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Abstract

Cytoplasmic Polyadenylation Element Binding (CPEB) proteins are translational regulators that can either activate or repress
translation depending on the target mRNA and the specific biological context. There are two CPEB subfamilies and most
animals have one or more genes from each. Drosophila has a single CPEB gene, orb and orb2, from each subfamily. orb
expression is only detected at high levels in the germline and has critical functions in oogenesis but not spermatogenesis.
By contrast, orb2 is broadly expressed in the soma; and previous studies have revealed important functions in asymmetric
cell division, viability, motor function, learning, and memory. Here we show that orb2 is also expressed in the adult male
germline and that it has essential functions in programming the progression of spermatogenesis from meiosis through
differentiation. Like the translational regulators boule (bol) and off-schedule (ofs), orb2 is required for meiosis and orb2
mutant spermatocytes undergo a prolonged arrest during the meiotic G2-M transition. However, orb2 differs from boule and
off-schedule in that this arrest occurs at a later step in meiotic progression after the synthesis of the meiotic regulator twine.
orb2 is also required for the orderly differentiation of the spermatids after meiosis is complete. The differentiation defects in
orb2 mutants include abnormal elongation of the spermatid flagellar axonemes, a failure in individualization and improper
post-meiotic gene expression. Amongst the orb2 differentiation targets are orb and two other mRNAs, which are transcribed
post-meiotically and localized to the tip of the flagellar axonemes. Additionally, analysis of a partial loss of function orb2
mutant suggests that the orb2 differentiation phenotypes are independent of the earlier arrest in meiosis.
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Introduction

Proteins in the Cytoplasmic Polyadenylation Element Binding

(CPEB) family were first identified in Drosophila ovaries and Xenopus

oocytes [1–4]. In both organisms the CPEB proteins function in

the localization and translational regulation of mRNAs encoding

key developmental and polarity determinants as well as factors

controlling the process of egg maturation. Since then CPEB family

proteins have been implicated in many other biological contexts.

These include translational regulation of embryonic cell division

[5,6], regulation of p53 expression [7,8], synaptic plasticity in the

rat hippocampus [9], long-term memory in Aplysia [10,11] and

spermatogenesis in the worm [12]. The CPEB proteins bind to

CPE elements in the 39 UTRs of target mRNAs and can both

repress and activate translation. Translation activation typically

involves the phosphorylation of the CPEB protein and the

subsequent recruitment of a cytoplasmic poly A polymerase which

extends the poly A tail [13].

Most animals have two or more CPEB genes. Completed genome

sequences reveal that humans, mice, and C. elegans have four genes,

while there are only two CPEBs, orb and orb2, in Drosophila. The

homology between the CPEBs is largely restricted to the C-terminal

region of the protein, where two RNA-Recognition Motif (RRM)

domains are found, while the N-terminal domain is highly divergent

even amongst closely related species. Phylogenetic trees indicate

that the CPEB genes fall into two different subgroups. One

subgroup includes Drosophila orb, mouse CPEB1 and the canonical

Xenopus CPEB, while the other subgroup contains the second

Drosophila CPEB gene, orb2, as well as mammalian CPEB 2, 3, and 4

[12,14].

The Drosophila orb gene has been extensively characterized. Its

expression appears to be restricted to the germline as neither

mRNA nor protein can be detected in somatic tissues of the

embryo, larvae and adult. While a male-specific Orb isoform is

expressed in the male germline, its activity is not absolutely

essential since the fertility of orb null males is reduced but not

eliminated (Agunwamba and Xu, unpublished). In contrast, orb

plays a central role in the process of oogenesis. orb expression is

first activated during the mitotic divisions that ultimately generate

an egg chamber containing 15 nurse cells and an oocyte. At this

stage orb activity is required for the proper specification of the

oocyte. Subsequently, orb is required for establishing the anterior-

posterior and dorsal-ventral axes of the egg and embryo. Amongst

the key orb mRNA regulatory targets are the polarity determinants

oskar and gurken [15–18].

Unlike orb, the second Drosophila CPEB gene, orb2, is broadly

expressed in both the soma and germline. The highest levels of

Orb2 are in the embryonic, larval and adult CNS, and in the germ
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cells of the male testes [19]. There are two Orb2 isoforms, one of

75 kD and the other of 60 kD. The larger isoform is expressed in

somatic tissues and the germline of both sexes, while the smaller

isoform is found in testes but is not detected elsewhere. The

isoforms share a 542 C-terminal amino acid sequence, but have

unique N-termini of 162 and 9 amino acids respectively. Included

in the common region is the conserved C-terminal CPEB

signature RRM type RNA binding and zinc finger domains.

The N-terminal half of both isoforms has short conserved

sequences rich in serine or histidine interspersed with poorly

conserved sequences containing poly-glutamine or poly-glycine

repeats [19].

As might be expected from its broad expression pattern, orb2 has

a number of somatic functions. During embryogenesis it is

required for asymmetric cell division of neuroblast and muscle

precursor stem cells and appears to function by promoting the

localized accumulation of atypical Protein Kinase C (aPKC) [19].

In addition, orb2 mutants have substantially reduced viability, a

shortened life span, and defects in behavior and long-term

memory [14,19,20,21]. Here we report that orb2 is essential for

spermatogenesis, and that it functions in programming the orderly

and sequential progression of spermatogenesis from meiosis

through differentiation.

Results

Orb2 expression pattern during spermatogenesis
In situ hybridization and antibody staining were used to examine

orb2 expression in the testes. While there is little if any orb2 mRNA

(Figure 1B, 1B9) or protein (Figure 1C, 1C(I)) in stem cells, low

levels are detected in the mitotic cysts. After mitosis is finished and

the interconnected spermatocytes begin to grow, there is a

substantial upregulation in both mRNA and protein. This period

of growth corresponds to the stage when many gene products

needed for subsequent steps in spermatogenesis are synthesized

[22,23]. Though Orb2 protein is found throughout the spermato-

cyte cytoplasm, higher levels of protein are concentrated in a ring

around the nucleus (Figure 1C(II), 1D). Orb2 expression peaks as

the mature spermatocytes go through meiosis and high levels of

Orb2 are found in 32 and 64 cell spermatid cysts (Figure 1C(III)).

Orb2 persists after the spermatids in the 64 cell cysts start

differentiation and begin flagellar axoneme elongation

(Figure 1C(IV)). As the axonemes begins to elongate, the 64

spermatid nuclei bundle together and then begin to condense into

needle-like structures (Figure 1F, inset, Figure 1A). Though Orb2

is distributed along the entire axoneme bundle, the highest

concentrations are found in a prominent band (Figure 1E,

arrowhead) close to the distal tip of the growing flagellar axonemes

(Figure 1A). The leading edge of the axonemes is just in front of

the Orb2 band and this region contains small clumps of Orb2

(Figure 1E, arrow). In the region behind the band, Orb2 is

organized into a series of striated lines that extend towards the

sperm nuclei at the proximal (basal) tip of the spermatid (Figure 1E,

bracket) and presumably correspond to individual flagellar

axonemes in the spermatid bundle.

While Orb2 is present in elongating spermatids that have not

yet completed nuclear condensation (* in Figure 1F), it disappears

once elongation and nuclear condensation are completed (o in

Figure 1F). To confirm this, we compared the accumulation

patterns of Orb2 and Don Juan-GFP (DJ-GFP). While DJ-GFP is

highly expressed once the nuclei have condensed and individual-

ization begins, it is not found in spermatids that are still

undergoing elongation [24,25]. As expected, we did not observe

spermatids that simultaneously had Orb2 and DJ-GFP. Moreover,

since some fully elongated spermatids with condensed nuclear

bundles have neither Orb2 nor DJ-GFP (x in Figure 1F), there

seems to be a delay between the disappearance of Orb2 and DJ-

GFP expression. This suggestion is supported by a comparison of

the Orb2 and Orb expression patterns. orb is transcribed post-

meiotically and orb mRNAs localize in a band at the distal tip of

elongating spermatids [3,26]; however, the localized mRNAs does

not appear to be translated until the end of the elongation phase

after Orb2 begins to disappear. Figure 2A–2D show that high

levels of Orb are found in the tips of elongated spermatids that

have neither Orb2 nor DJ-GFP. On occasion we observed

spermatids that have activated Orb translation but still retain some

residual Orb2 (Figure 2B, arrowhead).

