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Abstract

Elimination of the intermediate snail host of Schistosoma is the most effective way to control

schistosomiasis and the most important first step is to accurately identify the snail habitats.

Due to the substantial resources required for traditional, manual snail-searching in the field,

and potential risk of miss-classification of potential snail habitats by remote sensing, more

convenient and precise methods are urgently needed. Snail data (N = 15,000) from two

types of snail habitats (lake/marshland and hilly areas) in Anhui Province, a typical endemic

area for schistosomiasis, were collected together with 36 environmental variables covering

the whole province. Twelve different models were built and evaluated with indices, such as

area under the curve (AUC), Kappa, percent correctly classified (PCC), sensitivity and spec-

ificity. We found the presence-absence models performing better than those based on pres-

ence-only. However, those derived from machine-learning, especially the random forest

(RF) approach were preferable with all indices above 0.90. Distance to nearest river was

found to be the most important variable for the lake/marshlands, while the climatic variables

were more important for the hilly endemic areas. The predicted high-risk areas for potential

snail habitats of the lake/marshland type exist mainly along the Yangtze River, while those

of the hilly type are dispersed in the areas south of the Yangtze River. We provide here the

first comprehensive risk profile of potential snail habitats based on precise examinations

revealing the true distribution and habitat type, thereby improving efficiency and accuracy of

snail control including better allocation of limited health resources.

Author summary

Schistosomiasis is a parasitic disease caused by parasitic worms of the genus Schistosoma.

In China, the sole intermediate snail host is Oncomelania hupensis whose elimination has
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proved to be the most effective way to interrupt this disease. However, manual snail-

searching is labour-intensive, expensive and time-consuming and can lead to inaccurate

results. For a better approach, 12 models were employed and compared to characterise

the typical snail habitats that vary between the lake/marshlands and the hilly areas. We

found that the two types of snail habitats showed notable differences during the modelling

process, mainly due to the impact of environmental variables that can form different types

of habitats. We further found that habitat characterization contributed to better prediction

of areas at risk, and that the precision was high, especially of models based on machine-

learning algorithms such as random forest (RF). The highest level of accuracy was

achieved by the support vector machine (SVM) approach and artificial neural networks

(ANN). Our study provides new insights into accurate prediction of the spatial distribu-

tion of potential snail habitats with machine-learning as the preferred approach.

Introduction

Schistosomiasis is a detrimental parasitic disease caused by parasitic worms of the genus Schis-
tosoma [1] and it is prevalent in many parts of the world, including Africa (e.g., Egypt), Asia

(e.g., China), and South America (e.g., Brazil) [2,3,4]. The World Health Organization (WHO)

regards schistosomiasis as a neglected tropical disease (NTD) and estimates that at least 206.4

million people require preventive treatment for schistosomiasis, out of which only 89 million

have been treated (WHO, 2018). In China, all infections are due to Schistosoma japonicum
with Oncomelania hupensis as the sole intermediate snail host which is amphibious rather than

aquatic and associated with high moisture microhabitats [5]. In contrast to other schistosome

species adapted to humans (S. haematobium, S. mansoni, S. intercalatum, S. guineensis and S.

mekongi), S. japonicum not only infects humans but also a wide variety of mammals, particu-

larly domestic animals that act as reservoirs such as the water buffalo [6]. Based on the epide-

miological pattern of schistosomiasis and ecological characteristics of the snails, snail habitats

can be categorized into three types in China: (i) marshland and lake areas, (ii) mountainous

and hilly areas, and (iii) plain areas with waterway networks [7].

After decades of efforts to combat schistosomiasis in China, the number of patients has

dropped significantly thanks to mass drug administration (MDA) with praziquantel which

controls the morbidity due to schistosomiasis effectively [2]. However, elimination of schisto-

somiasis requires other methods, in particular control of the transmission of the disease [8].

