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Abstract

Motivation: Biological cells operate in a noisy regime influenced by intrinsic, extrinsic and external

noise, which leads to large differences of individual cell states. Stochastic effects must be taken

into account to characterize biochemical kinetics accurately. Since the exact solution of the chem-

ical master equation, which governs the underlying stochastic process, cannot be derived for most

biochemical systems, approximate methods are used to obtain a solution.

Results: In this study, a method to efficiently simulate the various sources of noise simultaneously

is proposed and benchmarked on several examples. The method relies on the combination of the

sigma point approach to describe extrinsic and external variability and the s-leaping algorithm to

account for the stochasticity due to probabilistic reactions. The comparison of our method to exten-

sive Monte Carlo calculations demonstrates an immense computational advantage while losing an

acceptable amount of accuracy. Additionally, the application to parameter optimization problems

in stochastic biochemical reaction networks is shown, which is rarely applied due to its huge com-

putational burden. To give further insight, a MATLAB script is provided including the proposed

method applied to a simple toy example of gene expression.

Availability and implementation: MATLAB code is available at Bioinformatics online.

Contact: flassig@mpi-magdeburg.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Variability and heterogeneity are fundamental properties of biolo-

gical systems. Cells differ in all kinds of attributes including cell size,

protein abundances and morphology (Spiller et al., 2010), which is

caused by various sources of noise. In this study we refer to intrinsic

noise as an inherent stochastic biochemical process, extrinsic noise

as cell-to-cell variability and external noise as environmental fluctu-

ations. Intrinsic noise is very dominant for small biochemical reac-

tion systems involving low copy numbers of chemical species (e.g.

gene networks), whereas extrinsic and external noise increase with

system size (Patnaik, 2006). Since the cellular abundance of numer-

ous chemical species span all scales from just a few (e.g. genes) to

several millions (e.g. proteins) all sources of noise contribute to bio-

logical heterogeneity. The interplay between intrinsic, extrinsic and

external noise and their effects on system dynamics is hardly ex-

ploited due to experimental and numerical challenges (Spiller et al.,

2010; Fernandes et al., 2011; Delvigne et al., 2014). Monte Carlo

(MC) techniques are the standard approach to tackle stochastic bio-

chemical reaction networks, but they suffer from an immense

computational burden especially in optimization problems, where a

system has to be simulated numerous times. Approximations have

to be used in order to make computations feasible.

Figure 1A illustrates a cell population that is corrupted by intrin-

sic, extrinsic and external noise. In this scenario, a heterogeneous

population of cells under realistic conditions, which differ in size,

shape and number of organelles is situated in an inhomogeneous me-

dium containing concentration gradients (gray background). In addi-

tion to that, intrinsic noise caused by switching of a single gene

between different states contributes to the overall variability. To clar-

ify our understanding of intrinsic, extrinsic and external noise their

impact on a simple decay process P!1 describing the degradation

of the protein P is shown in Figure 1B–D. Here, intrinsic noise is mod-

eled by the Gillespie algorithm (SSA) (Gillespie, 1977) that treats reac-

tions as stochastic events, whereas extrinsic noise is modeled by

distributed initial conditions, which accounts for cell-to-cell variabil-

ity. Both effects rely on different mechanisms, but result in a probabil-

ity density function (PDF) characterizing the abundance of the protein

(red). Adding both effects yields a further spread of the resulting PDF
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indicated by an increase of the standard deviation, see Figure 1D.

Note that external noise was left out in the investigation of the decay

process, because in the case of a stationary random process its math-

ematical treatment is identical to extrinsic noise. In case the external

noise is a stochastic dynamic process, its mathematical treatment is

identical to intrinsic noise. For simplicity, we refer from now on only

to the terms extrinsic and intrinsic noise, representing a stationary

random variable or a stochastic dynamic process, respectively.

In this study, we propose an approximate method to model distrib-

uted stochastic processes by means of stochastic differential equations.