Orb2 phosphorylation states are changed in aly and can
class mutants

While meiosis and differentiation require different gene

products for execution and have their own regulators, there is a

class of genes that control both aspects of spermatogenesis.

Included in this group are always early (aly), spermatocyte arrest (sa),

meiosis I arrest (mia) and cannonball (can) which encode testes specific

TAFs (TATA Box Protein associated factors) [22,27]. Mutations in

these testes specific TAFs cause spermatocytes to arrest at the G2-

M transition of meiosis I and block the expression of factors

needed for differentiation [28]. However, though these genes

encode factors essential for Pol II activity, the effects of mutations

are not limited to general transcription. For example, twine (twe)

mRNA is expressed in tTAF mutants, but is not properly

translated [28]. Figure S1 shows that mutations in these four

genes have two effects on Orb2 protein expression in the testes.

First, Orb2 levels were substantially reduced (Figure S1A). Second,

there was a noticeable reduction in the electrophoretic mobility of

the larger Orb2 isoform. As illustrated for the sa mutation,

treatment of the testes extract with lambda phosphatase removes

the Orb2 signal with slow electrophoretic mobility and indicates

that phosphorylation is responsible for the reduced mobility of

Orb2 in the mutant testes (Figure S1B). As might be expected,

these tTAF mutations do not seem to affect Orb2 in somatic

tissues such as the head (Figure S1A).

orb2 mutants are male sterile
To better understand how orb2 functions in spermatogenesis, we

examined the effects of mutations. Previously we characterized a

collection of 5 transposon insertions in the orb2 locus [19]. As

Author Summary

Cytoplasmic Polyadenylation Element Binding (CPEB)
proteins bind and recognize CPE sequences in the 39
UTRs of target mRNAs and can activate and/or repress
their translation depending on the mRNA species and the
biological context. Drosophila has two CPEB family genes,
orb and orb2. orb is expressed in the germline of both
sexes and has critical functions at multiple steps during
oogenesis; however, it plays only a limited role in
spermatogenesis. Here we show that the second CPEB
family gene orb2 has the opposite sex specificity in
germline development. While it appears to be dispensable
for oogenesis, orb2 has essential functions during sper-
matogenesis. It is required for programming the orderly
and sequential progression of spermatogenesis from
meiosis through differentiation. orb2 mutants fail to
execute the meiotic G2-M transition and exhibit a range
of defects in the process of sperm differentiation.
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shown in Figure 3, two of the transposons, 1556 and 4965 have no

effect on Orb2 expression. This is expected as 1556 is inserted

upstream of the orb2-1 promoter, while 4965 is located

downstream of the Orb2 protein coding sequences. Two of the

transposons, 6090 and 1925, are inserted downstream of both the

orb2-1 and orb2-2 promoters and interfere with expression of orb2

mRNAs encoding the 75 kD isoform in the testes and head

(Figure 3, Figure S2 and [19]). In contrast, the 1793 insertion,

which is located farther upstream in between the orb2-1 and orb2-2

promoters, affects 75 kD expression in the testes, but not in the

head, suggesting that orb2-1 is more heavily used in the testes,

while orb2-2 is more heavily used in the head (Figure S2). As

expected from their insertion sites, none of the transposons affect

the 60 kD isoform. On the other hand, the reduction in the 75 kD

isoform in 6090, 1925 and 1793 is accompanied by a small but

reproducible increase in the 60 kD isoform (Figure 3B). This raises

the possibility that a negative feedback loop might regulate the

levels of the two isoforms.

Figure 1. Orb2 expression during spermatogenesis. A) Drawing of the testis. Light blue: stem cell and spermatogonia region, green:
spermatocytes, orange: spermatids, red: beginning of spermatids elongation, purple: elongated spermatids (dark blue: spermatid nuclear bundle).
Terms used for describing directions of elongation are indicated here. B) Florescent in situ hybridization with orb2 antisense probe of one testis.
Image is stitched together from 4 frames with Fiji. B9) Zoom in view of the tip region. Arrow indicates position of the stem cell niche; square bracket
outlines the spermatogonia region. C, C9) Testis stained with Orb2 antibody (red) and overlay of Orb2 and DNA (blue). C(I): Testis tip and
spermatogonia region containing the 2,4,8-cell cysts. Arrow indicates position of the stem cell niche. C(II): Mature spermatocytes (arrow). C(III):
Spermatocytes (arrow) and spermatids (arrowhead). C(IV): elongating spermatids. Arrow marks those with Orb2 expression, and arrowhead marks
those without Orb2. D) Orb2 is concentrated around the growing spermatocyte nuclei. Arrowheads mark one nucleus. E) Orb2 localization near the
distal (growing) tip of the elongating flagellar axonemes. Arrow, arrowhead and square bracket labels the leading edge of the axonemes, Orb2
concentrated region, and extended Orb2 expressing region respectively. F) Co-labeling of Orb2 in DJ-GFP testes. Orb2 is detected in cysts in which
the 64 spermatid nuclei have coalesced into the nuclear bundle (*), but have not yet fully completed chromosome condensation (o). DJ-GFP is only
expressed in spermatid cysts that have condensed their chromosomes. Some fully elongated spermatids with fully condensed nuclear bundles have
neither Orb2 nor DJ-GFP (x). Insets are enlarged from the main panel. Scale bars are as shown in each panel.
doi:10.1371/journal.pgen.1003079.g001
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Consistent with an important role for Orb2 in spermatogenesis,

we find that the fertility of homozygous 6090, 1925, and 1793

males is substantially impaired (not shown). When trans to

deficiencies that uncover orb2, 1925 is completely sterile, while

6090 and1793 occasionally give fertile males (Figure 3C). In

contrast, the two insertions, 1556 and 4965, that have no effect on

the expression of the 75 kD isoform, are fully fertile. That sterility

is due specifically to the loss of the Orb2 75 kD isoform is

supported by the finding that excision of the transposon insertions

restores the expression of this isoform and reverts the sterility

phenotype (609021, Figure 3).

Since the mutants still expressed the 60 kD isoform, along with

residual 75 kD isoform, they could retain some orb2 function. For

this reason, we generated orb2 nulls using FLP recombination

(Figure S2) [29,30]. Two upstream piggyBac insertions (1556 and

1925) contain correctly oriented FRT sites for deleting the orb2

protein coding sequence when paired with the downstream 4965

insertion. The resulting deletions, orb27 (192564965) and orb236

(155664965), eliminate orb2 mRNA and protein expression

(Figure 3). They have substantially reduced viability (data not

shown), while the surviving males are completely sterile (Figure 3).

To exclude possible background effects, we combined the two null

alleles with three different third chromosome deficiencies that

remove small parts of the third chromosome including orb2

(Df(3L)ED4421, Df(3L)ED4415, and Df(3L)ED4416). These trans

combinations also have reduced viability and are completely male

sterile (Figure 3C; not shown). Similar results were obtained for an

independently generated null allele, orb2B [14]. Since all null

alleles behave the same in our assays, we used orb236 in the

experiments described below.

orb2 mutant spermatocytes fail to complete meiosis
Overall testes morphology and the pre-meiotic stages of

spermatogenesis appear normal in orb236 and other orb2 mutants.

