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ABSTRACT: Optimization of gene expression levels is an essential part
of the organism design process. Fine control of this process can be
achieved by engineering transcription and translation control elements,
including the ribosome binding site (RBS). Unfortunately, the design of
specific genetic parts remains challenging because of the lack of reliable
design methods. To address this problem, we have created a machine
learning guided Design−Build−Test−Learn (DBTL) cycle for the
experimental design of bacterial RBSs to demonstrate how small genetic
parts can be reliably designed using relatively small, high-quality data sets.
We used Gaussian Process Regression for the Learn phase of the cycle and
the Upper Confidence Bound multiarmed bandit algorithm for the Design
of genetic variants to be tested in vivo. We have integrated these machine
learning algorithms with laboratory automation and high-throughput
processes for reliable data generation. Notably, by Testing a total of 450
RBS variants in four DBTL cycles, we have experimentally validated RBSs with high translation initiation rates equaling or exceeding
our benchmark RBS by up to 34%. Overall, our results show that machine learning is a powerful tool for designing RBSs, and they
pave the way toward more complicated genetic devices.
KEYWORDS: machine learning, optimization, genetic part design, ribosome binding site

1. INTRODUCTION
One of the main tenets of synthetic biology is the design,
evaluation, and standardization of genetic parts.1−3 A central
challenge is part design, which is understood as modifying the
sequence of a genetic part for it to meet specific requirements.
Genetic parts are the units which are ultimately combined into
more complex genetic circuits that produce desired functions
in the target organisms. This is usually done in terms of the
Design−Build−Test−Learn (DBTL) cycle, where a given
genetic part or organism is continually improved through an
iterative process. This cycle involves designing (D) new DNA
sequences to achieve a desired property in computer-aided
design software, then physically building (B) new constructed
variants and testing (T) using an analytical instrument in a
laboratory. Computer modeling can be used to learn (L) and
predict the characteristics of a genetic part.4,5 Most of these
computer models are based on either the thermodynamic
properties of the involved molecules (DNA, RNA, proteins,
etc.) or empirically obtained values describing a relevant design
property, like translation initiation rate (TIR) in the case of
ribosome binding sites (RBSs).6−8 However, de novo design of
small genetic elements is challenging because of unknown
relationships between their sequence and performance.
In this paper, we propose a machine learning guided

Design−Build−Test−Learn cycle for the experimental design

of bacterial RBSs. This consists of two distinct types of
machine learning methods, one in the Learn phase and a
second in the Design phase. We show how small genetic parts
can be reliably designed using even relatively small, but high-
quality data sets. This work focuses on RBS part design and
TIR prediction, rather than looking at its wider genetic context
and impact on the general performance of the cell. As the RBS
is one of the key genetic elements controlling protein
expression in bacteria, it is a suitable target for establishing a
workflow that could be potentially translated to more
complicated systems.
In the Design phase of the DBTL cycle, designers often fine-

tune the characteristics of parts to give the resulting strains
their desired properties. The ability to predict a characteristic
of a genetic part (for example using a machine learning
method) only provides inputs to the problem. The designer
still needs to choose from the large number of possible variants
to Build. For instance, to increase the yield of a protein,
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increasing the TIR of the RBS responsible for translation of
that protein could be targeted. Hence, the goal of the Design
phase of TIR is to select a small set of RBS sequences from the
design space (i.e., all possible DNA sequences) based on the
predictions from Learn phase. However, since the computa-
tional predictions are not perfectly accurate, there is
uncertainty about which potential RBS sequence has the
desired property (for example highest protein yield). The
designer could use the mean predicted TIR values and choose
the best ones to exploit the knowledge modeled by the
computational predictions. But the designer may also want to
explore regions of DNA design space where the predictions are
highly uncertain (e.g., as measured by the predicted TIR
standard deviation) and could yield high payoff. Therefore, a
major challenge of the Design phase is to balance the
exploitation and exploration, which is addressed by one class
of machine learning approaches called multiarmed bandits.9 As
we will see in this paper, multiarmed bandits are well suited to
solving the challenge of recommending a small set of RBS
sequences in the Design phase of the DBTL cycle.
One way to generate predicted TIR values is to use existing

RBS calculators.8 Three main RBS calculators were surveyed,
all of which predict the TIR based on the thermodynamic
properties of the RBS and the ribosome.10−12 Predictions
reported from all of these models range from relatively good
(R2 > 0.8) to low (R2 < 0.2) depending on the data set.13 This
may be caused by the following: (i) they rely on calculations of
free energies, which can be difficult to estimate with high
precision, (ii) in general, one of the best ways to improve the
models’ accuracy is by increasing the number of phenomena
taken into account, which can lead paradoxically to decreased
model accuracy due to accumulation of errors,14 and (iii) by

using deterministic coefficients to calculate energies, one
disregards the often stochastic nature of processes in cells,
which can potentially increase prediction error.15 There is also
evidence that binding energy calculations may be poor
predictors of RBS strength.16,17 This is reinforced by studies
suggesting that RNA secondary structure is potentially a more
important feature in TIR determination.14,18 This suggests that
multiple interactions determine the mRNA-ribosome binding,
and predicting TIR from the genomic sequence is still
challenging.
Recent work has explored the use of machine learning

predictors to learn from historical data and generate
predictions for use in synthetic biology, vastly improving the
DBTL cycle’s performance.19−21 This work leverages the
exponential increase in experimental data produced in
synthetic biology22 to improve predictors in the Learn phase
of the DBTL cycle. For example, Jervis, Carbonell et al.23 used
support vector machines and neural networks to optimize
production of monoterpenoids in Escherichia coli. Similarly,24

others have used a number of machine learning approaches to
analyze time-series multiomics data to predict metabolic
pathway behavior. Deep learning techniques have also been
successfully used to analyze large synthetic biology data
sets.25−27 Recall that the multiarmed bandit approach balances
the exploration−exploitation trade off by using predictive
uncertainty. The machine learning predictors mentioned, as
well as existing RBS calculators, do not yet provide uncertainty
levels to guide exploration with the notable exception of
ART.20 Furthermore, large data sets may not be available for a
genetic part of interest, for instance the RBS. Hence there is a
need to develop methods for training predictors on smaller
data sets and generate predictions for both their mean values