Surveys conducted in the mid-1950s showed that the snail habitat areas were about 14.3 billion

km2, which declined to 3.6 billion km2 in 2015 [9]. This must decline further but progress in

this direction presents complex challenges, which vary depending on the ecology and topogra-

phy of the endemic areas including lake and marshlands and the hilly or mountainous type.

The O. hupensis snail species is difficult to trace as it is amphibious, generally widely distrib-

uted and requires particular environmental conditions, such as high moisture [8]. In the hilly

and mountainous areas its distribution is scattered and with often inaccessible habitats making

snail control a challenge [10]. In addition, the use of molluscicides is restricted due to environ-

mental protection, resulting in unstable epidemic situations that cannot easily be controlled

[11]. Although infected snails are rarely found In recent years [8], the O. hupensis habitats

have not disappeared and some areas even show an upward trend. For example, a snail survey

in 2016 covering a total area of 8,140 km2 found snails in 2,351 km2, including 13 km2 of new

areas where snails had not been detected before, which meant an increase of 102.16% com-

pared with 2015 [12].
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Previous studies have shown when ecological conditions become more favourable, potential

snail habitats expand resulting in a general increase in snail numbers, and also an increase in

numbers of infected snails [13]. Thus, identification and monitoring of the snail habitats is

crucial for effective schistosomiasis control in the long term. This is traditionally carried out

through manual snail collection in the field, which has been done on a big scale in China since

the 1960s [2,7]. This approach is effective but requires both a large human effort and financial

resources. Furthermore, this approach is difficult in less accessible areas, such as hills and

marshes. For this reason, remotely sensed environmental data derived from satellite imagery,

have been widely used to identify snail habitats, which in combination with actual data on

snail distributions as ground truth can be used to predict schistosomiasis risk [14,15]. How-

ever, this method can only surmise the existence of snails through the presence of potential

habitats and association with particular values of certain environmental variables. Thus the

risk of misclassification is high, in particular as the resolution of the satellite optical sensors is

generally not sufficient for unequivocal identification of a snail habitat [16]. To improve iden-

tification, we therefore attempted a modelling strategy with machine-learning as the approach

to achieve superior accuracy on the basis of our original research [17].

Materials and methods

Study area

Anhui is a province located in eastern China between latitudes of 29˚410–34˚380 North, and

114˚540–119˚370 East (Fig 1). Anhui Province has been one of typical epidemic areas of

schistosomiasis as a wide range of large lake/marshland and hilly area provide an ideal envi-

ronment for the growth and reproduction of the intermediate snail host [8]. Anhui Province is

one of the most important areas endemic for schistosomiasis and was therefore selected as

study area. Past studies have shown that there are four subtypes of oncomelania in different

regions of China and the species distributed in Anhui are mainly Oncomelania hupensis [10].

Snail data

The snail distribution data come from the results of a snail survey carried out throughout

Anhui Province from March to May, 2016. The snail environment was determined based on

the survey from a previous study [18] according to historical data and confirmed in the field

by professionals from the local Schistosomiasis Control Station. It was classified into two types

of snail habitat, i.e. 1) lake and marshlands; and 2) hilly and mountainous areas (Fig 1) [19].

Past studies have shown that there are four subtypes of Oncomelania in different regions of

China and the species distributed in Anhui is mainly O. hupensis [10].

The exact points where the snails were found or historically reported were located by a

handheld global positioning system (GPS) instrument (Garmin GPSMAP 64s) [20]. For areas

where no snail habitats were found, a random sampling method was applied with a buffer area

of 100m to exclude them from the snail habitat areas of interest [21].

Environmental data

Thirty-six environmental variables were included in our study (see Table 1 for variable summa-

ries). Most of the environmental variables were remotely sensed from Earth-orbiting satellite sen-

sors. We calculated the Normalized Difference Vegetation Index (NDVI) and the land surface

temperature (LST) [21] based on the satellite images of our study area. The elevation data (DEM)

was obtained from the Global Land Information System (GLIS) of the United States Geological

Survey (USGS) and we extracted aspect (Asp) and slope accordingly [22]. The distance to nearest
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water body (Water), which includes rivers and lakes in the whole study area, was calculated from

water body data that were downloaded from Conservation Science Data Sets of World Wildlife

Foundation. The climatic variables were Bio1~Bio19 obtained from WorldClim (see S1 Table for

details) [23,24]. The other climatic variables and soil data, geomorphic type (Geo), land use type

(Lucc), ecosystem type (Eco) and vegetation type (Veg) all came from the Data Center for

Resources and Environmental Sciences of the Chinese Academy of Sciences.