The spermatogonia undergo the sequential mitotic divisions

generating 16 interconnected spermatocytes, and the spermato-

cytes mature as in wild type. However, subsequent stages of

spermatogenesis are abnormal. In wild type, the products of

Figure 2. Orb expression in wild-type and orb236 testes. A–D)
Confocal images showing whole mount staining of testes with Orb
(pink) and Orb2 (red) antibodies in DJ-GFP (green) expressing wild type
testis. Arrow shows that Orb is expressed at the tip of those spermatids
that express neither Orb2 nor DJ-GFP. Orb expression is sometimes
seen in spermatids that have residual Orb2 (arrowhead). E, F) In orb236

testes, Orb expression is observed in spermatids that are not fully
elongated and its preferential localization near the tip of the elongating
flagellar axonemes is lost. Orb: pink; DNA, yellow. Scale bar, 50 mm.
doi:10.1371/journal.pgen.1003079.g002

Figure 3. Orb2 expression in the testes and fertility of different
orb2 alleles. A) orb2 gene structure. orb2 has three promoters (orb2-1,
2, and 3) and encodes multiple transcripts. piggyBac insertions 1556,
1793, 1925, 6090, and 4965 are marked by green arrows. Only 1793,
1925, and 6090 are expected to disrupt orb2 transcripts. Green box
marks the poly-Q sequence that is deleted in orb2BQ allele [14]. See
Figure S1 and [19] for further details. B) Orb2 expression in piggyBac
alleles (6090, 1925, 1793, 1556, 4965), orb2BQ, piggyBac insertion
revertant (609021), and orb236. (oe): over exposed. C) Fertility of
piggyBac insertion alleles, revertant, orb2BQ, orb236 and orb2B. Fertility is
consistent with Orb2 expression in the testes. DF(3L)4416 (referred to as
4416) is a small deletion allele that removes part of the third
chromosome that includes orb2 gene region.
doi:10.1371/journal.pgen.1003079.g003

Orb2 Has Multiple Functions during Spermatogenesis

PLOS Genetics | www.plosgenetics.org 4 November 2012 | Volume 8 | Issue 11 | e1003079



meiosis, the spermatids in the 64 cell cysts, have two characteristic

spherical structures when observed by phase contrast microscopy:

a light nucleus and a dark mitochondrial Nebenkern (Figure 4A).

While pseudo-spermatids are present in orb236, the cells and their

nuclei are unusually large and they have a poorly contrasted

Neberken, which is abnormally shaped and sometimes fragmented

(Figure 4B). As the overall DNA content is also increased

(Figure 4C, 4D), it seems likely that the orb2 spermatids have

replicated their DNA as in wild type, but failed to complete

meiotic divisions. Consistent with this possibility, we never observe

products of the first and second meiotic divisions, the 32 and 64

cell cysts respectively, in orb236 testes. By contrast, 32 and 64 cell

cysts are seen in wild type.

To further characterize the meiotic defects, we examined

chromosome morphology. During the prolonged G2 before the

spermatocytes enter meiosis I, the three large chromosomes

segregate into 3 domains and start the process of condensation. As

illustrated in Figure 4I, the spermatocyte chromosomes initially

coalesce into irregular rod-like structures located at vertices of a

triangle (Figure 4E). They subsequently condense into 3 sharp dots

(Figure 4F) before congressing to the metaphase plate in

preparation for the first meiotic division (Figure 4G) [31]. In

orb2, the spermatocyte chromosomes segregate into three domains,

and start the process of condensation. However, condensation is

incomplete and the chromosomes don’t congress to the metaphase

plate (Figure 4H).

Nuclear Cyclin A accumulates in orb2 spermatocyte cysts
These findings suggest that orb2 spermatocytes arrest meiosis at

a step prior to the first meiotic division. To analyze the meiotic

arrest further we examined Cyclin A accumulation. In wild type

testes, Cyclin A accumulates in the cytoplasm during G2.

However, just prior to the meiosis I G2 to M transition, Cyclin

A is targeted to the spermatocyte nucleus, and then quickly

degraded as meiosis proceeds [31,32]. Since nuclear localization is

only transient, cysts with nuclear Cyclin A are rarely seen in wild

type (Figure 5A). However, in orb236 and orb236/Df(3L)4416, most

cysts in the middle of the testes have high levels of nuclear Cyclin

A (Figure 5B).

Orb2 is in a complex with the translational regulator
Boule

These orb2 meiotic phenotypes are similar to the phenotypes

reported for mutations in boule (bol) and off-schedule (ofs) [32–34]. bol

encodes a homolog of mammalian DAZ fertility factor, while ofs

encodes a testes eIF4G. Like orb2, bol and ofs mutant spermatocytes

arrest meiosis prior to the first meiotic division and the cysts have

high levels of nuclear Cyclin A. The fact that all three proteins are

needed for meiosis suggested that they might function together. To

explore this possibility, we first tested whether Orb2 and Bol

associate with each other in testes extracts. As shown in Figure 5G,

Orb2 and Bol are in an RNase resistant immunoprecipitable

complex.

We also examined the pattern of Bol accumulation in orb236

testes. In wild type spermatocytes, Bol localizes in a perinucleolar

dot during spermatocyte maturation; however, once meiosis

begins, Bol is relocalized to the cytoplasm where it is thought to

promote the translation of target mRNAs [35]. Figure S3A, S3A9,

S3B, and S3B9 show that both phases of Bol localization are

observed in orb2 mutant testes. Also as in wild type, Bol is present

in ‘‘post-meiotic’’ (see below) orb236 spermatids even though they

haven’t undergone meiosis (Figure S3C, S3C9, S3D and S3D9). As

for Ofs, we were unable to demonstrate an association with Orb2

in testes extracts (Xu: unpublished data).

twine is misexpressed in orb2 mutant testes
One reason that bol and ofs mutants are blocked in meiosis at the

G2/M transition is that both factors are required for translation of

twine (twe) mRNA [33,34,36]. twe encodes Drosophila Cdc25

phosphatase. In order for meiosis to proceed twe must remove

an inhibitory phosphorylation on tyrosine 15 of Cdc2 (Ck1)

[37,38]. In bol testes, twe mRNA is present but it is not translated.

In the absence of Twe protein, phosphorylated Cdc2 on Tyr15

accumulates and meiosis arrests at the G2/M transition [38].

Since our results indicate that orb2 also arrests meiosis at the G2/

M transition, we anticipated that orb2 activity would be required to

translate twe mRNA. To test this hypothesis, we first determined

whether twe mRNA levels are normal. The RT-PCR experiment

in Figure 5I shows that twe mRNA levels in orb2 testes are similar

to wild type. We next used a chimeric twe-lacZ translational

reporter to ascertain whether twe mRNA is translated in orb2

mutants. The reporter has sequences encoding b-galactosidase

inserted in frame into the twe gene and expresses a chimeric

mRNA including the twe 39 UTR [36]. While we anticipated that

the translation of the chimeric twe-lacZ mRNA would be blocked

in orb2 testes as in bol (and ofs), this is not the case. Instead, Twe-

lacZ expression in orb2 exceeds even wild type.

Figure 5E and 5F show that the pattern of Twe-lacZ expression

differs in several respects from wild type. First, compared to wild

type (E) there are many more cysts in orb2 testes (F) that express

Twe-lacZ. Second, the amount of lacZ is typically much higher

than in wild type (compare purple arrows in E and F). Third, while

residual Twe-lacZ is degraded in wild type once meiosis is

complete and the spermatids begin differentiation, it persists in

elongating orb36 spermatids (green arrow in Figure 5F). Finally, we

sometimes observe that Twe-lacZ is precociously expressed in

immature spermatocytes that normally would not have Twe

protein (orange arrows in Figure 5F).