Figure 1. Flowchart of the machine learning-based experimental design. The RBS design is recommended by the Upper Confidence Bound
multiarmed Bandit algorithm. After generating the recommendations, the RBSs are built and tested using automated laboratory methods allowing
for rapid construction and testing at scale. Finally, the obtained results are fed back to the Gaussian Process Regression prediction algorithm in the
Learn phase. n is the current design round and k is the maximum number of rounds allowed by time and/or money. In regards to the “Goal Met?”
condition, the goal in our case was to find sequences with TIR significantly higher than benchmark, but the goal can be generalized to fit the
requirements of the user.
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and uncertainties of the predictions in the Learn phase of
DBTL. The predictions of characteristics of interest for each
potential variant can then be used in the Design phase.
Our overall experimental goal is to maximize the TIR by

building and testing batches of RBS sequences with only a
small number of DBTL cycle iterations. We demonstrate how
machine learning (ML) algorithms can be incorporated into
the DBTL cycle to predict (Learn) and recommend (Design)
variants of a bacterial RBS with the goal of optimizing
associated protein expression level in the specific genetic
context (i.e., with specified bases upstream and downstream of
the investigated RBS sequences). Our proposed machine
learning guided DBTL cycle is summarized in Figure 1. Two
types of ML algorithms are applied in the DBTL cycle. In the
Learn phase, the goal is to train a predictor that will predict the
protein expression level by learning from the logged data. We
used a Bayesian, nonparametric regression algorithm, called

Gaussian Process Regression (GPR)28 in our pipeline. In
addition to providing a predicted mean TIR, GPR also
provides uncertainty estimates via its predicted standard
deviation. GPR has been shown to perform well with small
amounts of training data in biological prediction tasks.28,29 The
goal of the Design phase is to find a policy to recommend RBS
sequences to query in batches so that we can identify the
optimized RBS sequences within a given budget. We use a
version of the Upper Confidence Bound multiarmed Bandit
algorithms29 to learn the policy. The policy uses the outputs
from the GPR predictions to recommend useful batches for the
Build and Test phases. We demonstrate that laboratory
automation methods in the Build and Test phases result in
high quality TIR data that is well suited for training machine
learning methods in the subsequent Learn phase. The two
types of algorithms cooperate with each other and provide
powerful tools for DBTL cycle in genetic parts design.29,30

Figure 2. TIRs of RBS groups examined in this study. (A) Swarm plot showing the obtained TIRs divided into RBS groups. BPS-NC: Base-by-base
changes in the noncore region. BPS-C: Base-by-base changes in the core region. UNI: Randomly generated sequences with uniform distribution.
PPM: Randomly generated sequences with distribution following the Position Probability Matrix for all natural RBS in E. coli. Bandit-0/1/2/3:
Bandit algorithm generated results for Round 0, 1, 2, and 3 respectively. SD: Shine−Dalgarno sequence. Dashed line is set to 1 and represents the
averaged benchmark sequence TIR for that group. BN: Benchmark sequences for all plates (not all are exactly 1 because of them being shown as
separate samples rather than per round averages). (B) Line plot showing TIR obtained in a given quantile (Q) of results divided into groups as in
(A). UNI and PPM are merged into Random group, and BPS-NC is not shown because of changes being made outside the core in that group. (C)
Exploitation vs Exploration for Bandit 1−3. Blue-hued points represent exploitation, those hued red represent exploration. (D) Histogram with
kernel density estimations (KDE) showing distributions of TIRs for Bandit groups. (E) t-SNE plot showing the relative distances between
sequences in our design space as calculated by our kernel function (weighted degree kernel with shift). The Unlabeled points represent the RBS
sequences in the design space that have not been tested. The area of the marker corresponds to the experimentally obtained TIR value. The TIR
results in all subplots are shown normalized to the respective benchmark sequence sample, which acts as internal standard; the TIR of a given RBS
is divided by the TIR of the benchmark RBS run in the same plate.
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Using our proposed machine learning guided DBTL cycle
(Figure 1), we were able to increase expression of our target
protein by up to 35%, as compared to the very strong
benchmark RBS.

2. RESULTS
We present our RBS-optimizing DBTL workflow that uses
machine learning in Section 2.1. Machine learning is used in
two different ways: (i) we show the efficacy of the ML
recommendations in the Design stage (Section 2.2), and (ii)
we demonstrate that the ML predictions are accurate in the
Learn stage (Section 2.3). We present our new RBS sequence
library in Section 2.4 and describe some interesting character-
istics of the discovered sequences, as well as show the
effectiveness of the automated laboratory workflow.

2.1. The Experimental Workflow. Our DBTL workflow,
which uses machine learning to optimize protein expression, is
shown in Figure 1. The Build and Test phases are driven
chiefly by choices made by human researchers and the use of
automated methods. Machine learning algorithms are applied
in Learn and Design. In the Learn phase, we use the Gaussian
Process regression algorithm to predict the TIR of RBS
sequences comprising the experimental space. In the Design
phase, we use the Bandit algorithm to recommend new RBS
sequences based on the predictions from Learn.
The exact position of the RBS in the sequence upstream of

the protein coding sequence (CDS) can be hard to pinpoint.
However, most previous studies place the RBS in the 20 bp
directly preceding the coding sequence. In our investigation,
we are using an RBS that is known to have a very high TIR
when expressing GFP and is present in the pBb series of
plasmids.31 This template RBS sequence is 20 base pairs (bp)
long with the sequence TTTAAGAAGGAGATATACAT,
where the highlighted nucleotides constitute the core of the
RBS. As this is the sequence against which new RBS sequences
will be benchmarked, we will refer to this sequence as the
benchmark sequence hereafter. Additionally, we have exper-
imentally confirmed that modifying the core sequence is
statistically more impactful on TIR than changes made outside
of it (see Figure S5). This hypothesis has been built based on
reported biases toward certain bases present in the core of the
RBS but absent outside of it. For example, according to ref 32
there is a strong bias toward A and G bases in the core region
of the RBS. Similarly, outside of the 6 bases of the core in the
wider 20 bp context of the RBS there is no significant bias
toward any particular base, which suggests that these bases do
not contribute to the overall TIR of a given RBS. Focusing on
the 6 to 8 bp core sequence is a common RBS design
approach.33 Hence, in our design, we focus on modification of
the core at nucleotide positions −8 to −13 (relative to the start
codon of the GFP; this is where the consensus Shine−
Dalgarno AGGAGG sequence is usually found in wild type
E. coli) of the RBS and we keep other positions the same as the
benchmark sequence, i.e., TTTAAGA + NNNNNN +
TATACAT, where N can be any nucleotide (A, C, G, T).
The total experimental (variant) space is then 46 = 4096.
In our genetic design, the investigated RBS controls the

expression of green fluorescent protein (GFP). By controlling
expression of a fluorescent protein with the RBS we can
quickly assess the perceived relative TIR by measuring
fluorescence of cells harboring the expression vector over
time. Finally, the mRNA is transcribed from an IPTG-
inducible promoter pLlacO-1. Inducible expression allows

synchronization of the start of the GFP expression in all the
cultures by addition of IPTG. Since standardization and
comparative studies should be done in as similar genetic
contexts as possible, the design of this device has been
deliberately kept simple to make such studies easier.34

