig 5), a prominent performance boost can be

observed in DVH, cost value, and the dose distribution map. The cost values for the respective

OARs decreased by 28%, 52%, and 36%, and for the PTV by 40% (Fig 5(B)).

H&N

In the H&N case, 10 gantry angles were used with five beams at couch = 0˚(0˚, 72˚, 144˚, 216˚,

288˚) and five beams at couch = 20˚(180˚, 220˚, 260˚, 300˚, 340˚). In total, 10 noncoplanar

beams with 10 apertures for each beam were thus used. The region of interest contained one

PTV (PTV_70) and two OARs (OAR1: left parotid and OAR2: right parotid) with wPTV = 0.8,

wOAR1 = 0.1, and wOAR2 = 0.1. Compared with the results of using FMO-LSA, use of the pro-

posed method decreased the cost values of OAR1, OAR2, and PTV by 60%, 92%, and 32%,

Fig 5. Liver results. (a) DVH and (b) cost values (red: PTV; blue: OAR1; magenta: OAR2; green: OAR3; dotted line: FMO–LSA; solid line: RDAO); dose distribution

from (c) FMO–LSA and (d) RDAO.

https://doi.org/10.1371/journal.pone.0197926.g005
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respectively (Fig 6(B)). The DVH shows that RDAO was more protective than FMO–LSA for

the left parotid and right parotid. As displayed in Fig 6(C) and Fig 6(D), compared with the

corresponding FMO–LSA map, the PTV dose distribution map of RDAO is more homoge-

neous and has a dose scale closer to 1. The corresponding FMO–LSA map shows local hetero-

geneous areas.

From these four cases, the resulting DVH, global cost value, and dose distribution indicate

that use of the RDAO method led to more precise dose conformality than use of the traditional

two-step FMO–LSA method. Moreover, the proposed method also decreased the cost value

for each OAR. For instance, in the liver case, the cost value for the three OARs was 28%, 52%,

and 36% lower and that for the PTV was 40% lower, respectively than those obtained using

the FMO–LSA method. MC-method-based DAO is accurate but is limited by the long time

required for simulated sampling. In this study, we proved that the proposed DIM-PADM-

based DAO method is a fast and accurate method for IMRT. For example, in the liver case, the

computation time for dose calculation based on DIM-PADM was approximately 0.01 s, and

total time taken to optimize the treatment plan was less than 3 minutes. By contrast, the MC

Fig 6. H&N results. (a) DVH and (b) cost values (red: PTV; blue: OAR1; green: OAR2; dotted line: FMO–LSA; solid line: RDAO); dose distribution from (c) FMO–LSA

and (d) RDAO.

https://doi.org/10.1371/journal.pone.0197926.g006
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method has been shown to require more than 25 minutes with the same configurations (seven

apertures, Core i7-4930K CPU, and 16 GB RAM).

Discussion

Compared with conventional sequencing method, e.g. Engle method after FMO, the proposed

RDAO method can produce higher dose conformality. In the proposed method, aperture

leaves are allowed to move between the bixels. This improvement in precision not only

increases dose conformality, it also allows the reduction in the number of apertures per beam

angle to perform the required quality assurance procedures.

Another advantage of the proposed algorithm is that the RDAO method works much faster

than MC-based DAO. MC-based DAO method is limited by its long sampling time. The pro-

posed RDAO method adopts SA algorithm with quick convergence to achieve the optimal

solution. However, the optimal solutions are related to SA parameters and may fall into the

local optimal solution. In our work, we increase the possibility to find the optimal solution by

re-raising the temperature. We will continue to work on the improvements of the global opti-

mization algorithm in the future work.

Conclusions

Here we propose a novel RDAO method for efficient IMRT. The RDAO algorithm uses a

DIM-PADM to calculate doses and an improved SA algorithm to optimize the dose distribu-

tion. Results show that RDAO achieves higher dose conformality and requires fewer apertures

per beam angle than traditional sequencing method, e.g. Engle method. Moreover, the pro-

posed method is much faster than MC-method-based DAO. This method improves both the

accuracy and efficiency of IMRT inverse planning.
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