The method relies on the combination of the sigma point (SP) approach

(Julier et al., 2000) accounting for extrinsic noise and the s-leaping al-

gorithm (Cao et al., 2006) capturing probabilistic reactions. The article

is organized as follows. In Section 2 a brief introduction to modeling of

stochastic biochemical systems and a short overview of existing meth-

ods is given. In Section 3 the idea and advantages of the proposed

method are described. In Section 4 a detailed benchmark on an ex-

ample of gene expression is performed followed by the application of

our method on several parameter optimization examples. Section 5

summarizes and discusses our results. We provide Supplementary

Material with additional information concerning our methodology and

the benchmark systems. The gene expression example is illustrated

with a MATLAB script using the proposed method.

2 Theoretical background

The simplest and most common approach to model biochemical sys-

tems is by means of ordinary differential equations (ODEs)

d

dt
xðtÞ ¼ f ðxðtÞ;uðtÞ; hÞ ¼ NvðxðtÞ;uðtÞ; hÞ: (1)

They describe the temporal evolution of the continuous state vec-

tor x by reaction rate equations. In this context N denotes the stoi-

chiometric matrix, v the reaction rates, h a set of parameters and u

external deterministic forcing. ODEs in this form neglect stochastic-

ity introduced by intrinsic noise and fail to model the underlying

process correctly. A more detailed description can be achieved with

the chemical master equation (CME) (Gillespie et al., 2013)

d

dt
PðxðtÞ; tÞ ¼

Xm
k¼1

akðxðtÞ �NkÞPðxðtÞ �Nk; tÞ � . . .

akðxðtÞÞPðxðtÞ; tÞ;
(2)

taking into account the inherent stochastic nature of biochemical reac-

tions. The CME governs the temporal evolution of the probability P

to find the system in the discrete state x. ak denotes the propensity of

reaction k and Nk the k’s column of the stoichiometric matrix. For

simplicity u and h are left out in Equation (2), but they can be easily

introduced by interpretation as additional reaction channels (Sanft

et al., 2011). From the solution P for all reachable states a PDF q

describing the stochastic variable x can be reconstructed for every time

point. q can be interpreted as a vector, whose entries represent the

probability of a certain abundance interval of a chemical species. For

most biochemical systems it is not possible to find an exact solution of

the CME, so approximate methods have to be used. The SSA and its

derivatives (Gillespie et al., 2013), such as leaping (Cao et al., 2006;

Fu et al., 2013) and time-scale separation approaches (Marchetti

et al., 2016) are powerful methods, which rely on a statistical mechan-

ics ansatz treating chemical reactions as discrete molecular collision

events. Although these algorithms are very popular they fail to capture

variability introduced by extrinsic noise. The finite state projection al-

gorithm (Munsky and Khammash, 2006) obtains a solution by inte-

gration of the CME. This algorithm accounts for intrinsic and

extrinsic noise, but due to the curse of dimensionality it is not applic-

able to systems with a large state space. Another approach is the

method of moments (Lakatos et al., 2015), which relies on the integra-

tion of coupled ODEs for the statistical moments. This method incorp-

orates intrinsic and extrinsic noise, but does not reconstruct the state

vector’s PDF and numerical instabilities make it difficult to handle

(Lee et al., 2009; Azunre et al., 2011). A promising approach consists

of solving the CME directly via tensor trains, but the derivation of the

tensor trains is nontrivial (Kazeev et al., 2014). To overcome these

drawbacks, we propose a novel method paving the way to further

understanding of variability and heterogeneity in biochemical systems.