2.2. Design: Performance of the Recommendation
Algorithm. The Bandit recommendations were made using
the batch Upper Confidence Bound multiarmed Bandit
algorithm.29 In short, this algorithm is a stochastic method
of probing the experimental space, and is sometimes referred
to as Bayesian optimization. It maximizes the reward (output)
from testing a limited number of instances from a large pool
that cannot be tested exhaustively because of limited resources
(time, computational power, money). It balances the
exploration−exploitation paradigm, where exploration focuses
on testing data points that maximize information gain and
exploitation focuses on recommending RBSs with high
predicted TIR.
Figure 2A shows the results for all the RBS groups tested

experimentally. In each experimental round, in addition to the
new RBS designs, we measure the TIR of the benchmark RBS
as the internal standard. We then obtain the normalized TIR
(called TIR ratio) by taking the ratio between the raw TIR of a
new design and the average TIR of benchmark sequences in
each round (which are run in triplicate in each round). Figure
S6 shows these results in terms of raw TIRs.
To generate the data set from which the algorithm would

learn, we decided to characterize a total of 450 RBS variants, a
little over 10% of the whole experimental space. About a
quarter of the designs are experimental controls to provide a
baseline for comparison. To fit our automated workflow, we
divided the 450 variants into batches of 90, split into 4 design
rounds.
In the zeroth round we tested two batches of designs, giving

a total of 180 variants split as follows:
• BPS-NC and BPS-C group: 60 RBS sequences that are
subsequent single nucleotide variations of all 20
nucleotides of the original, benchmark sequence. This
batch is designed to show us the influence of such single
nucleotide changes on the overall performance of the
RBS and the potential impact of changes made beyond
the core part (see Supplementary Figure S5).

• UNI group: 30 RBS sequences that were uniformly
randomized, i.e., equal probability of choosing any
nucleotide for each position. This group shows the
performance of RBSs generated randomly.

• PPM group: 30 RBS sequences randomized based on
the position probability matrix (PPM) generated from
all the naturally occurring RBS sequences in the E. coli
genome.35 This group shows the performance of RBSs
generated randomly, but following the natural nucleotide
distribution.

• Bandit-0: 60 RBS sequences recommended by our
implementation of the recommendation algorithm based
on a data set obtained from literature,36 which contains
113 nonrepeated records for 56 unique RBS sequences
with their respective TIRs. This data set has been used
because of the perceived similarity of its goal to that of
this work�prediction of TIR based on phenotypic
output.

In the subsequent 3 rounds, with one batch each, all 90
designs were generated using our machine learning algorithm
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based on the data obtained from the previous rounds (these
groups are called Bandit 1−3, respectively).
All Round 0 groups (BPS-NC, BPS-C, UNI, PPM, Bandit-0)

performed worse than our benchmark sequence in terms of
TIR. The best-performing group was the BPS-NC, which is
explained by the relatively small impact on the TIR of changes
made outside the RBS core. The Bandit-0 group’s performance
is similar to randomly generated designs, despite being
machine learning-driven, because of being trained on
approximate data. Starting from Round 1, where the prediction
and recommendation algorithms were fed data from Round 0,
the results improved significantly, with a number of sequences
performing better than the consensus Shine−Dalgarno
sequence and in one case, better than the benchmark (by
8%). In Round 2 we observed further improvement by
obtaining more sequences with TIRs similar to our benchmark
sequence. Finally, in Round 3 the algorithm identified two
sequences that were 34% and 15% stronger than the
benchmark sequence.

In summary, 120 out of 450 sequences (BPS-NC, BPS-C,
UNI, PPM) are experimental controls created by sequence
randomization. Only a few of the random sequences were
promising, but they were still 20% weaker than the benchmark
sequence’s TIR (Figure 3A). In fact, these 80% TIR ratio
sequences were created by randomizing the sequence outside
of the core RBS region (BPS-NC), which was statistically
shown not to be significantly impactful on the TIR (note, this
applies only to the 7 bps on either side of the core; see
Supplementary Figure S1 and work by ref 33). Sequences from
randomization of the core RBS (BPS-C, UNI, PPM) are more
appropriate controls, from which the best sequence achieved
only about 65% of the benchmark TIR. These results show
that generating a strong RBS sequence by random mutation is
a nontrivial task, when the tested data set is relatively small. In
contrast, our Bandit-driven design gives much better results,
with RBSs getting close to benchmark performance and even
exceeding it.

Figure 3. Performance of the prediction algorithm (no kernel normalization). The scatter plots A−D show the performance of the prediction
algorithm calculated after each round. Note that the TIR values are normalized according to the standardization described in Section 4.2.1, which is
different from the TIR ratio reported in Figure 2. The x-axis and y-axis are, respectively, the true measured TIR and the predicted TIR. In (A−C),
we show at round t = 1, 2, 3, respectively, we train our predictor based on the previously obtained data (round 0 to t − 1) and show the predictions
on both the training data (orange) and recommendations suggested by the Design phase (i.e., test data, blue). In (D), the predictor was trained on
a randomly chosen 80% subset of all available data, and tested on the remaining 20% data. The Spearman correlation coefficient (with
corresponding p-value; calculated using test data only) are provided in each plot’s title on test data only. The p-value here is for the null hypothesis
stating that two sets of data are uncorrelated, providing strong evidence that the predicted TIR are accurate.
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Figure 2B shows the same results but divided into quantiles
where the specific point for a given group shows the highest
TIR for that quantile. The gradual increase for all quantiles can
be observed for all Bandit groups, suggesting that the
algorithms have a better understanding of the experimental
space given more data. The decreased result in the 0.9th
quantile compared to the maximum value for the Bandit 3
group can be attributed to the increased emphasis on
exploitation that has been set for that round compared to
others. We see this effect in Figure 2C (with details shown in
Supplementary A.6 and Figure S1), where we colored the data
points for Bandit 1−3 groups according to their relative
exploration−exploitation affinity. Those with a high predicted
mean are colored blue and represent exploitation, those
colored red are with high predicted uncertainty and represent
exploration. The implication of the fact that an RBS sequence
chosen at random will have low TIR (as shown by UNI and
PPM) is that most of the exploration will result in low TIRs.
These results confirm that RBSs with high TIRs tend to come
from exploitation of the design space, whereas the exploration
points give relatively low TIRs. Note that the exploration is
necessary to expand our knowledge to the unknown parts of
the design space and in effect allow us to exploit it better.
Figure 2D shows the TIRs of RBSs tested in the Bandit