Data preprocessing

After representing the study area as a map with a 100×100 m matrix grid, the 10,000 m2 wide

cells where snail habitats had been found were marked as ‘1’ with the centre of the cell as their

Fig 1. The epidemic areas and sample points in Anhui Province about here. (A) The figure is the epidemic areas of

Anhui Province in China with the blue lines through the southern parts of the province representing the Yangtze

River. The red and circular purple triangular points represent the sample points in the lake/marshland and hilly/

mountainous types of snail habitat, respectively. The map was created using the ArcGIS 10.0 software (ESRI Inc.,

Redlands, CA, USA).

https://doi.org/10.1371/journal.pntd.0008178.g001
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location, alternatively with ‘0’ if no snail habitat had been recorded. For the modelling, the re-

located locations (cell centres) were used, not the actual location, since the map of the whole

area was needed for the prediction [18]. According to the type of habitat environment, we

divided the habitat presence points into two groups: 1) lake/marshlands and 2) hilly and

mountainous areas. To ensure that the environmental raster data had the same geographical

scope and same scale as the study area, we used the polygon of Anhui Province as the mask for

all environmental data and then converted them into the form of raster image with the same

scale.

To control the potential multi-collinearity among the environmental variables, correlation

analysis was conducted for all climate raster images to gain the correlation coefficients for the

matrices. One of the variables was excluded from every pair of variables with a correlation

coefficient greater than 0.7 [25]. Which variables to be excluded depended on the results of the

t test for the pair of variables with respect to the two groups (presence and absence), preserving

the variable with the lower P-value (i.e. the one with the most statistically significant correla-

tion with Oncomelania environment). We conducted screening of all variables for the two

types of habitat, i.e. lake/marshlands and hilly/mountainous areas.

Modelling and evaluation

Twelve models were produced: two based on sections (Bioclim and Domain), three on tradi-

tional statistical methods, such as generalized linear model (GLM), multivariate adaptive

regression spline (MARS) and flexible discriminant analysis, (FDA), and seven on machine-

learning algorithms, such as maximum entropy, Maxent), Genetic Algorithm for Rule-set Pro-

duction (GARP), generalized boosted models (GBM), random forest (RF), classification tree

analysis (CTA), artificial neural network (ANN) and support vector machine (SVM).

Four of the models (Bioclim, Domain, Maxent and GARP) are presence only models and

they only need the set of presence records. Bioclim and Domain from DIVA-GIS software,

Table 1. Summary of environment variables used in study before screening.

Data description Label Variable type

Normalized Difference Vegetation Index NDVI Continuous

Land surface temperature LST Continuous

Elevation DEM Continuous

Aspect Asp Continuous

Slope Slope Continuous

Distance to nearest water body Water Continuous

WorldClim Bio1~Bio19 Continuous

Accumulated temperature beyond 0˚C Aat0 Continuous

Accumulated temperature beyond 10˚C Aat10 Continuous

Moisture index Im Continuous

Annual average precipitation Pa Continuous

Annual average temperature Tadem Continuous

Soil type Soil Categorical

Soil texture Clay, Sand, Silt Continuous

Geomorphic type Geo Categorical

Land use type Lucc Categorical

Ecosystem type Eco Categorical

Vegetation type Veg Categorical

https://doi.org/10.1371/journal.pntd.0008178.t001
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version 7.1.7 (http://www.diva-gis.org/) were developed by constraining the range of environ-

mental factors [26]. While Maxent and GARP are machine-learning programs, the former

conducted by the stand-alone Maxent software, version 3.4.1 [27], and the latter based on bio-

logical evolution theory, which also has its stand-alone software, i.e. Desktop GARP, version

1.1.6 [28]. The other eight models, were presence/absence models which need both presence

and absence records: ANN and SVM were built in R, version 3.5.1 by the nnet package and the

e1071 package, respectively, while the other six presence/absence models were carried out

using the Biomod2 package for R [29] (more details are shown in appendix S1 Text).