3 Efficient modeling of intrinsic and
extrinsic noise

A straight forward approach to model intrinsic and extrinsic noise

simultaneously is to perform MC sampling for extrinsic noise e.g.

distributed initial conditions or parameters and to compute intrinsic

noise i.e. the temporal evolution of a stochastic process with the

SSA. In the limit of infinite function evaluations the obtained histo-

gram is equal to the solution of the CME. Since both methods rely

on the generation of random numbers they are extremely time con-

suming and computationally intense. In order to speed up the algo-

rithm, it is possible to lower the resolution of the histograms and use

fewer, broader bins or to perform kernel smoothing, which results

in the summation of kernel distributions while keeping a high

A B C D

Fig. 1. Noise in biochemical systems. (A) Various sources of noise corrupt biochemical reaction systems. The influence of intrinsic noise (B), extrinsic noise (C)

and intrinsic noise combined with extrinsic noise (D) on a decay process results in differences of the probability density function (PDF), the mean and the stand-

ard deviation (std)
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resolution. This is illustrated for the Schlögl model (Schlögl, 1972)

in Figure 2A and B. In this study, only Gaussian kernels are con-

sidered with the bandwidth denoting the kernel’s standard devi-

ation. The idea of the here proposed method is to further accelerate

the computation by approximating the PDF of the extrinsic noise

and propagating it through time by a stochastic process, see Figure

2C. We suggest using the SP approach to account for the extrinsic

noise. In contrast to MC sampling, the SP approach chooses only

2nH þ 1 sigma points / deterministically and estimates mean E and

covariance C of a random variable Y given by a nonlinear trans-

formation h (see Supplementary Material for further information).

In this context Y refers to the abundance of chemical species and h

governs their temporal evolution due to chemical reactions. nH de-

notes the number of distributed initial conditions H, but it can also

include kinetic parameters of the right hand side of Equation (2).

The samples are chosen according to

/0 ¼ EðHÞ (3)

/i ¼ EðHÞ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnH þ jÞC

p
i; (4)

where Ci denotes the ith row of the covariance matrix in the original do-

main. We chose the free parameter j according to j ¼ 3� nH (see

Supplementary Material for more information). The transformed samples

yi ¼ hð/i; tÞ (5)

are used to compute the mean and covariance

EðYÞ ¼
X2nH

i¼0

wiyi (6)

CðYÞ ¼
X2nH

i¼0

wiðyi � EðYÞÞ � ðyi � EðYÞÞT (7)

with the weights

w0 ¼
j

nH þ j
(8)

wi ¼
1

2ðnH þ jÞ : (9)

Assuming normality, log-normality or any other appropriate PDF

characterized by mean and variance-covariance, the underlying dis-

tribution bq can be estimated from the mean and covariance (Julier

et al., 2000).

To incorporate intrinsic noise due to stochastic reactions on top

of the extrinsic variability, the solution of CME at each point in

time can be attributed a corresponding transformation hCME of a

probability function. Alternatively, when approximating the CME

by sampling the underlying stochastic process with the SSA, single

realizations of the SSA yield realizations of a transformation hSSA of

realizations of x in Rnx . Note that hCME is a mapping between func-

tional spaces with elements PtðxÞ7!PtþDtðxÞ, whereas hSSA maps

from RnxþnH ! Rnx i.e. ðxt; hÞ7!xtþDt. To overcome the SSA’s huge

computational load we used an approximate version, which is the s-
leaping algorithm implementation of StochKit2 (Sanft et al., 2011).

Note that by combining intrinsic and extrinsic noise we have to deal

with a distributed CME. As for real valued stochastic variables, the

corresponding ensemble of probability functions or PDFs of the

CME may be characterized by statistical moments. To obtain an es-

timate of the true average PDF q, the scheme is repeated n times and

the resulting distributions are used as

~q ¼
Xn

k¼1

xkbqk ¼
1

n

Xn

k¼1

bqk; (10)

where we assumed that xk ¼ 1=n. A scheme of the algorithm is

given in Figure 3 and the corresponding pseudo code can be found

in the Supplementary Material.