groups divided into bins with width equal to a TIR ratio of 0.1.
KDE plots have been overlaid to depict the calculated density
for each group. The increase in prevalence of later Bandit
groups in the higher bins is evident, especially for Bandit 2 and
3, constituting the bulk of results in the >0.8 TIR ratio bins.
Notably, the distributions calculated for all the groups are
bimodal�we discuss the possible reasons for that later in the
text.
In Figure 2E we show a t-distributed stochastic neighbor

embedding (t-SNE)37 plot depicting the experimental space.
Each RBS is located on the plot according to its distance from
other RBSs as calculated by our weighted degree kernel with
shift (see Section 4.2.2). The RBSs recommended by Bandit
groups cover the majority of the design space. Additionally, a
number of clusters were especially targeted by the recom-
mendation algorithm. For example, the circled clusters labeled
as “G-Rich Clusters” have been actively recommended by the
algorithm. More specifically, sequences with 4 or more
guanines in any position constituted 10% of the randomly
selected sequences and 5, 9, 16, and finally 25% in each of the
4 Bandit guided batches, respectively.

2.3. Learn: Prediction of RBS Performance. In the
Learn phase, we use a popular regression algorithm, Gaussian
Process Regression (GPR). GPR has two benefits: (1) it
provides the predicted TIR and the confidence interval needed
for the UCB algorithm in the Design phase, and (2) it provides
a natural way to calculate similarities between genomic
sequences via kernels. Figure 3 shows how our implementation
of the Gaussian Process algorithm performed in terms of
predictions (on a hold out test set) in each round. As expected,
the use of approximate data led to poor predictions in Round
0. The predictions improved for the subsequent rounds, and
the Spearman correlation coefficient rose from 0.269 for
Round 0 to 0.546 for Round 3.
We provide the evaluation of the Learn phase in terms of a

ranking-based Spearman correlation coefficient, which has
been shown to be a more suitable evaluation metric when the
prediction is used for recommendation tasks than coefficient of
determination (R2) or Pearson correlation coefficient.38,39 The

regression task in the DBTL cycle is more challenging than the
large-scale data-based regression tasks. In the early iterations,
we have a limited number of data points and relatively high
variability due to the measurement noise. However, since the
predictions are only used for recommendations in the Design
phase, instead of precise predictions of the mean for each RBS,
we only need to provide a valid ranking for both the predicted
mean TIR and uncertainties, and thus the ranking of the UCB
scores. This is because, in the Design part, we select RBSs
based on the ranks of the TIR predictions instead of numerical
predictions. This would ensure that for each round we would
be testing the required designs, even if we are not exactly
accurate in terms of their numerical characteristics.
The performance of the Learn phase is also influenced by

the exploration−exploitation balance in the Design phase. In
each round, some data points were selected for exploration of
the areas in which we have few or no tested data points. For
those exploration points, since the predictor never learns their
label distributions and patterns, there is no chance for the
predictor to provide accurate predictions of TIR values, thus
hurting the prediction performance in the short term.
However, this is useful information for future predictions as
it allows us to understand the whole underlying space instead
of focusing on local suboptimal data points. In other words, we
are intentionally sacrificing the accuracy of our predictions in
each round to improve them in the future rounds. The effect of
exploration of the space is the ability to find high TIR RBSs
even with relatively low prediction performance.

2.4. Build and Test: Characteristics of the Tested
Sequences. We present some important characteristics of the
tested RBSs in Table 1, demonstrating the effectiveness of our

Table 1. Characteristics of the Librarya

characteristics of the library statistics

Total experimental space 4096
Planned constructs 450
Successfully constructed 445
Sequences with CV < 40% 79%
Sequences with CV < 20% 27%
Efficiency ratio of Bandit design (compared with random) 2
Raw TIR range [4.93, 105.38]
TIR ratio range [0.06, 1.34]

top RBS core TIR ratio

GGGGGC 1.34
GGGGGT 1.15
GGCTAT 1.08
AGGAGA 1
GGCGTT 0.98
GGGGGG 0.98
GGCGAC 0.98
CAGGAG 0.96
GGCGAG 0.95
AGGAGG 0.39

aTop table presents some of the characteristics of our library. Bottom
table presents 10 RBS sequences with their corresponding TIR ratios;
the first 9 are the strongest sequences including the benchmark
sequence (AGGAGA) and the last is the Shine−Dalgarno sequence
(AGGAGG). CV is coefficient of variation (standard deviation (STD)
of a sample divided by its mean; see details in Figures S11 and S12).
Efficiency of the Bandit design is calculated by dividing the highest
TIR found using machine learning by the highest TIR found using
random sequence generation.
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Build and Test phases. Figure 4A shows the sequence logo
calculated for the Top 30 sequences (Figure S9 shows the logo
generated for all tested sequences). It is generally understood
that guanine-rich sequences promote strong transcription. This
expected bias toward guanine is clearly visible for all positions
in our Top 30 RBSs. This result combined with the Bandit
algorithm’s bias toward the G-rich cluster shown in Figure 2D
reinforces the notion that our algorithm successfully identified
G-rich sequences as the ones with higher probability of having
a high TIR value.
We discovered an interesting phenomenon of large edit

distances between RBSs with high TIRs. In other words, given
an RBS with high TIR, multiple sequence edits need to occur
to reach another RBS with high TIR (we assume here that our
data set includes most of the strongest RBSs for each
distance−sequence combination). We define the edit distance
as Hamming distance, that is, how many positions have to be
changed to get from one sequence to the other (Hamming
distance of 0 means that the sequences are identical and 6
means that they are two completely different sequences).
Figure 4B shows the edit distance that is required for positive
change in TIR for an RBS with TIR > 0.75. For RBSs with high
TIRs (>1), the minimum distance that is required to increase
the TIR is 2, with edit distances between 2 and 5 giving similar
results. For RBSs with medium TIRs (<1), a distance of 1 is
enough to produce a meaningful increase in TIR.
This means that as the TIRs of examined RBSs increase,