The whole dataset was split randomly into two parts, 75% for model development and 25%

for model evaluation. The 12 models were compared with the five evaluation indices applied

for model testing, including sensitivity, specificity, percent correctly classified (PCC), Kappa

and area under the (receiver operating characteristic) curve (AUC) [30]. They were performed

with the Presence/Absence packages with a 0.5 threshold, where>0.5 represented the poten-

tially positive areas (snails present) and<0.5 the potentially negative areas (snails absent) [31].

Besides, the importance of variables would be evaluated and compared in the best models,

which is RF variables importance algorithm and its principle is to shuffle a single variable of

the given data. The higher the value of the importance of variable (IV), the more influence the

variable would have on the model.

Results

In total, 45,000 randomly sampled points delineating presence/absence of snails were included

comprising. 5,000 presence points and 10,000 absence points for the lake/marshland area, and

10,000 presence points and 20,000 absence points for the hilly/mountainous area.

Importantly, snails in two types of habitats showed preferences with respect to the climate

variables, as seen in the matrix of correlation coefficients (S3 and S4 Figs). For the lake/marsh-

lands, Bio3, Bio6, Bio8, Bio9 and the accumulated temperature beyond 10˚C (Aat10) were sta-

tistically significant, while for the hilly/mountainous areas, the moisture index (Im), and Bio8,

Bio9, Bio12, Bio15 and the accumulated temperature beyond 0˚C (Aat0).

Judging from the results of the various predictive indicators (Table 2) and the ROC curve

(Fig 2), there was no difference in ranking of the model effects between the two types of geo-

graphical area. However, the predictions with regard to the lakes and marshlands area were

slightly better than those with regard to the hilly and mountainous areas. Generally, the pres-

ence/absence models outperformed the presence only models, especially the models based on

machine-learning algorithms such as RF, SVM and ANN. In the light of AUC, Kappa and

PCC, the prediction results of presence/absence models were better than those based on the

presence-only models. Although the AUC of Maxent was high and had the best specificity, its

sensitivity was the lowest. With respect to RF, all evaluating indicators except the sensitivity

one were the best of 12 models, giving an AUC of this model for the two types of snail habitat

of 0.988 and 0.985, respectively, followed by SVM, ANN and Maxent, while Domain, Bioclim

and GARP showed higher sensitivity but much lower specificity. Hence, RF was selected as the

prediction model of choice.

Table 3 shows the importance of variables (IV) in the RF model, i.e. the one found to be the

best. For the lake/marshlands, the most important variable for predicting the potential snail

habitats was the distance to the nearest river (Water) (IV = 0.305), followed by some climatic

variables, such as mean temperature of the driest quarter (Bio9), accumulated temperature

beyond 10˚C (Aat10) and isothermality (Bio3). However, the most important variables associ-

ated with the potential of snail habitats in the hilly areas were two climatic variables (i.e. mean
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temperature of driest quarter (Bio9) (IV = 0.362) and annual precipitation (Bio12)

(IV = 0.335), followed by elevation (DEM) and the vegetation type (Veg).

The final risk maps for the potential snail habitats are depicted in Fig 3. The potentially pos-

itive areas of snail habitats for the type of lake/marshland area are mainly along the Yangtze

River (Fig 3A), while those of the hilly/mountainous areas were more dispersed and mostly

distributed in the areas south of the Yangtze River (Fig 3B). The predicted area of snail habitats

Table 2. Evaluation of 12 models based on five different statistical indexes.