The sigma points have been applied frequently to deterministic

ODEs e.g. (Flassig and Sundmacher, 2012; Schenkendorf et al.,

2009; Toni and Tidor, 2013), whereas (Toni and Tidor, 2013) have

proposed a combination of sigma points and X-expansion to de-

scribe extrinsic and intrinsic variability. We are not aware of appli-

cations of sigma points to stochastic ODEs, which we apply here for

sampling realizations of the CME to ultimately get an approximate

solution to a distributed CME. However, the accuracy of determin-

istic functions given in (Julier et al., 2000) should also apply for

A

B

C

D

E

Fig. 2. Approximation of MC methods. Histogram binning (A) and kernel smoothing (B) represent common methods to derive PDFs from MC trajectories (gray)

sampled from distributed initial conditions (red, left). The proposed SP approach (C) provides an efficient simulation technique sampling from 2nH þ 1 starting

points (red, left). The red distribution on the right indicates the pseudo exact solution obtained by MC sampling combined with the SSA. The black histogram il-

lustrates the histogram binning in (A) and the black distributions in (B) and (C) are summed up to obtain an approximate solution (not shown) to the exact solu-

tion. For better visualization all distributions are scaled. The accuracy (D) and convergence (E) elucidate the computational advantages of the proposed method
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each incremental time step s in the s-leaping realization, since for

each realization we have formally a deterministic mapping, which

we can expand into a Taylor series as done in (Julier et al., 2000) for

the accuracy analysis. We note, however, that the convergency of

~q! q is in general not guaranteed. This depends on the ensemble of

hSSA and the choice of xk and bqk. Even though our results show that

the proposed approach works well, a thorough analysis is required

at this point which is, however, out of scope of this contribution.

4 Benchmarking

4.1 Comparison to extensive Monte Carlo sampling
To compare all methods illustrated in Figure 2 the Euclidean

distance

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~q� qÞ2

q
(11)

is used as similarity measure (Cha, 2007) between the approximate

solution and the pseudo exact solution obtained by MC sampling

combined with the SSA. Since the final distribution of all methods is

a random variable due to the underlying stochastic process, which is

used for temporal evolution of the system, the computation was re-

peated nstat ¼ 103 times to derive a statistical statement. The mean

and standard deviation of the Euclidean distance of the nstat distribu-

tions are exploited as measures for accuracy and convergence. In

Figure 2D and E the dependency of accuracy and convergence on

the number of function evaluations for the Schlögl model introduced

in the previous section is illustrated. For the histogram and kernel

method, the number of function evaluations is given by the number

of MC samples and for the proposed method by nð2nH þ 1Þ. As can

be seen, our proposed method outperforms the others in accuracy as

well as convergence for up to 310 function evaluations, which high-

lights its computational benefit. For this illustration we used a kernel

bandwidth of 10 and a histogram binwidth of 75.

To further demonstrate the computational efficiency of the pro-

posed method an example of gene expression resulting in multi-

modal probability distributions is investigated. The gene expression

system consists of the following reactions

geneoff k2

 !
k1

geneon (12)

geneon!
k3

geneon þ A (13)

Aþ B!k4 1: (14)

A single gene is considered which is able to flip between an active

and inactive state. In the active state the gene produces protein A,

which is degraded by protein B. This example involves intrinsic

noise due to the low abundance of the gene, but also extrinsic noise

due to the distributed initial conditions of protein B. In Figure 4A

the proposed method is illustrated for protein A. Several distribu-

tions of bqk (gray, dashed) are averaged to obtain the resulting ap-

proximate distribution ~q (gray, solid). The approximate solution

mimics the distributed character of the pseudo reference obtained by

MC sampling combined with the SSA, which constitutes a bimodal

distribution with—regarding any approximation approach—a chal-

lenging sharp peak for low abundances. The temporal evolution of

the distributions of protein A and B are shown in Figure 4B and E.

The approximation is very similar to the solution obtained by MC

sampling combined with the SSA demonstrating the capability to

Fig. 3. Workflow of the proposed algorithm. Note that in 4, one may assume

any PDF that is characterized by mean and covariance and also in 5 one may

use different weights xk for each sample k. However, the choice is a priori not

clear, and we therefore suggest to use a Gaussian PDF and an equal weighting

Fig. 4. Comparison of performance. (A) Averaging of bqk (gray, dashed) yields an approximate solution ~q (gray, solid) of the CME for protein A at the time point

250 s. The pseudo exact solution obtained by MC sampling combined with the SSA is shown in red. For better visualization, the bqk are scaled and hence smaller

than the approximate distribution. The corresponding temporal evolution of the probability distributions for protein A and B are illustrated in (B) and (E). In (C)

and (F), the difference in accuracy of the proposed method and the kernel approach is shown for protein A and B. Shades of red indicate superior and white the in-

ferior accuracy of the proposed method (all negative values are marked white). The difference in convergence is illustrated in (D) and (G) for protein A and B with

a similar color code
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qualitatively model intrinsic and extrinsic noise simultaneously.