Figure 4. orb236 spermatocytes fail to undergo the G2-M
transition of meiosis I. A, B) Wild type and orb236 spermatids.
orb236 spermatids are larger than wild type, have a much larger nucleus
(arrow) and an irregularly shaped Nebenkern (arrowhead). C, D) Wild
type and orb236 spermatids stained with Hoechst to visualize nuclear
size and DNA content. E, F, G) The process of chromosome
condensation in wild type spermatocytes in G2 of meiosis I. E) Mature
spermatocyte stage. F) Condensation phase. G) Onset of metaphase I.
H) Only partially condensed chromosomes corresponding to the wild
type panel F are observed in orb236. I) Diagram of chromosome
condensation during meiosis I. Scale bar: 10 mm.
doi:10.1371/journal.pgen.1003079.g004

Orb2 Has Multiple Functions during Spermatogenesis
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Meiosis arrests at the G2-M transition in bol mutants because

CDC2 remains phosphorylated on Tyr15 in the absence of Twe

[37,38]. This should not be the case in orb2 because high levels of

Twe-lacZ and presumably Twe accumulate. To confirm this

prediction we compared CDC2 Tyr15-P in wild type, bol and orb2

testes. As expected the ratio of phosphorylated to unphosphory-

lated CDC2 is elevated in bol mutants compared to wild type,

while it is reduced in orb2 (Figure 5H). This finding indicates that

CDC2 is activated in orb2 mutants and that meiosis I must be

blocked at a subsequent step in the G2-M transition.

Nuclear Cyclin B accumulation in orb2 testes
To further pinpoint the meiosis block we examined the

expression of Cyclin B (Cyclin B). In wild type testes Cyclin B is

expressed in primary spermatocytes when chromosome conden-

sation starts. It persists during metaphase and is abruptly degraded

at the beginning of anaphase [28]. Like Cyclin A, Cyclin B’s

transient nuclear accumulation is seen only very infrequently.

Previous studies have shown that the upregulation of Cyclin B

expression during chromosome condensation doesn’t occur in ofs

mutants. But other than that, Cyclin B expression and degradation

seem normal [33,34]. In bol testes, Cyclin B is found in the

cytoplasm (Xu, unpublished data). In orb2 mutant testes, Cyclin B

initially accumulates in the cytoplasm as in wild type (Figure 5C,

5D, arrow). However, instead of transiently accumulating in the

nuclei and then disappearing, we find many orb2 cysts with high

levels of nuclear Cyclin B (Figure 5D, arrowhead). In older orb2

cysts we often observe many small Cyclin B speckles in the

cytoplasm. Taken together with the effects on twe expression and

CDC2 phosphorylation, these findings place the meiosis arrest in

orb2 at a step later than in bol and ofs.

Sperm differentiation is disrupted in orb2 mutants
Even though orb2 spermatocytes fail to undergo meiosis, the

spermatids in the older cysts eventually exit the meiotic cycle and

begin the process of differentiation. One of the first steps in

differentiation is the elongation of the flagellar axonemes. In wild

type, the elongating bundle of flagellar axonemes extends towards

the apical tip in a roughly straight and smooth line (Figure 6A). In

contrast, the elongating flagellar axonemes in orb2 zigzag back and

forth and are much shorter than wild type. The individual

axonemes also often splay out from each other instead of

remaining in a tight bundle (Figure 6B). In addition, rather than

having a smooth, regular internal morphology, their internal

morphology is rough and irregular. This phenotype likely arises

from underlying defects in the assembly or localization of

axonemal proteins. One protein that is not properly localized is

Figure 5. orb236 cysts arrest meiosis I at a step after the
expression of the Twine phosphatase. A) Spermatocyte cysts in
wild type typically have cytoplasmic CycA. B) orb236 testes have
multiple spermatocyte cysts with nuclear CycA, as observed in bol [34].
C) In wild type spermatocyte cysts, CycB is typically only found in the
cytoplasm. D) CycB shows a similar nuclear enrichment as CycA in
orb236. Arrow marks wild type and orb236 cysts with cytoplasmic CycB,
while arrowhead points to two orb236 cysts with nuclear CycB. In
contrast to orb2, cysts with cytoplasmic, but not nuclear CycB were seen

in bol mutants (Xu, unpublished results). E, F) Twe-lacZ is over-
expressed in orb236. Purple arrows: orb236 cysts have much higher levels
of Twe-lacZ than wild type. Orange arrow: orb236 cysts containing
immature spermatocytes prematurely express Twe-lacZ. Green arrow:
Twe-lacZ persists in elongating orb236 spermatids. G) Orb2 and Bol are
found in the same complex in testes extracts. Testes extracts were
immunoprecipitated with Bol or control IgG, in the presence or absence
of RNase (RN) as indicated, and Westerns of the immunoprecipitated
proteins were then probed with Orb2 antibodies. H) Testes extract from
wild type (WT), orb2 and bol were probed with antibodies against bulk
Cdc2 (top) and phospho-Tyr15 Cdc2 (bottom). Note that bol and orb2
have opposite effects on CDC2 Tyr15-P. The levels of phosphorylated
Cdc2 in bol testes are higher than wild type, whereas they are lower
than wild type in orb2. Ratio of phosphorylated Tyr15-P to unpho-
sphorylated is as follows: WT = 1.5; orb2 = 0.8; bol = 2.5. I) Semi-
quantitative RT-PCR of twine and gapdh mRNA showing that twine
mRNA levels in orb236 are equivalent to wild type. Scale bar: 50 mm.
doi:10.1371/journal.pgen.1003079.g005
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the meiosis regulator Bol. In wild type, Bol co-localizes with the

prominent Orb2 band near the tip of the elongating flagellar

axoneme bundle. In the region distal to this band extending

towards the spermatid nuclei, there is a lower level of Bol and

Orb2 and both are distributed uniformly along the individual

axonemes (Figure 6C1–6C3). In orb2 testes, the prominent Bol

band at the tip of the axoneme is missing, while in the remainder

of the axoneme bundle, Bol is dispersed in an irregular fashion,

and unlike wild type, its association with individual axonemes is

difficult to discern (Figure 6D1–6D3).

At the end of meiosis just as spermatid elongation commences,

the 64 spermatid nuclei cluster together and begin the process of

condensation, eventually forming a cap-like structure (Figure 7A,

Figure 7. Spermatid nuclear bundles and Individualization
Complex are not properly assembled in orb236. A, B) Formation
and compaction of spermatid nuclear bundles in wild type (WT) and
orb236. Arrowhead in A labels a condensed spermatid nuclear bundle.
Arrowheads in B mark incompletely assembled spermatid nuclear
bundles in orb236. Note that individual needle-shaped spermatid nuclei
are larger than wild type, and most of the nuclei are scattered along the
partially elongated spermatids. Double arrow indicates direction of
spermatid elongation. C, D) Individualization complexes and DJ-GFP are
missing from orb236 testes. IC (Actin): red; DJ-GFP: green; DNA, blue.
Inset shows complete IC (C) or scattered actin cones (D) in either wild
type or orb236 testes. E1, E2, F1, F2) MyosinVI (green) is a component of
the Actin cones and is localized before the triangle shaped Actin signal
in wild type IC (E1, E2, arrow). MyosinVI is also observed in the scattered
actin cones in orb236 testes (F1, F2, arrow). Scale bar in A and B: 20 mm.
doi:10.1371/journal.pgen.1003079.g007