exploring sequences that are increasingly dissimilar to the
current candidates tends to give more meaningful improve-
ment. As long as this does not impact targeted methods like
machine learning-guided design, this implies that the low rate
of natural mutations will be very slow to explore more
dissimilar sequences on such a short distance,40 which
indicates that methods like Adaptive Laboratory Evolution
may not be able to find very strong RBSs with a limited budget.
In other words, because the examined sequence is relatively
short (6 bp in a wider 20 bp context) the time required to
accumulate 2 or more changes in the RBS region required for
meaningful increase in TIR might be prohibitively long (Figure
2A shows comparison between efficiency of random versus
directed sequence generation). In such cases, a directed
process, like the one described here, should be strongly
encouraged. This observation is in line with approaches seen in
other disciplines, e.g., protein engineering, where more
directed changes yield better results than random changes.41

Finally, while our strong sequences showed some affinity for
the antisense sequence of the ribosome known to bind to RBS,

they did not show any obvious secondary structures that could
explain their TIRs (see Figure S10). This result combined with
the unexpectedly bimodal nature of KDEs in Figure 2
reinforces the notion, based on the previously reported
literature,14,16 that there may be a number of different
mechanisms governing the probability of effective RBS-
ribosome binding.

3. DISCUSSION
In this work, we show how a machine learning guided
approach and high-throughput, automated laboratory methods
can be jointly applied to efficiently optimize a small genetic
part, in this case maximizing the TIR of a bacterial RBS. In the
Learn phase, we used Gaussian process regression to predict
the TIR mean and uncertainty of that prediction. To represent
RBSs and capture the similarities between them, we choose to
use the Weighted Degree Kernel with Shift method, which fits
well with Gaussian processes. In the Design phase we used an
Upper Confidence Bound multiarmed Bandit algorithm to
recommend sequences to be tested in batches. In the Build and
Test phase, we performed our experiments using laboratory
automation to increase their speed, reliability, and reproduci-
bility. Using our proposed workflow and testing 450 RBS
variants in 4 DBTL cycles, we designed and experimentally
validated RBSs with high translation initiation rates equaling or
exceeding the currently known strong RBSs in this genetic
context by up to 34%. Furthermore, we have generated an
extensive library of diverse RBSs that can be used as a basis for
future studies. In the rest of the section, we first revisit our
overall experimental goal and challenges encountered in each
phase of the DBTL cycle (Figure 1). We then link our
proposed methods with related work and discuss the potential
generalization of our framework. We further discuss our design
choices and open questions in this line of research. We refer to
ref 42 for a more detailed discussion.
Our goal is to show the power of the machine learning

guided DBTL cycle on RBS optimization. Our approach has
shown that this combination of the two machine learning
algorithms is able to correctly detect and exploit rules of
biological design that otherwise require substantial time and
experiments to uncover. We focus on the part-centric
optimization,27 which is an important task in synthetic biology.
Understanding how to design the individual parts also allows
us to extend the framework to better strain design,23 where the
part is optimized with a wider goal of strain optimization.
The machine learning guided DBTL framework has good

potential to be generalized to multigene pathway design as

Figure 4. Characteristics of strong RBSs. (A) Sequence logo calculated for the Top 30 tested sequences. (B) Heatmap showing the edit
(Hamming) distance required for positive change in TIR for RBSs with high and medium TIRs. The temperature scale shows the difference
between a given RBS on the y-axis and the RBS with the strongest TIR at the given distance. Every second RBS is labeled for increased legibility.
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proposed by HamediRad, Chao et al.43 and recently reviewed
in ref 21. For example, the optimization goal can be adjusted to
address combinatorial optimization for multigene and RBS
scenarios; since this would be a large-scale data task, the
current Gaussian Process regression prediction model could be
updated to a deep Gaussian Process regression approach and
the current Bandit algorithm could be optimized toward
querying large design space to reduce computational complex-
ity.44

In the Design phase, we focus on maximizing the TIR of
RBSs, by gradually moving our emphasis from exploration to
exploitation as we progress through the design rounds. While
maximization could be the appropriate payoff function for
optimizing RBSs or other small parts, other payoffs may be
better in more complex cases. For example, when considering
multigene metabolic engineering, maximizing expression of
individual genes may result in excessive metabolic burden,
which could be achieved within the bandit framework by
combining different goals into a multiobjective method.45 We
constrain our design space over 6-core parts of RBS sequences
in this study; the design space will increase exponentially when
designing a longer sequence. The computational complexity of
calculating and sorting acquisition functions (e.g., UCB scores)
can be reduced by discretizing the space adaptively and
hierarchically.46,47

In the Learn phase, our approach has correctly identified the
correlation between high guanine content in the RBS and high
TIR. We have achieved this despite the relatively low
Spearman scores for our predictions. This observation of
useful recommendations despite low prediction scores
corroborates recent evidence from other studies.20,48 Finally,
our predictor Gaussian Process regression model, compared
with previously described calculators using a deterministic
thermodynamic approach, is able to show the uncertainty of
the predictions, which can be used by our bandit algorithm to
give better recommendations.
To further test the performance of our predictions and

recommendations, we have generated a TIR label for each of
the 4096 RBS sequences using the RBS calculator12 and used
our approach to simulate the search for the strongest designs in
limited number of rounds. We show these results in
Supplementary Figure S3, but in short, our approach was
able to identify above 75% of the sequences stronger than the
benchmark in up to 2 rounds and 99% of them in up to 3
rounds. This surprisingly high efficiency can be partially
attributed to the source of the TIR predictions, which being
generated algorithmically are easier to predict by our algorithm
than real world data. Nevertheless, it shows that the algorithm
can efficiently learn the sequence to TIR relationship and
exploit it subsequently in a recommendation task.
In this study we have limited the number of design rounds to

four. There were a number of reasons for this, including
limitations on time and money, but also because the results
obtained showed that we have achieved our goal of generating
very strong RBS designs. There is a possibility that increasing
the number of experimental rounds would enable us to
improve the results further; however, this has to be put in the
context of limited resources. For example, scanning the whole
space would surely achieve the best results, i.e., would enable
us to find the strongest possible RBS, but that would require
unreasonable use of resources. Compared to solutions like the
one reported by Hollerer,27 our solution can be used when a
high-volume method for data-generation is not available (for