AUC Kappa PCC sensitivity specificity

Model PO�/PA�� lake/marshland hilly lake/marshland hilly lake/marshland hilly lake/marshland hilly lake/marshland hilly

RF PA 0.993 0.985 0.928 0.883 0.964 0.942 0.991 0.974 0.937 0.908

ANN PA 0.970 0.900 0.809 0.618 0.905 0.809 0.857 0.712 0.952 0.887

SVM PA 0.962 0.925 0.762 0.638 0.881 0.819 0.826 0.731 0.936 0.907

Maxent PO 0.969 0.922 0.656 0.638 0.828 0.820 0.680 0.724 0.974 0.914

GBM PA 0.965 0.910 0.802 0.666 0.900 0.833 0.986 0.951 0.816 0.715

MARS PA 0.964 0.895 0.810 0.634 0.905 0.817 0.983 0.948 0.828 0.686

GLM PA 0.955 0.894 0.800 0.602 0.900 0.801 0.984 0.941 0.817 0.661

FDA PA 0.955 0.891 0.799 0.623 0.900 0.812 0.944 0.897 0.856 0.727

CTA PA 0.935 0.885 0.822 0.716 0.911 0.858 0.987 0.973 0.836 0.744

Domain PO 0.916 0.813 0.832 0.626 0.916 0.813 0.997 0.995 0.835 0.631

GARP PO 0.882 0.796 0.625 0.349 0.812 0.675 0.991 0.988 0.635 0.362

Bioclim PO 0.860 0.768 0.719 0.536 0.860 0.768 0.920 0.924 0.800 0.613

�Presence only;

��Presence and absence

https://doi.org/10.1371/journal.pntd.0008178.t002

Fig 2. ROC curves of predicted results of the 12 models for the two types of snail habitat. (A) ROC curve for snail habitats in the lake/marshlands.

(B) ROC curve for snail habitats in the hilly/mountainous areas.

https://doi.org/10.1371/journal.pntd.0008178.g002
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for these two types of area was 3,712.4 km2 and 3,693.1 km2 respectively, but the latter was

more dispersed. There was also a 122.2 km2 overlap of the two high risk areas in the two

types of habitat when the prediction results were viewed together on the integrated risk map

(Fig 3C).

Table 3. The importance of variables (IV).

Lake/marshland type Hilly type

Variable name Importance of variables (IV) Variable name Importance of variables (IV)

Water 0.305 Bio9 0.362

Bio9 0.268 Bio12 0.335

Aat10 0.190 DEM 0.121

Bio3 0.035 Veg 0.118

DEM 0.032 Bio8 0.072

Im 0.015 Water 0.047

Bio6 0.010 Aat0 0.034

LST 0.008 Bio15 0.017

Geo 0.007 Soil 0.013

Bio8 0.004 NDVI 0.009

Clay 0.004 LST 0.007

NDVI 0.004 Slope 0.007

Lucc 0.003 Clay 0.006

Veg 0.002 Geo 0.005

Asp 0.001 Sand 0.002

Eco 0.001 Asp 0.001

Silt 0.001 Eco 0.001

Slope 0.001 Lucc 0.001

Soil 0.001 Silt 0.001

Sand 0.000

https://doi.org/10.1371/journal.pntd.0008178.t003

Fig 3. Predicted risk map of potential snail habitats for Anhui Province according to the RF model. (A) Risk map of potential snail habitats for the

lake/marshland type. The shifting shades of the colour red from light to dark represent the risk of snail presence changing from low to high. (B) Risk

map of potential snail habitats for the hilly/mountainous type. The shifting shades of the colour green from light to dark represent the risk of snail

presence changing from low to high. (C) Combined risk map with pink areas representing the lake/marshland type only, yellow areas the hilly/

mountainous type only, and the red areas the overlapping regions.

https://doi.org/10.1371/journal.pntd.0008178.g003
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Discussion

So far, prediction of potential snail habitats has been widely based on the method of Maxent

alone [31,32]. Recent studies have used remotely sensed data and several environmental data

to derive habitat suitability for Bulinus and therefore haematobium risk within African settings

[33, 34]. Today, China is moving toward control and elimination of S. japonicum and precision

mapping could play a key role in the more targeted interventions needed in the future [35].