Figure 6. orb236 spermatids have defects in flagellar axoneme
elongation. A, B) Phase contrast images showing wild type (A) and
orb236 (B) elongated spermatid bundles. Wild type spermatid flagellar
axoneme bundles (arrow) have a smooth morphology and extend in a
nearly straight line. orb236 bundles have rough and uneven morphol-
ogy, are shorter, and zigzag back and forth. Individualized sperm (red
arrowheads in A) are observed in wild type but not orb236 testes. C1–
C3) Wild type testes double stained with Orb2 (red) and Bol (green)
antibodies showing co-localized Bol and Orb2 concentrated in a band
near the tip of the elongating flagellar axonemes (arrowhead) and
decreased expression level following this band. D1–D3) Bol localization
at the tip is lost in orb236 flagellar axonemes (arrow), while there is an
uneven distribution along the flagellar axonemes extending behind the
tip. E1–E3) Orb2 and Bol co-localization at the tip of the elongating
flagellar axonemes in orb2BQ is as in wild type. Scale bar: 20 mm.
doi:10.1371/journal.pgen.1003079.g006
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arrowhead) [39]. This doesn’t happen in orb236, and instead of

coalescing into a tight bundle, the spermatid nuclei usually end up

spread out along the partially elongated flagella axonemes

(Figure 7B). The process of individualization begins once

elongation is complete. In wild type testes, individualization is

accomplished by a special structure called the Individualization

Complex (IC). The IC is comprised of 64 individual actin cones

that assemble around each nucleus in the condensed spermatid

nuclear bundle (Figure 7C, inset) and then travels down the

bundled axonemes, ensheathing each in a plasma membrane and

pushing the excess cytoplasm into a waste bag [40,41]. The IC is

never assembled in orb236 testes and individualization never takes

place. However, we do observe scattered triangular shaped actin

cones (Figure 7D, inset). Based on the observed defects, the steps

involved in organizing actin filaments into individual actin cones

might be comparatively normal, while the subsequent assembly of

the cones into the larger IC ensemble is not. Consistent with this

idea, Myosin VI, a component of the Actin cone [39], is present in

the orb236 cones (Figure 7E1, 7E2, 7F1, 7F2). As the bundled and

condensed spermatid nuclei are believed to provide the scaffolding

for assembling the IC [41], the defects in orb236 could be due to the

failure in spermatid nuclei bundling and condensation. Alterna-

tively or in addition, orb2 may be regulating genes directly involved

in assembling the IC. As might be expected from the failure in IC

assembly, Don-Juan GFP is not expressed in orb236 testes

(Figure 7C, 7D) and mature sperm are never observed

(Figure 6A, 6B).

Orb2 represses Orb expression
orb mRNAs are expressed after meiosis is complete and localize

to the tip of the elongating axoneme close to the band of Orb2

protein [3,26]; however, these localized mRNAs don’t appear to

be translated until Orb2 protein begins to disappear at the end of

the elongation phase (Figure 2A–2D). These observations

suggested that the localized orb mRNAs might be a target of

Orb2 repression. To test this hypothesis, we first probed Western

blots of wild type and orb2 testes extracts with Orb antibodies.

Figure 8A shows that Orb levels are elevated in orb2 mutants. In

addition to this increase in Orb protein, orb mRNA translation

appears to be ‘prematurely’ activated in orb2 mutant spermatids.

As shown in Figure 2E and 2F, Orb protein is expressed in

incompletely elongated orb2 mutant spermatids. Finally, the

expression of Orb protein is not properly restricted to the tip of

the elongated flagellar axoneme as in wild type. Instead, Orb is

found throughout the mutant spermatid axonemes.

The orb mRNAs in the two sexes differ at their 59 and 39 ends.

The male transcripts begin at an internal promoter and encode a

protein that has a different N-terminus from the female Orb. At

the 39 end, the male UTR is only about 200 bases in length, while

the female UTR is over a thousand [3]. While the male 39UTR

lacks most of the critical sequences for orb mRNA localization and

translational regulation in ovaries, there are two CPE elements.

Thus, it seemed possible that orb2 might repress orb mRNA

translation by a mechanism that involves an association between

Orb2 protein and orb mRNA. To test this idea we reverse

transcribed RNA isolated from Orb2 immunoprecipitates of wild

type and orb236 testes extracts, and then used primers specific for

the orb male 39 UTR for PCR amplification. Figure 8B shows that

orb mRNA is readily detected in the Orb2 immunoprecipitates

from wild type but not orb236 testes. In control experiments (not

shown), neither boule nor twine mRNA was found in Orb2

immunoprecipitates. Taken together, these findings are consistent

with the idea that Orb2 represses orb mRNA translation directly,

rather than by regulating some other intermediate.

More than twenty other mRNAs are transcribed post-meioti-

cally and localize to the tip of the elongating spermatid flagellar

axonemes [26]. In addition to having similar expression and

localization patterns to orb several of these mRNAs have CPE-like

elements in their 39 UTRs and could be regulatory targets of orb2.

Consistent with this possibility we found that two of the CPE

containing mRNAs, scotti and f-cup, can be immunoprecipitated

with Orb2 antibody from wild type but not orb2 mutant testes

(Figure S4). While the function of f-cup is unknown, Barreau et al.

[26] found that scotti mutant males are sterile. The primary defect

appears to be at a late step in spermatogenesis and involves the

assembly or maintenance of the IC structure.

Uncoupling orb2 functions in meiosis and differentiation
Although the experiments above show that orb2 is required for

spermatid differentiation, it could be argued that the differentia-

tion defects are the indirect consequence of the failure to undergo

meiosis rather than because orb2 has special functions in this stage

of spermatogenesis. To address this problem, at least in part, we

took advantage of the hypomorphic orb2BQ allele, which has a

small deletion that removes an N-terminal poly-Q domain (Figure

S2A, Figure 3) [14]. As shown in Figure 3B, both the large isoform

and the smaller, testes specific isoform are abundantly expressed in

orb2BQ testes; however, they migrate more rapidly than the

corresponding wild type isoforms due to the loss of the poly-Q

domain.

We examined spermatogenesis in orb2BQ homozygous flies. In

contrast to the mutants that reduce or eliminate expression of the

75 kD isoform, there are no meiosis defects in orb2BQ. Instead, like

wild type, 32- and 64-cell cysts are observed, and each of the

spermatids in the 64-cell cysts has a normal looking nucleus

(Figure 9C) and Nebenkern (not shown). Also unlike orb236,

elongating orb2BQ flagellar axonemes have a seemingly normal

morphology and as in wild type the mutant Orb2 protein and Bol

accumulate together in a prominent band near the growing tip of

the flagellar axoneme (Figure 6E1–6E3). Likewise the assembly of

the spermatid nuclei into a bundle and their condensation appear

to be normal (not shown).

On the other hand, the process of differentiation is not normal

in orb2BQ. In wild type testes, elongation of the flagellar axoneme

stops before the tail reaches spermatogonia region (Figure 9D,

arrow points to end of elongation). This is not true in orb2BQ.

Figure 8. orb is an Orb2 regulatory target. A) Western blots of
extracts prepared from wild type, orb236 and orb2B testes were probed
as indicated on the left. In this experiment Snf (Sans filles) was used as a
loading control. Similar results were obtained using Tubulin as the
loading control. B) orb mRNA can be immunoprecipitated with Orb2
antibodies from wild type testes extracts. orb236 testis extract are used
as a negative control for immunoprecipitation. After reverse transcrip-
tion using oligo-dT primers, the orb cDNA was amplified using a primer
set from the 39 end of the male orb mRNA. L: 100 bp DNA ladder.
doi:10.1371/journal.pgen.1003079.g008
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About 70% of the mutant testes have over-elongated flagellar

axonemes that extend into the spermatogonia region. Elongation

doesn’t seem to arrest even at this point. Overgrowth of spermatid

axoneme results in the swelling of testes tip region and an over-

sized testes tip is often observed in orb2BQ testes (Figure 9E,

compare d in Figure 9E and d9 in Figure 9D). In some cases, the

elongating flagellar axonemes push against the testes wall and

cause the muscle layer encasing the apical tip of the testes to

rupture (not shown). On other occasions, when the flagellar

axoneme bundle reaches the spermatogonia region, it changes

direction and begins elongating towards the side of the testes or

even reverses direction and elongates towards the base of the testes

(Figure 9F).