example, where there is no fluorescent readout available), while
still providing the required results (optimized part).
There are still open questions that need to be addressed for

the application of machine learning in synthetic biology. First,
we would like to understand how we can extract more
biologically important information from the decisions made by
our algorithms. We have shown that the algorithms are able to
exploit them, but it will be important to create tools that will
enable their reliable extraction from the results obtained.
Second, given the small number of RBS sequences tested, how
can machine learning algorithms provide more accurate
predictions and uncertainty quantification? Third, the general-
izability of the method is unknown. We believe that the
method described here would be useful for designing other
small genetic parts, but the complexity of the task quickly
increases with the size of the analyzed sequence, so the
method’s applicability might be impacted at some point.
Similarly, the reusability of the obtained data set is currently
unknown. The TIR of an RBS is dependent on its genetic
context, but our Hamming distance and TIR impact of
nucleotides outside of the core (Figures 4B and S5,
respectively) studies indicate that as long as the changes in
the genetic context are small, the obtained data set could serve
as a basis for similar design efforts. For example, the data could
be used to teach the algorithm for the first round of new
designs, which in turn could decrease the number of rounds
required to obtain the required characteristics. Finally, the
practical optimal exploration−exploitation balance between
rounds and samples is still an open question. In our work we
have steered the recommendation process toward exploitation
as we progressed through the rounds, in line with other works
addressing this balance.20

We have found our approach of bringing machine learning
and synthetic biology experts together very fruitful. Synthetic
biology is promoting standardized and normalized testing in
biology and naturally pairs with machine learning, which can
leverage the high quality biological data sets generated when
the correct design rules are observed. The addition of machine
learning to synthetic biology also adds an additional layer of
scrutiny to the generated data sets through the advanced
statistical methods that can be used to design and analyze the
experiments. On top of that, the use of automation has helped
us to produce more reliable results, which gave us the required
confidence in our predictions and recommendations. We
envision that pairing machine learning with high-throughput
automation will keep delivering a high number of good quality
data sets and improved methods for biological engineering.
In the future we hope to extend the algorithm to other more

complicated genetic elements, including promoters and
terminators. However, it is important to reiterate that the
experimental space grows exponentially with the number of
examined positions, so the space becomes increasingly hard to
cover with experiments, and so the percentage of the space that
is measured will inevitably decrease, which might impact the
expected recommendation results. To solve this problem,
different algorithms or experimental techniques might be
needed, but the general workflow can be reused.

4. MATERIALS AND METHODS
4.1. Laboratory Experimental Design. 4.1.1. Build:

Construction of Genetic Devices. Plasmid Design. The
pBbB6c-GFP plasmid was used for all our designs. This
plasmid contains the GFP mut3b CDS, expression of which
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can be induced by the addition of isopropyl β-D-1-
thiogalactopyranoside (IPTG) (Merck, Darmstadt, Germany,
catalogue no. I5502). The original RBS for the GFP CDS was
replaced using a combination of PCR and isothermal assembly.
Primer sequences and the assembly strategy were generated
using the Teselagen DESIGN software (Teselagen Biotechnol-
ogy, San Francisco, CA).
PCR. PCR amplification of the cloning inserts was done

using Q5 High-Fidelity 2X Master Mix (NEB, Ipswich, MA,
catalogue no. M0492L). Twenty μL reactions were prepared
by dispensing 1 μL of each 10 μM reverse primer into the wells
of a 96-well PCR plate using the Echo liquid handler
(Beckman Coulter, Brea, CA). A Mastermix consisting of
polymerase premix, plasmid DNA template (pBbB6c, 5−10 ng
per reaction), and the single 10 μM forward primer was
prepared and dispensed using the FeliX liquid handler
(Analytik Jena, Jena, Germany) or electronic multichannel
pipet. Reactions were run using Touchdown PCR or standard
PCR cycling methods in C1000 thermal cyclers (Bio-Rad,
Hercules, CA). Capillary electrophoresis of PCR products was
performed using the ZAG DNA Analyzer system (Agilent
Technologies, Santa Clara, CA). Two μL of each PCR reaction
was electrophoresed using the ZAG 130 dsDNA Kit (75−
20 000 bp) or ZAG 110 dsDNA Kit (35−5000 bp) (Agilent
Technologies, catalogue no. ZAG-110−5000; ZAG-130−
5000). ZAG sample plates were prepared using the Sciclone
G3 liquid handler (PerkinElmer, Waltham, MA). ProSize Data
Analysis Software (Agilent Technologies) was used to generate
gel images from the sample chromatograms, and amplicon
sizes were estimated by reference to the upper and lower DNA
markers spiked into each sample and a DNA ladder run in well
H12 of each sample plate.
Isothermal DNA Assembly. Constructs were assembled

using NEBuilder HiFi DNA Assembly Master Mix (NEB,
catalogue no. E2621L). Reactions consisting of approximately
equal amounts of the common fragment and the variable
fragment were prepared using the FeliX liquid handler or
electronic multichannel pipet, to a final volume of 5 or 10 μL.
Assemblies were run in the thermal cycler for 1 h at 50 °C,
followed by an infinite hold step at 4 °C. Finally, samples were
incubated with of 50 nL of DpnI (NEB, catalogue no. R0176S)
at 37 °C for 90 min to degrade any residual template DNA.
E. coli Transformation. The DH5α cell line (Thermo

Fisher Scientific, Waltham, MA, catalogue no. 18265017) was
made chemically competent using the Mix and Go E. coli
Transformation Kit and Buffer Set (Zymo Research, Irvine,
CA, catalogue no. T3001). Twenty μL of cells was aliquoted
into each well of a cold 96-well PCR plate and stored at −80
°C for later use. Plates of cells were thawed on a −20 °C cold
block before 3 μL of the assembly product was added and
mixed using the FeliX liquid handler. Cells were incubated on a
cold block for 2−5 min before being plated in a 96 (12 × 8)
grid on Omnitrays containing LB (BD, Franklin Lakes, NJ,
catalogue no. 244610) and 15 g/L agar (Merck, catalogue no.
A1296) with 34 μg/mL chloramphenicol (Merck, catalogue
no. C1919). Plates were incubated overnight at 37 °C. Cells
were plated using the FeliX liquid handler.
Automated Colony Picking and Culturing. A PIXL colony