Furthermore, accuracy and convergence were investigated in compari-

son to the kernel approach. Since a priori the optimal selection of the

kernel bandwidth is not clear several bandwidths were tested system-

atically. In Figure 4C and F the difference of the mean Euclidean dis-

tance of the proposed method and the kernel approach

EðDKernelÞ � EðDSPÞ is shown for the time point t ¼ 1000 s. If this

term takes positive values (shades of red) the proposed method out-

performs the kernel approach and for negative values (white) the ker-

nel approach excels. The same applies to the difference of the

standard deviation of the Euclidean distance rstdðDKernelÞ � rstdðDSPÞ.
For protein A, it can be seen that for less than 1:5 � 103 function

evaluations the accuracy of the proposed method is always higher

than the accuracy of the kernel method. For more function evalu-

ations an optimal bandwidth yields better results at the price of higher

computational costs, see Figure 4C. For protein B the proposed

method is superior for all bandwidths and function evaluations, see

Figure 4F. Concerning the convergence it was found that the proposed

method outperforms the kernel approach for both proteins, except for

kernel bandwidths much larger than the spread of the underlying

distribution resulting in very low accuracy, see Figure 4D and G.

With this example including multimodality, low and high copy num-

bers of chemical species the strengths of the proposed method has

been clearly demonstrated. Note that beforehand the optimal kernel

bandwidth is not known and changes with time meaning that this par-

ameter has to be estimated for the optimal representation of every

PDF. The proposed method avoids this computational demanding

task making it easy to handle and applicable.

4.2 Application to parameter optimization
Having shown that the proposed method yields convincing results,

we utilize it for optimization of several biochemical reaction net-

works. In biology it is not possible to measure all parameters dir-

ectly, which are necessary for computational modeling, leading to

parameter estimation problems. The exact simultaneous simulation

of intrinsic and extrinsic noise is computational extremely intense,

wherefore approximate methods are needed. In this subsection, we

use the proposed method to estimate the unknown rate constants of

five different example systems described in Table 1. Therefore, six

Table 1. Benchmark model description

Model Initial conditions ktrue kopti

Gene Model:

geneoff
k2

 !
k1

geneon

NON 0 k1 10�2 8:8 � 10�3

geneon!
k3 1geneon þ A

NOFF 1 k2 10�3 6:6 � 10�4

Aþ B!k4 1 NA 0 k3 5 � 10�1 5:2 � 10�1

NB eN ðl ¼ 103; r ¼ 1:5 � 102Þ k4 5 � 10�7 5:2 � 10�7

Schlögl Model (Schlögl, 1972):

2Xþ A
k2

 !
k1

3X
NX eN ðl ¼ 2:75 � 102;r ¼ 5Þ k1 3 � 10�7 3:1 � 10�7

B
k4

 !
k3

X
NA 105 (const.) k2 10�4 10�4

NB 2 � 105 (const.) k3 10�3 10�3

k4 3.5 3.5

Michaelis–Menten-Kinetics

(Michaelis and Menten, 1913):

Eþ S
k2

 !
k1

ES
NE 2:5 � 102 k1 10�4 10�4

ES!k3
P

NS Nðl ¼ 104; r ¼ 103Þ k2 5 � 10�3 2:4 � 10�3

NES 0 k3 10�1 10�1

NP 0

Virus Model (Gupta and Rawlings, 2014):