Another differentiation defect is in the assembly and functioning

of the IC. While fully elongated cysts with scattered actin cones are

occasionally observed in wild type testes (,6%), 35% of the fully

elongated cysts in orb2BQ testes have scattered actin cones

(Figure 9A, 9G, 9H). The IC defects range from actin cones that

are not fully coalesced into the IC structure (Figure 9G, arrow) to

completely dispersed actin cones (Figure 9H, arrows). These IC

phenotypes resemble the phenotypes reported for scotti [26]. In the

testes that have IC defects, there is always a mixture of both wild

type and defective ICs (Figure 9H arrow and arrowhead), which

may explain why orb2BQ males are still fertile. Also by comparison,

all ICs in orb236 testes are defective. There is also a reduction in the

number of ICs in orb2BQ testes. In wild type flies, over 90% of the

testes have more than 19 ICs. In contrast, orb2BQ testes, 44% testes

have less than 19 IC (Figure 9B). The fact that meiosis is normal in

orb2BQ, but there are clear defects in both spermatid elongation

and individualization, would provide further support for the idea

that orb2 activity is required not only for meiosis, but also for

proper differentiation.

Discussion

Although CPEB family proteins play critical roles in germline

development in many species, their germline functions differ

between proteins within an organism and also between proteins in

different organisms. For example, in C. elegans, Fog-1 and the

Orb2-like CPB-1 function in the male germline and are required

for sex determination and meiosis respectively. A third, Orb-like

CPEB, CPB-3 is required for meiosis in females [42–44]. Similar

functional specializations are evident for orb and orb2. While orb is

essential for oogenesis, it is not absolutely required for spermato-

genesis as orb mutant males produce functional sperm and their

fertility is reduced but not eliminated. The opposite sex specificity

is exhibited by orb2. Though genetic interaction studies (suppres-

sion of orb haploinsufficiency in the gurken dorsal-ventral polarity

pathway: see for example [17,55]) suggest that orb2 may negatively

regulate orb in the ovary, orb2 females are fertile and oogenesis

appear to be comparatively normal (Nathaniel Hafer, PhD thesis).

In contrast, orb2 plays an essential role in the male germline, and is

required for programming the orderly progression of spermato-

genesis from meiosis through differentiation.

How CPEB proteins regulate meiotic progression is best

understood in Xenopus oocytes. During oocyte maturation, CPEB1

acts as a repressor, blocking translation of mRNAs containing

CPE motifs. However, after progesterone stimulation, CPEB1 is

converted into an activator by Aurora kinase phosphorylation,

initiating translation by stimulating the Gld-2 dependent polyad-

enylation of target mRNAs. Amongst the targets are mRNAs

encoding Mos and the Cyclins B2 and B5. These cyclins activate

Maturation Promoting Factor (MPF) which mediates entry into

metaphase I. Although CPEB1 is degraded during metaphase I, it

Figure 9. Orb2 functions in meiosis and differentiation can be
uncoupled in orb2BQ allele. A) Percentage of scattered ICs is higher in
orb2BQ than wild type. A total of 34 wild type and 46 orb2BQ testes were
counted. B) Percentage of wild type or orb2BQ testes having 0–3, 4–8, 9–
13, 14–18, 19–23, 24–28, 29–33 or 34–38 ICs per testes. orb2BQ testes
have fewer ICs compared to wild type. C) orb2BQ testes have normal
spermatids. Green arrow: mature spermatocytes; yellow arrow: 64-cell
spermatids cyst; arrowhead: spermatids at the beginning of elongation.
D) Wild type testes stained with Orb2 (red), IC (Phalloidin, green) and
DNA (blue). Yellow arrow points to where elongation usually stops in wild
type testes. ‘‘d’’ marks the normal diameter of a testis at spermatogonia
and early spermatocytes region. E–F) Flagellar axoneme bundles in
orb2BQ testes are over elongated. E) Overgrowth results in the swelling of
the testis tip. Diameter of the orb2BQ spermatogonia part of the testis is
larger than that of the wild type (compare d in D and d9 in E), while the
diameter of the nuclei side is relatively normal (compare d in D and d9, d0
in E). F) Another example of overly elongated flagellar axoneme bundles
in orb2BQ testis tip. The Orb2 positive axoneme bundle extended to the
spermatogonial region and then changed its direction of elongation
(arrows) to continue growing in the wrong direction. G, H) IC is not
properly assembled in orb2BQ. Phalloidin labeled Actin: green; DNA: blue.
Arrow in G points to scattered actin cones of an orb2BQ IC that remain
relatively close together in one elongating spermatid cyst. Arrows in H
are examples of widely scattered actin cones. In orb2BQ testes with
scattered IC, we can also observe what appear to be normal looking ICs,
as indicated here by arrowhead in H. Scale bar: 50 mm.
doi:10.1371/journal.pgen.1003079.g009
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induces expression of CPEB4, which is a member of the second

CPEB family. CPEB4 subsequently controls the transition to

metaphase II by regulating Cyclins B1 and B4 expression [45–49].

Interestingly, though mouse CPEB1 is also essential for meiosis in

both sexes, it controls meiosis at an earlier step by regulating

mRNAs encoding synaptonemal complex proteins [50].

Since there is no recombination in Drosophila males, the

function(s) of orb2 in meiosis are necessarily different from those

of mouse CPEB1 [48]. Additionally, its role is distinct from that of

Xenopus CPEB1. While Xenopus CPEB1 promotes meiotic progres-

sion by activating translation of Cyclin B mRNAs, orb2 pre-meiotic

cysts accumulate high levels of Cyclin B. orb2 also differs from the

fly translation factors ofs and bol. The meiotic phenotypes of

mutations in these two genes suggest that they regulate different

targets and likely function at earlier steps in meiotic progression

than orb2. Unlike orb2 mutants, Cyclin B levels aren’t properly

upregulated during G2 in ofs mutants. However, it is not clear

whether ofs regulates Cyclin B mRNA translation directly, or

whether the defects are an indirect consequence of incomplete

spermatocyte maturation [33,34]. bol seems to function at a step

after ofs, controlling the onset of metaphase I by activating twe

mRNA translation. In bol mutants Twe is not expressed and

meiotic progression is blocked because CDC2 remains phosphor-

ylated and inactive. orb2 mutations have a very different effect on

Twe. First, Twe is precociously expressed in cysts containing

spermatocytes that have not fully matured. Second, very high

levels of Twe accumulate in mature cysts that are arrested prior to

metaphase I. Moreover, as would be expected, a substantial

fraction of Cdc2 in orb2 testes is dephosphorylated. Finally, Twe

persists in differentiating spermatids. These phenotypes, together

with the high levels of the A and B Cyclins, argue that orb2

regulates meiotic progression at a step that is likely later than

either ofs or bol. Additionally, these findings indicate that meiotic

progression in male flies does not depend upon a single critical step

or ‘‘switch’’ such as turning on twe or cyclin mRNA translation.

Rather, it would appear that multiple steps in meiotic progression

are subject to translational regulation, and that these steps are

controlled by different translation factors.

One simple model for Twe (Twe-LacZ) misexpression is that

orb2 represses the translation of twe mRNA, perhaps by

antagonizing Bol dependent activation. However, there are

complications with this model. For example, the high levels of

Twe-LacZ that accumulate in cysts arrested before metaphase I

could be the consequence of a prolonged arrest at a point after Bol

activation of twe translation rather than a failure to repress twe

mRNA translation. While an indirect effect of this type would not

explain why Twe-LacZ is precociously expressed in immature orb2

spermatocytes, we were unable to demonstrate an association

between Orb2 and twe mRNA. Additionally, twe 39 UTR doesn’t

contain any obvious CPE-like recognition sequences. With the

caveat that these are negative results, an alternative possibility is

that the effects on Twe-LacZ expression are indirect.