picker (Singer Instruments, Roadwater, United Kingdom) was
used to select individual colonies from the transformation
plates using the 490−510 nm (cyan) light filter. Each selected
colony was used to inoculate 1 mL of selective medium in a 2

mL square well 96 plate. They were then cultured overnight at
37 °C with shaking (300 rpm).
Glycerol Stock Preparation. 100 μL of sterile 80% (v/v)

glycerol (Chem-Supply, Gillman, Australia, catalogue no.
GA010) and 100 μL of overnight culture were combined in
the wells of a 96 deep (2 mL) round well plate using the FeliX
liquid handler or electronic multichannel pipet They were then
sealed with a 96-well silicone sealing mat and transferred to a
−80 °C freezer.
Sequencing. Strains that gave GFP fluorescence intensity

readings similar to that of the original RBS were selected for
sequence confirmation by capillary electrophoresis sequencing
(CES) (Macrogen, Inc., Seoul, South Korea). The strains
transformed with each of the selected constructs were grown to
saturation in 5 mL LB medium with chloramphenicol selection
(34 μg/mL). Plasmids were extracted from the cultures using
the QIAprep Spin Miniprep Kit (QIAGEN, Hilden, Germany,
catalogue no. 27106) according to the manufacturer’s
instructions. Plasmid concentrations were quantified using
the Cytation 5 plate reader with the Take3Micro-Volume Plate
(BioTek, Winooski, VT) and all fell in the range of 100−200
ng/μL. Samples of 20 μL of undiluted plasmid DNA were
sequenced using a single primer (5′-CGATATAGGCGCCA-
GCAA-3′) that binds approximately 150 bp upstream of the
RBS. Reads were aligned with the template sequence in the
Teselagen software.
4.1.2. Test: Culture Analysis. Test Strain Culture. Overnight

cultures (six biological (restarted every time from glycerol
stock) replicates for each batch) were started by inoculating 1
mL of LB medium supplemented with 34 μg/mL chlor-
amphenicol with 2 μL of the glycerol stock in a 96 deep (2
mL) round well plate, using the FeliX liquid handler or
electronic multichannel pipet. Cultures were incubated at 37
°C with shaking (300 rpm) for 17 h. The following morning,
20 μL of each overnight culture was added to 980 μL of fresh
selection medium, and these cultures were grown at 37 °C with
shaking in a 96 deep (2 mL) round well plate. After 90 min,
cultures were induced with IPTG to a final concentration of
0.5 mM. This was done by transferring 1.0 μL of 0.1 M IPTG
to each well of a flat-bottom clear polystyrene 96-well plate
using the Echo liquid handler, then adding 300 μL of culture to
each well using an electronic multichannel pipet.
Microplate Spectrophotometry. The plates were moni-

tored in the Cytation 5 microplate reader immediately after the
addition of IPTG. Cytation 5 acquisition and incubation/
shaking settings were as follows: length of run: 8 h; interval: 10
min; continuous orbital shake at 237 rpm and slow orbital
speed; excitation wavelength: 490/10 nm; emission wave-
length: 515/10 nm; bottom read; gain: 60; read height: 7 mm;
read speed: Sweep.

4.2. Machine Learning Experimental Design. Two
types of machine learning algorithms have to be applied to
drive the experimental design workflow shown in Figure 1.
One type of machine learning algorithm is a prediction
algorithm (Learn), which helps us learn the function of TIR
with respect to RBS sequence. The other type of machine
learning algorithm is a recommendation algorithm (Design),
which recommends RBS sequences to query (Test) in each
round (in the sense of a single pass through the DBTL cycle)
based on the predictions from Learn.
In Round t, prediction and design are based on the results

obtained in all previous rounds. Our implementation of the
machine learning algorithms was tested in Python 3.6 and used
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the scikit-learn library.49 In the following paragraphs, we
describe our machine learning pipeline (which is applicable to
design Rounds 1−3, denoted as Bandit 1−3) in the following
order: data preprocessing, prediction and kernels, and finally
recommendation. The pipeline for our zeroth round of
machine learning designs, denoted as Bandit-0, is reported in
Supplementary A.4.
4.2.1. Data Preprocessing. For each RBS sequence, we

measured the TIR of 6 biological replicates. We measure GFP
fluorescence of the culture in the log phase as it is the most
representative one. We also measure the Optical Density at
600 nm (OD600) of the culture every 10 min, which reflects
how dense (how many cells) the culture is. Denote our
measuring time as t ∈ {tmin, ..., tmax}, where tmin is the start and
end of the log growth phase. At tmin, the

GFP
OD600

value is at its

minimum. We choose the time range to be 4 h, i.e., tmax − tmin
= 4 h. In our experiment, TIR is calculated as an averaged sum
of GFP fluorescence divided by OD600 of the culture over
time (calculated using values from all the measured data
points),

=
=t t

t
t

TIR
1 GFP( )

OD ( )t t

t

max min 600
min

max

For label preprocessing, we first adjust the TIR values in
each round using the round-wise reference values. The
reference value is the TIR of the benchmark sequence that is
run in triplicate in each round. Specifically, in Round t, we
subtract the TIR mean of the benchmark RBS measured in
Round t from all TIR values measured in the same round, for
each replicate separately. We then normalized the data by
performing a logarithm transformation and standardization on
the adjusted TIR label for each replicate separately. After
normalization, each replicate has zero mean and unit variance.
Furthermore, we also normalized the kernel matrix used for
prediction by centring and unit-norm normalization, which is
reviewed in detail in Supplementary A.2.1.
4.2.2. Prediction: Gaussian Process Regression with String

Kernel. To find RBS sequences with the highest possible TIR
score after a total number of rounds N, we consider our
experimental design problem as a sequential optimization of an
unknown reward function f : , where is the set
containing all RBS sequence points in the design space, and
f(x) is the TIR score of the 6-base core sequence of the RBS x
∈ {A,C,G,T}6. In each Round t, we choose a set of m points

t and observe the function value at each point in the
selected set t , i.e., yi = f(xi) + ϵ, for all i t , where ϵ is the
Gaussian random noise with unknown mean and standard
deviation.
For the regression model, we have used a Bayesian

nonparametric approach called Gaussian Process Regression
(GPR).28,30,50 We model f as a sample from a Gaussian Process

kx x x( ( ), ( , )), which is specified by the mean function
= [ ]fx x( ) ( ) and the kernel function (also called covariance

function) = [ ]k f fx x x x x x( , ) ( ( ) ( ))( ( ) ( )) . GPR
can predict the posterior mean of the RBS sequences in the
design space. At the same time, it can provide the posterior
standard deviation, which represents the level of uncertainty
for the prediction.
We review the predictions of GPR in Supplementary A.1.