However, it should be considered that it is more difficult to map amphibious snails than the

aquatic species, that play the role of intermediate hosts in Africa and Latin America, as the for-

mer can potentially be dispersed over a much wider area, which means that highly accurate

modelling techniques are of crucial importance for S. japonicum transmission. In our study,

we predicted the potential distribution of O. hupensis in Anhui Province for two types of snail

habitats based on 12 models with a thorough comparison. We found that presence/absence

models are better than presence only models and that machine-learning approaches are gener-

ally better than other methods, with RF performing best among all the models investigated.

Our prediction maps of potential snail habitats should be valuable for directing local staff to

conduct precise snail investigations, which would increase the efficiency and accuracy of mon-

itoring snail habitats, particularly when the climate varies from the traditional.

Seen as a whole, the 12 models (S3 and S4 Figs) share certain similar outcomes, such as indi-

cating a concentration of high-risk areas in the southern part of Anhui Province. The high-risk

regions for the lake/marshland type were found to be close to the Yangtze River, while those in

hilly/mountainous areas were widely scattered, which is consistent with the known situation

for O. hupensis in Anhui Province [20]. However, there were differences among the models.

The high-risk areas indicated by some of them, e.g., GARP, were large and dispersed, while

Maxent and Domain showed smaller high-risk areas but large median-risk areas (risk around

0.5) which may lead to misclassifications. Compared with the presence only models, the high-

risk areas of presence/absence models were more concentrated and there was almost no

median-risk area indicated, which may be due to the fact that information of absence data was

used and hence improved the accuracy of the model predictions. Although, the Maxent model

has been historically used to model potential snail habitats, its lower sensitivity suggests that it

should be replaced by better models such as RF. Besides, we found that the ROC for lake/

marshland specificity is less variable between models than for hilly mountainous areas, which

may have resulted from greater sample sizes from the lake/marshland areas. Sample size is very

likely a factor worthy of further investigation with regard to prediction accuracy.

Significant differences were found when two types of O. hupensis habitats were modelled

separately. The difference between the two types of environments was found to be directly

reflected by the outcome of variable screening. The most important factor for the lake/marsh-

land areas was found to be distance to the nearest river, but in case of the hilly/mountainous

areas, climatic variables were more significant. This is reasonable since the former land is char-

acterized by the ecological features termed “land in winter—water in summer” and “no snails

if no vegetation”, while the latter is more related to the local environment’s soil humidity

which is closely related to climatic factors [36]. Besides, we found that the predictions per-

formed better for lake/marsh areas than mountainous areas, which might be because the snails

in the former are more sensitive to the environment. The overriding significance of the work

presented here is that the environmental factors generate different predictions with regard to

snail distributions depending on the type of area investigated, which means that predicted

results with regard to potential snail habitats must be adapted to the specific area under scru-

tiny. Our results presented here suggest that the same snail species may produce different out-

comes in different living environments, but further research is needed to confirm this finding.
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Although a number of variables were used in our study, most of them abiotic, human fac-

tors and related issues, such as economy, population, urbanization and environment recon-

struction should not be ignored [37,38,39]. For instance, some water conservancy projects

such as the South-to-North Water Diversion (SNWD) project are believed to influence the dis-

tribution of O. hupensis [40]. Besides, traditional niche models, including Maxent and GARP,

could not meet our increasing need for prediction, because the relation between snail and

environment required larger data volumes, which would increase model complexity. There-

fore, more flexible prediction models need to be considered and developed in the future, espe-

cially with respect to models based on machine-learning algorithms which are currently the

most promising direction for the identification of potential snail habitats. Our study provides

new insights into how to achieve accurate prediction of the spatial distribution of potential

snail habitats with machine-learning as the preferred approach, and it provides also guidance

regarding public health approaches for the control of schistosomiasis.
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