The onset of spermatid differentiation in wild type normally

proceeds only after the completion of meiosis. However, as is seen

for twe, ofs and bol, differentiation becomes uncoupled from meiotic

progression and the mutant cysts ultimately exit the pre-metaphase

I arrest and begin the process of spermatid differentiation [32–34].

In all of these mutants the differentiation process is abnormal, with

some steps being initiated, but not properly executed, while other

steps are not even initiated. One of the key events in spermatid

differentiation is the elongation of the flagellar axoneme. Little or

no elongation is evident for bol, while twe and ofs spermatids begin

elongating but quickly abort [32–34]. While the spermatid

flagellar axonemes elongate in orb2 mutants, the axonemes don’t

extend straight back towards the stem cells at the tip of the testes,

but instead zigzag irregularly and prematurely halt elongation.

They also have an abnormal internal morphology and though they

express Bol, they lack the prominent Bol band, which in wild type

testes co-localizes with the Orb2 band near the tip of the

elongating axonemes. Since Bol is essential for elongation, the

absence of the Bol band is likely to be relevant to the elongation

defects in orb2. While we didn’t detect any association between

Orb2 and bol mRNA, RNA independent Orb2-Bol proteins

complexes are found in testes extracts. Thus, a plausible idea is

that localization of Bol to the axonemal band is mediated by

interactions with Orb2.

Once elongation is completed in wild type, the spermatid nuclei

condense and coalesce into a nuclear bundle and this structure

provides a scaffold for assembling the IC. In orb2 the spermatid

nuclei don’t properly condense and never coalesce into a tight

nuclear bundle. Though the process of IC assembly is initiated and

actin cones are generated, a complete IC is never formed. The

individualization marker Don Juan is also not expressed in orb2

testes. Interestingly, though spermatid differentiation appears to be

much less complete in ofs than in orb2, Don Juan is expressed in ofs

testes [33].

An important question is whether the defects in differentiation

evident in orb2 testes reflect functions for orb2 during this stage of

spermatogenesis or are the indirect and perhaps non-specific

consequence of the earlier meiotic arrest. Arguing against the later

possibility is the fact that ofs, bol, and orb2 mutants have quite

distinct differentiation phenotypes, yet all three fail to undergo

meiosis. In the case of orb2, other lines of evidence point to

functions at specific steps in differentiation. First, orb2 appears to

be required for repressing the post-meiotic expression of Orb until

after spermatid elongation is complete. In wild type, the orb gene is

transcribed post-meiotically, but orb mRNA is not translated until

after spermatid elongation is nearly complete. Since the timing of

orb mRNA translation is correlated with the disappearance of

Orb2, a plausible idea is that Orb2 represses orb mRNA

translation. Consistent with this hypothesis, the levels of Orb

protein are elevated in orb2 mutant testes, and it is expressed

prematurely in incompletely elongated spermatids. In addition,

instead of being expressed only at the tip of the flagellar axonemes,

Orb is distributed all along the axonemes. As orb mRNA contains

two CPE elements and can be detected readily in Orb2

immunoprecipitates, it seems possible that Orb2 could directly

repress orb mRNA translation. As noted above, a role in repressing

orb mRNA translation is also suggested by genetic interaction

studies in females (Nathaniel Hafer, PhD thesis). Second, orb

mRNA does not seem to be the only post-meiotic orb2 regulatory

target. We found that scotti and f-cup, which are also expressed after

meiosis and thought to encode proteins involved in differentiation,

are found in Orb2 immunoprecipitates of testes extracts.

Moreover, there could be additional targets besides these three

mRNAs. Several of the other post-meiotically expressed genes

have CPE-like elements in their 39 UTRs [26]. Similarly, the

mRNA encoding gld2 poly(A) polymerase, which is thought to be

an Orb co-factor, also has a CPE-like element in its 39 UTR and

resembles Orb in that Gld2 protein preferentially accumulates

near the tip of elongated flagellar axonemes [51]. Third, the

hypomorphic poly Q deletion mutant, orb2BQ, makes it possible to

separate meiotic arrest from at least some steps in differentiation.

Meiosis appears to be completely unaffected by the BQ mutation;

however, as is seen for orb236 there are defects in both flagellar

axoneme elongation and IC assembly. On the other hand, since

the differentiation defects in orb2BQ are much less severe than those

in the null, the possibility remains open that the failure in meiosis
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interferes with some process(es) critical for proper differentiation.

For example, the defects in chromosome condensation and

spermatid nuclear bundle formation could be due to the fact that

the orb2 spermatid nuclei have a large excess of DNA. In turn it

could be argued that the failure in IC assembly in orb2 is due to the

absence of a coalesced spermatid nuclear bundle. However, the

fact that IC assembly is also defective in orb2BQ would argue that

orb2 must have IC specific functions that are independent of any

IC assembly steps that require completion of meiosis. Consistent

with this possibility, mRNAs encoding Scotti, which has also been

implicated in IC function, are found in orb2 immunoprecipitates.

Finally, our studies provide some insights into the functional

properties of the N-terminal region of the Orb2 protein. First, the

very modest phenotypes observed not only in the soma [14,19] but

also in the male germline for orb2BQ suggest that the prion forming

poly-Q domain, which is present in both the 75 kD and the 60 kD

isoforms [10,11], is dispensable for most orb2 functions. Second,

even though the testes differ from the soma in that there are

readily detectable levels of the 60 kD isoform, it is not clear what

function if any this isoform has in spermatogenesis. In the insertion

mutants that reduce expression of the 75 kD isoform there are

even higher levels than normal of the 60 kD isoform, yet these

mutants exhibit meiotic and differentiation defects that resemble

those seen for the orb2 deletions. Though their phenotypes appear

less severe than the deletion mutants, this could be attributed to

the fact that all express some residual 75 kD protein. Third, the

162 N-terminal sequence that is unique to the 75 kD isoform is

critical for orb2 function in programming the orderly development

of the male germline from meiosis through the process of

spermatid differentiation. Since there is little if any of the 60 kD

isoform in somatic tissues, it isn’t certain at this point whether the

smaller isoform would be able substitute for the 75 kD in the

soma. Additional tools will be required to determine whether the

smaller isoform has any role in spermatogenesis and also to further

dissect how orb2 functions at different points in meiosis and

differentiation.

Materials and Methods

Fly strains
We obtained P-element/Piggybac insertion (f01556, c06090,

e01925, d01793, f04965) from the Exelexis collection maintained

at Harvard [29]. Deficiency stocks Df(3L)ED4421, Df(3L)ED4415,

Df(3L)ED4416 and the dj-GFP stock were obtained from the

Drosophila stock center (Bloomington). bol1 is a kind gift from Steven

Wasserman [37]. orb2B and orb2BQ are provided by Barry Dickson

[14]. All twine-lacZ flies, twine, aly, sa, can, and mia mutants are

kindly provided by Minx Fuller (Stanford).

Fertility assay
20 individual males were placed with two w1118 females each in

food vials for 5 days, after which adults were removed. Presence of

larvae, pupae and adults were examined after another 2 weeks.

Those with presence of larvae are considered fertile.

Generating orb2 null allele
piggyBack (pBac) transposon insertions with FRT sites near the

orb2 gene used to generate orb2 null alleles are: FRT1 (f01556),

FRT2 (d01925), FRT3 (f04965) (Figure S2). The FRT sites are

used in combination with FLP to create targeted deletions of

genomic DNA (method as described in [29,30]). Deletions were

confirmed using PCR primers specific for pBac sequences flanking

the deletion site and within the gene region. We recovered and

established several independent deletion stocks from each

transposon pair and they behave similarly. Experiments described

here use deletions from f01556–f04965, which we named orb236.