The choice of kernel function is critical for accurate
predictions, since it controls smoothness and amplitude of
the function to be modeled. For Bandit designs in Round 0,
since we only had access to a limited number of data points
from the literature, we chose to use one of the basic string
kernels, the spectrum kernel51 to process the core 6 bp and dot
product kernel28 (with one-hot embedding) to process the 7
bp flanking sequences both upstream and downstream of the
core sequence. Among various string kernels, which have been
studied in the literature,52 and we will introduce briefly in
Supplementary A.2, we chose the one with the best reported
performance, the weighted degree kernel with shif t (WDS),52,53

to represent the RBS sequences in subsequent rounds and
specify the kernel function of GP. WDS is a type of a string
kernel, which takes two sequences as inputs and outputs a
scalar value that represents the similarity between the two
sequences. WDS kernel does this by counting the matches of
substrings of a certain length (i.e., kmers) that constitute the
sequence. The maximum substring length is specified by . The
WDS takes into account the positional information by
counting substrings starting from different positions, where
the start position is specified by l. Additionally, the WDS
kernel considers the shifting of substrings, with the maximum
shift specified by s. This could be useful when there is a shift
between two sequences. For example, two sequences
ACCTGA and CCTGAA are in 1-shift.
We now define WDS kernel. Let (A) be the indicator

function, which equals 1 if A is true and 0 otherwise. Then
=[ + + + ] [ + ]x x( )l s l s d l l d: : indicates whether two substrings of

length d match, between x starting from position l + s and x′
starting from position l. This is similarly done for

=[ + ] [ + + + ]x x( )l l d l s l s d: : . By having these two terms considering
substrings of two sequences with starting positions differing by
s characters, the WDS can measure shifted positional
information. When s = 0, the kernel function counts the
matches with no shift between sequences. Let x, x′ be two RBS
sequences with length L; the WDS kernel is defined as

=

= + =
= =

+

= +

[ + + + ] [ + ] [ + ] [ + + + ]

k x x

x x x x
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d
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2( 1)

( 1)
1

2( 1)
, and γl is a weighting

parameter over the position in the sequence, where we chose
to use a uniform weighting over the sequences, i.e., γl = 1/L (L
= 20 in our design).
S(l) determines the maximum shift at position l.

Furthermore, we normalize the kernel with centring and
unit-norm in terms of all sequences in the design space.
The hyperparameters for kernel, including maximum

substring length = 6, maximum shift length S(l) = 1, and
the standard deviation of GP noise α = 1 were chosen on the
basi of 10-repeat 5-fold cross validation. The values of
hyperparameters considered were ∈ {3, 4, 5, 6}, S(l) = {0,
1, 2}, α = [0.5, 1, 2].
4.2.3. Recommendation: Upper Confidence Bound Multi-

armed Bandit Algorithm. To recommend the RBS sequences
to query in the next round, we have used the Upper Conf idence
Bound (UCB) batch algorithm,9 which provides exploration−
exploitation balance. On one hand, UCB exploits the function
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in terms of the design space, that is to pinpoint sequences that
are believed to have high labels (i.e., high predicted mean); on
the other hand, UCB explores the design space where we have
little information and sequences have a chance to have high
labels (i.e., high predicted standard deviation). More precisely,
the UCB algorithm selects RBS sequences xi with the
maximum upper confidence bound at Round t, i.e.,

+x xargmax ( ( ) ( ))t i t t ix 1 1
i (2)

where βt is a hyperparameter balancing the exploration and
exploitation, μt(xi), σt(xi) are the predicted mean and standard
deviation (that is uncertainty of the prediction) at Round t for
the sequence xi. We call μt−1(xi) + βtσt−1(xi) the UCB score of
sequence xi at Round t − 1.
Since experimentally labeling sequences is time-consuming,

it is unrealistic to recommend sequences sequentially (i.e., one-
by-one) and then wait for the label to be tested and used to
improve the model. Instead, we can recommend RBS
sequences in a batch of size m. However, this approach may
end up recommending similar sequences in the same local
maximum (e.g., x = 2, x = 2.5 in this example). Since GPR
assumes similar sequences would have similar labels (e.g., by
knowing x = 2 we can gain information about x = 2.5 as well),

we prefer to not waste time and money on labeling sequences
with high similarities in the same batch. To counter this, we
use a batch recommendation strategy that is designed to avoid
recommending such highly similar sequences in the same
batch, described below.
A key property of Gaussian Process regression is that the

predicted standard deviation depends only on features, not on
the labels. One can make use of this property to design a batch
upper confidence bound (BUCB) algorithm.29 The strategy
here is to recommend RBS sequences one-by-one by
sequentially adding the newly recommended RBSs’ predicted
means (without testing them) into the training data and
updating UCB scores.
As illustrated in Figure 5B, the algorithm recommends the

data point with maximum UCB score based on the predictions
over the initial 5 observations. We then add the recommended
data point (x = 2) into the training data set with the predicted
mean of that point as the label (note it is not the true label),
and update the predicted standard deviation, then we finally
update the UCB scores. The second data point is then
recommended based on the new UCB scores. Figure 5C shows
that since we assume we have observed x = 2, the new
predicted standard deviation of the data points in design space
around x = 2 decreases, so instead of recommending a similar

Figure 5. Batch recommendation illustration. We use the batch size of 2, with 5 initial observations. The design space is 24 uniformly distributed
points in the range [−2, 10], i.e., −2, −1.5, −1, ..., 9.5, 10. The confidence intervals are shown with predicted mean ±1.96 standard deviation. (A)
Top UCB recommendations. The recommendations are 2 data points with top UCB scores, chosen with GP predictions. (B,C) Batch UCB
recommendations. Panel (B) shows the first recommended sequence, (C) shows the new predicted confidence interval and the second
recommendation based on that updated interval.
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data point x = 2.5, the algorithm recommends x = 8, which is
in another local maximum design area. In this way, the batch
recommendation can potentially cover more local maximum
areas than the sequential design. In summary, the exploration
efficiency is improved since the recommended sequences in
one batch will tend to be in different design areas so that the
information gain is maximized. In our design, we have set the
batch size to 90, to fit the experimental batch. Finally, we set βt
= 2 for Round 0−3 and βt = 0 for the last round to allow for
more exploitation.
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