V!k1
G

NV eN ðl ¼ 50; r ¼ 5Þ k1 1:5 � 10�1 1:4 � 10�1

G!k2
GþM

NG 0 k2 2 � 10�2 2:1 � 10�2

G!k3
2G

NM 0 k3 5 � 10�2 5:1 � 10�2

M!k4
Mþ P

NP 0 k4 1 9:9 � 10�1

Yeast Model (Poovathingal and Gunawan, 2010):

PC3 !
k1

PC3 þmRNAG
NPC eN ðl ¼ 50; r ¼ 10Þ k1 5 � 10�1 5:1 � 10�1

mRNAG !
k2 1 NmRNAG

0 k2 5 5.1

mRNAG !
k3

mRNAG þ yEGFP
NyEGFP 0 k3 1 1

yEGFP!k4 1 NmRNAR
0 k4 2 � 10�2 2:1 � 10�2

1!k5
mRNAR

NTetR 0 k5 5 � 10�1 5:3 � 10�1

mRNAR !
k6 1 k6 2 � 10�1 2 � 10�1

mRNAR !
k7

mRNAR þ TetR
k7 1 1

TetR!k8 1 k8 2 � 10�2 2:1 � 10�2
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reference measurements computed with the SSA and MC sampling

with equal time spacing were used for comparison with the results

of our approximate method. For the example of gene expression

only protein A and B are utilized for optimization, whereas for the

other examples all chemical species were used. The objective func-

tion was the sum of the eucledian distance between the pseudo refer-

ence and the approximate solution for all chemical species and time

points. The optimization was performed with a genetic algorithm,

since gradient based algorithms fail for stochastic systems and get

easily stuck in local extrema (Poovathingal and Gunawan, 2010).

For all example systems 500 generations with a population size of

40 were used. In Table 1 the true parameters ktrue and the optimized

ones kopti are provided. For all example systems, the optimized para-

meters are very close to the true parameters indicating that the pro-

posed method yields excellent results and depicts a promising

technique for optimization of stochastic biochemical reaction sys-

tems. In the Supplementary Material further comments regarding

the benchmarking can be found.

5 Discussion

In this study, the problem of efficiently simulating biochemical reaction

systems containing intrinsic and extrinsic noise is addressed. We pro-

pose a novel algorithm relying on the SP approach and the s-leaping al-

gorithm, which computes approximate solutions of the distributed

CME. The method is benchmarked on several examples illustrating its

computational benefit compared to others. Choosing only 2nH þ 1 SPs

deterministically the proposed method converges very fast to an ap-

proximate solution. The accuracy of our approximative approach is

barely dependent on system size but rather on the complexity of the sto-

chastic mapping itself. This can be seen when the estimated PDFs of the

Schlögl model are compared to the Virus model (one versus four states).

Therefore, our results are very likely to also apply for large reaction sys-

tems. The strength of the method i.e. fast convergency at reduced sam-

ple size, also introduces some of its weaknesses. Since only a few

samples from the initial distribution are chosen it might be sampled too

sparsely. Additionally the choice of PDF kernels is a priori not clear.

Although the proposed method might not converge to the exact solu-

tion of the CME (see saturation behavior in Fig. 2D) it qualitatively de-

scribes important characteristics of the underlying distribution (see Fig.

4A, B and E, and also additional illustrations of approximate versus

pseudo exact solution in the Supplementary Material).

The method may serve as a tool for rapid analysis and optimiza-

tion of a stochastic system. For precise predictions, we suggest to use

our method as a starting point for refinement by means of numeric-

ally demanding, but asymptotically exact methods. Although there

is a lot of development making stochastic analysis tools with state of

the art algorithms and fast implementations (Drawert et al., 2016;

Fan et al., 2016; Somogyi et al., 2015) available for a broad commu-

nity the optimization of stochastic biochemical systems is hardly

performed due to its challenging computational effort (Poovathingal

and Gunawan, 2010). With this study, we demonstrated that the

proposed method is capable of describing biochemical systems con-

taining intrinsic and extrinsic noise and it represents a promising

tool suited for optimization and analysis of distributed, stochastic

biochemical reaction systems.
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