There are also deficiencies in the region that uncover the orb2

locus and have been mapped molecularly (Df(3L)ED4421,

Df(3L)ED4415, Df(3L)ED4416). They behave the same when

combined with orb236. In the text, Df(3L)ED4416 is used and

referred to as 4416.

Western blotting
Western blotting was essentially performed as in [19]. Antibod-

ies used were as follows: mouse anti-Orb2 2D11 (1:25), mouse

anti-Orb2 4G8 (1:25), mouse anti-Snf 4G3 (1:2000), rabbit anti

CDC2 (PSTAIR) (1:2000, millipore), rabbit anti CDC2Tyr15

(IMG668) (1:2000, IMGENEX), mouse anti-Orb 6H4 (1:60),

mouse anti-Orb 4H8 (1:60) [3,4], goat anti-mouse conjugated

HRP (1:1000- Jackson Immunoresearch). Blots were then washed

4610 minutes in TBST and developed with ECL-plus (Amer-

sham).

In situ hybridization
In situ hybridization was performed as described in [52].

Fluorescent antisense probes for orb2 were synthesized by

Biosearch Technologies (www.biosearchtech.com). Forty non-

overlapping 17 bp probes targeted at orb2 mRNA sequence from

cctggacgatcagatgt to atatgttatttaatctcac were synthesized and

labeled with Quasar 670 and used at 1:100 dilution. Detection is

done on an inverted Zeiss LSM510 confocal microscope.

Immunocytochemistry
Whole mount staining is performed as in [33]. Antibodies used

were as follows: mouse anti-Orb2 2D11 and 4G8 IgG (undiluted),

rabbit anti-Bol (1:1000, a gift from Steven Wasserman), mouse

anti-Myosin VI 3C7 1:25 (a gift from Kathryn Miller), monoclonal

anti-b-Tubulin E7 1:50 (Developmental Studies Hybridoma

Bank), monoclonal anti-Orb 6H4 and 4H8 1:30. DNA was

stained with Hoescht (1:1000). Actin was stained with Alexa488-

phalloidin, Alexa546-phalloidin (Invitrogen, Carlsbad, CA). Sec-

ondary antibodies used were goat anti-mouse IgG Alexa 488 or

546, goat anti-rabbit Alexa 488 or 546 (Molecular Probes, Inc.)

Samples were mounted in Aqua-polymount on slides for an

inverted Zeiss LSM510 confocal microscope. Testes live squash

and phase contrast was performed as described in [41]. b-

galactosidase activity assay was performed as described by [28].

Immunoprecipitation and RT–PCR
Immunoprecipitation was performed essentially as described by

[53], except the followings: crude monoclonal anti-Orb2 antibod-

ies 2D11 and 4G8 were affinity purified with Orb2 coupled

HiTrap NHS-activated HP column (GE healthcare) before used

for immunoprecipitation; purified Orb2 antibodies were mixed

with testis extract for 0.5 h–2 h at room temperature before

protein-A/G beads (Calbiochem/Millipore) were added in; the

mixture was then incubated at 4 Cu for 2 h to overnight. Putative

Orb2 target mRNAs with CPE binding sites were predicted using

software described in [54]. RT-PCR was done according to [19].

Primers used were as follows:

orb2 common exon among RA,B,C,D:

CAACAGTGCCACCAGCAGTGC and GCGCAGAC-

TAACTTCGTCGTT.

Cg5741: ATGAGCAAAGCTCCGTTGAAAGCC and

TATCCGGATTAACCGTGTTCCGCA.

orb :CAAGCCCTTGACTCGCAACTCC and CTCCGCCA-

TATTTCTACGTCGCCTAC
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scotti: AAGAACCTCTCTTGGACCTCGGAA and AATGG-

GATGCATATCGGCTGGTTG

f-cup: AACCAGCTGAGCACTTTGCCCAAT and AGAT-

GAACTGTGGCACATAGCCGA

Phosphorylation assay
Phosphorylation assay was done as in [55]. Testis were squashed

in cold PBS and treated with l protein phosphatase for 1 hour at

30uC followed by Western blots.

Supporting Information

Figure S1 Orb2 is hyperphosphorylated in tTAFs mutant testes.

A) Orb2 migrates slower in testes extract from tTAF mutants, but

not the head. B) l-phosphotase (lPP) treatment removes the slow

migrating form of Orb2 in sa1 mutant testes, indicating hyperpho-

sphorylation.

(TIF)

Figure S2 orb2 gene structure, orb2 mRNA and protein

expression in its mutant alleles. A) orb2 gene structure adapted

from Flybase. orb2 has multiple transcripts. RA, RB, RC and RD

are CPEB homologs that are transcribed from three different

promoters (blue arrow, orb2-1, 2, 3). There is another transcript

RH not shown here that shares the same RC sequence with a

larger 39UTR). RE, RF, RG and RI are fusion transcripts of

sequences from the 59 most exons of orb2 and a downstream gene,

CG5741. These chimeric RNAs (orb2-CG5741) encode part of the

Orb2 N-terminal domain, but do not have the conserved CPEB

homology domain. CG5741 has its own promoter, and normal

levels of CG5741 transcripts are observed in the various orb2

mutants [19]. In contrast, alterations in the levels of the various

orb2-CG5741 chimeric RNAs are observed in different orb2

insertion mutants. piggyBac insertion sites are marked by black

arrows. piggyBac 1556, 1925 and 4965 contain properly oriented

FRT sites (FRT1, 2, 3) for generating deletion alleles through

mitotic recombination (inset shows schemes of generating deletion

from two adjacent FRT sites [29,30]). Red brackets mark the poly-

Q sequence that is deleted in orb2BQ allele [14]. B) 6090 and 1925

insertion disrupts Orb2 expression in the testes and the heads. The

1793 insertion, on the other hand, only affects Orb2 expression in

the testes (suggesting that orb2-2 is active in the head, while most

but not all of the transcripts in the test are from orb2-1). Snf is used

as a loading control. C) Effects of piggyBac insertion on orb2 and

orb2-CG5741 transcripts. Notice that 4965 insertion disrupts orb2-

CG5741 but has no effect on orb2 transcripts. It also has no effect

on the levels of CG5741 RNAs. 4965 has no spermatogenesis

defects, indicating that the spermatogenesis phenotype we saw is a

result of loss of Orb2 function (see further discussion in [19]).

609021, which precisely removes 6090 piggyBac insertion, fully

restores orb2 transcript, protein expression and fertility.

(TIF)

Figure S3 Bol expression in spermatocytes and spermatids in

orb236. A, B, C, D: Bol antibody staining; A9, B9, C9, D9, Bol

(green) and DNA (blue) overlay. A, A9) Biphasic subcellular

localization of Bol in wild type testes. Bol is seen both in the

cytoplasm (arrow) and in a perinucleus dot (arrowhead) in

spermatocytes in wild type testes. B, B9) This pattern is also

observed in orb236. C, C9, D, D9) Bol cytoplasmic localization in

spermatids is observed in wild type spermatids and pseudo

spermatids in orb236. Scale bar: 50 mm.

(TIF)

Figure S4 ‘‘comet’’ and ‘‘cup’’ classes of genes are detected in

anti-Orb2 immunoprecipitates. mRNAs isolated from anti-Orb2

immunoprecipitates were reversed transcribed with oligo-dT

primers. cDNAs were then PCR amplified using primers derived

from the 39UTRs of scotti and f-cup. Both genes are expressed post-

meiotically and encode mRNAs with CPEs in their 39 UTR. orb236

testes extract is used as a negative control for non-specific

immunoprecipitation.

(TIF)
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